package memtrace_viewer
Interactive memory profiler based on Memtrace
Install
Dune Dependency
Authors
Maintainers
Sources
memtrace_viewer-v0.16.0.tar.gz
sha256=bb50fc48fef748dffe7ff1e151021b1361500c432a8c2991065fd31fd474f817
doc/src/memtrace_viewer.native/substring_heavy_hitters.ml.html
Source file substring_heavy_hitters.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
open! Core open Memtrace_viewer_common (* A generalized suffix tree based on Ukkonen's algorithm combined with lossy counting. *) module type Char = sig include Hashable.S_plain include Comparable.S_plain with type t := t include Sexpable.S with type t := t val dummy : t end (* Need to do this up top because we can't invoke a generative functor (namely [Identifier.Make]) from an applicative one (our own [Make]). *) module Node_id = struct include Identifier.Make () let dummy = first_special end module Make (X : Char) = struct module Node : sig module Id : Identifier.S type t val id : t -> Id.t val label : t -> X.t array module Root : sig type node = t type t val create : unit -> t val node : t -> node val is_node : t -> node -> bool end val add_leaf : root:Root.t -> parent:t -> array:X.t array -> index:int -> key:X.t -> t val split_edge : root:Root.t -> parent:t -> child:t -> len:int -> t val set_suffix : root:Root.t -> t -> suffix:t -> unit val add_to_count : root:Root.t -> depth:int -> count:int -> t -> unit type find_result = | Found of t | Added of t val find_or_add_leaf : root:Root.t -> parent:t -> array:X.t array -> index:int -> find_result val get_child : root:Root.t -> t -> X.t -> t val get_child_opt : root:Root.t -> t -> X.t -> t option val edge_array : t -> X.t array val edge_start : t -> int val edge_length : t -> int val edge_key : t -> X.t val edge_char : t -> int -> X.t val has_suffix : t -> bool val suffix : t -> t val parent : t -> t val compress : root:Root.t -> threshold:int -> unit val has_summary : t -> bool val reset_summary : t -> unit val update_parent_totals : t -> root:Root.t -> unit val update_delta_from_parents : t -> root:Root.t -> unit val update_parent_heavy_totals : t -> root:Root.t -> heaviness_threshold:int -> unit val finalize_summary : t -> heaviness_threshold:int -> unit val iter_children : t -> root:Root.t -> f:(t -> unit) -> unit val fold_children : t -> root:Root.t -> init:'a -> f:(t -> 'a -> 'a) -> 'a val is_heavy : t -> heaviness_threshold:int -> bool val contains_heavy : t -> heaviness_threshold:int -> bool val count : t -> int val total_count : t -> int val light_count : t -> int val representative : t -> t module Debug : sig type nonrec t = t [@@deriving sexp_of] end module Debug_full : sig type nonrec t = t [@@deriving sexp_of] end end = struct module Id = Node_id type t = { id : Id.t ; mutable edge_array : X.t array ; mutable edge_start : int ; mutable edge_len : int ; mutable edge_key : X.t ; mutable parent : t ; mutable suffix_link : t ; mutable next_sibling : t ; mutable first_child : t ; mutable refcount : int (* [2 * incoming suffix links + 2 * has count + chidren] A node should be deleted when this is <= 1 *) ; mutable summary : summary ; mutable queue_item : queue_item ; mutable count : int (* Upper bound on how much has been squashed along the edge to the parent. A node may be created and squashed again any number of times; this is a bound on how much count we've thrown away in doing so for this node. (Edge merging muddies the picture, since it may not have been precisely _this_ node, but you get the picture.) *) ; mutable max_edge_squashed : int (* Upper bound on how much has been squashed along any one edge to a child *) ; mutable max_child_squashed : int (* Upper bound on how much the total count could be low *) ; mutable delta : int } and queue_item = { node : t ; mutable next : queue_item ; mutable previous : queue_item } and summary = | No_summary | Summary of { mutable descendents_count : int ; mutable heavy_descendents_count : int ; mutable heavy_descendents : Id.Set.t ; mutable representative : t (* Deepest descendent (possibly itself) with the same set of heavy descendents. *) } let id t = t.id let same t1 t2 = phys_equal t1 t2 let is_removable refcount = refcount = 0 let is_mergable refcount = refcount = 1 let is_mergable_or_removable refcount = refcount <= 1 let dummy_array = [||] let rec dummy_queue_item = { node = dummy; next = dummy_queue_item; previous = dummy_queue_item } and dummy = let id = Id.dummy in let edge_array = dummy_array in let edge_start = 0 in let edge_len = 0 in let edge_key = X.dummy in let refcount = 0 in let count = 0 in let delta = 0 in let max_child_squashed = 0 in let max_edge_squashed = 0 in let summary = No_summary in { id ; edge_array ; edge_start ; edge_len ; edge_key ; parent = dummy ; suffix_link = dummy ; next_sibling = dummy ; first_child = dummy ; refcount ; summary ; queue_item = dummy_queue_item ; count ; delta ; max_edge_squashed ; max_child_squashed } ;; let is_dummy t = same t dummy let is_real t = not (is_dummy t) module Queue = struct module Item = struct type nonrec t = queue_item let root = { node = dummy; next = dummy_queue_item; previous = dummy_queue_item } let dummy = dummy_queue_item let same t1 t2 = phys_equal t1 t2 let is_dummy t = same t dummy let is_real t = not (is_dummy t) let next item = item.next let set_next item ~next = item.next <- next let set_previous item ~previous = if is_real item then item.previous <- previous let fresh ~node ~previous ~next = { node; previous; next } end type t = { mutable fronts : Item.t Array.t ; mutable max : int } let create () = let fronts = [||] in let max = -1 in { fronts; max } ;; let enlarge t = let fronts = t.fronts in let old_length = Array.length fronts in let new_length = (old_length * 2) + 1 in let new_fronts = Array.create ~len:new_length dummy_queue_item in Array.blit ~src:fronts ~src_pos:0 ~dst:new_fronts ~dst_pos:0 ~len:old_length; t.fronts <- new_fronts ;; let fresh_front_sentinel () = let node = dummy in let previous = dummy_queue_item in let next = dummy_queue_item in Item.fresh ~node ~previous ~next ;; let add t ~depth ~node = if depth > t.max then ( while depth >= Array.length t.fronts do enlarge t done; t.max <- depth); let front = t.fronts.(depth) in let item = if Item.is_real front then ( let previous = front in let next = Item.next front in let item = Item.fresh ~node ~next ~previous in Item.set_previous next ~previous:item; Item.set_next previous ~next:item; item) else ( let previous = fresh_front_sentinel () in t.fronts.(depth) <- previous; let next = Item.dummy in let item = Item.fresh ~node ~previous ~next in Item.set_next previous ~next:item; item) in node.queue_item <- item ;; let remove ~node ~item = let next = item.next in let previous = item.previous in Item.set_previous next ~previous; Item.set_next previous ~next; node.queue_item <- Item.dummy ;; let iter_front front depth f = let current = ref (Item.next front) in while Item.is_real !current do let next_current = !current.next in f ~depth !current; current := next_current done ;; let iter t f = let fronts = t.fronts in for i = t.max downto 0 do iter_front fronts.(i) i f done ;; end let label t = let rec loop acc t = let edge = Array.sub t.edge_array ~pos:t.edge_start ~len:t.edge_len in if not (same t t.parent) then loop (edge :: acc) t.parent else Array.concat (edge :: acc) in loop [] t ;; module Root = struct type node = t type t = { node : node ; children : node X.Table.t ; queue : Queue.t ; id_gen : Id.Generator.t } let create () = let id_gen = Id.Generator.create () in let id = Id.Generator.generate id_gen in let edge_array = dummy_array in let edge_start = 0 in let edge_len = 0 in let edge_key = X.dummy in let next_sibling = dummy in let first_child = dummy in let refcount = 0 in let queue_item = Queue.Item.root in let summary = No_summary in let count = 0 in let delta = 0 in let max_child_squashed = 0 in let max_edge_squashed = 0 in let rec node = { id ; edge_array ; edge_start ; edge_len ; edge_key ; parent = node ; suffix_link = node ; next_sibling ; first_child ; refcount ; summary ; queue_item ; count ; delta ; max_edge_squashed ; max_child_squashed } in let children = X.Table.create ~size:37 () in let queue = Queue.create () in { node; children; queue; id_gen } ;; let node t = t.node let is_node t node = same t.node node let children t = t.children let queue t = t.queue let gen_id t = Id.Generator.generate t.id_gen end let rec set_child_in_list previous current old_child new_child = let next = current.next_sibling in if same current old_child then ( previous.next_sibling <- new_child; new_child.next_sibling <- next) else set_child_in_list current next old_child new_child ;; let set_child ~root ~parent ~key ~old_child ~new_child = if Root.is_node root parent then Hashtbl.set (Root.children root) ~key ~data:new_child else ( let first_child = parent.first_child in let second_child = first_child.next_sibling in if same first_child old_child then ( parent.first_child <- new_child; new_child.next_sibling <- second_child) else set_child_in_list first_child second_child old_child new_child) ;; let rec add_child_to_list ~key ~child previous current = let current_key = current.edge_key in if X.(key < current_key) then ( child.next_sibling <- current; previous.next_sibling <- child) else add_child_to_list ~key ~child current current.next_sibling ;; let add_child ~root ~parent ~key ~child = if Root.is_node root parent then Hashtbl.add_exn (Root.children root) ~key ~data:child else ( parent.refcount <- parent.refcount + 1; let first_child = parent.first_child in let first_key = first_child.edge_key in if X.(key < first_key) then ( child.next_sibling <- first_child; parent.first_child <- child) else add_child_to_list ~key ~child first_child first_child.next_sibling) ;; let rec remove_from_child_list previous current child = let next = current.next_sibling in if same current child then previous.next_sibling <- next else remove_from_child_list current next child ;; let remove_child ~root ~parent ~child = if Root.is_node root parent then ( let key = child.edge_key in Hashtbl.remove (Root.children root) key; Int.max_value) else ( let first_child = parent.first_child in let second_child = first_child.next_sibling in let refcount = parent.refcount - 1 in parent.refcount <- refcount; if same first_child child then parent.first_child <- second_child else remove_from_child_list first_child second_child child; refcount) ;; let set_suffix ~root t ~suffix = t.suffix_link <- suffix; if not (Root.is_node root suffix) then suffix.refcount <- suffix.refcount + 2 ;; let remove_incoming ~root t = if Root.is_node root t then Int.max_value else ( let refcount = t.refcount - 2 in t.refcount <- refcount; refcount) ;; let fresh_leaf ~root ~parent ~array ~index ~key = let id = Root.gen_id root in let edge_array = array in let edge_start = index in let edge_len = Array.length array - index in let edge_key = key in let suffix_link = dummy in let next_sibling = dummy in let first_child = dummy in let queue_item = dummy_queue_item in let summary = No_summary in let count = 0 in let refcount = 0 in let delta = parent.max_child_squashed in let max_edge_squashed = delta in let max_child_squashed = delta in { id ; edge_array ; edge_start ; edge_len ; edge_key ; parent ; suffix_link ; next_sibling ; first_child ; refcount ; summary ; queue_item ; count ; delta ; max_edge_squashed ; max_child_squashed } ;; let add_leaf ~root ~parent ~array ~index ~key = let node = fresh_leaf ~root ~parent ~array ~index ~key in add_child ~root ~parent ~key ~child:node; node ;; let split_edge ~root ~parent ~child ~len = if len = 0 then parent else ( let edge_array = child.edge_array in let edge_start = child.edge_start in let edge_key = child.edge_key in let child_key = edge_array.(edge_start + len) in let new_node = let id = Root.gen_id root in let edge_len = len in let suffix_link = dummy in let next_sibling = dummy in let refcount = 1 in let first_child = child in let queue_item = dummy_queue_item in let summary = No_summary in let count = 0 in let delta = child.max_edge_squashed in let max_edge_squashed = delta in let max_child_squashed = delta in { id ; edge_array ; edge_start ; edge_len ; edge_key ; parent ; suffix_link ; next_sibling ; first_child ; refcount ; summary ; queue_item ; count ; delta ; max_edge_squashed ; max_child_squashed } in set_child ~root ~parent ~key:edge_key ~old_child:child ~new_child:new_node; child.edge_start <- edge_start + len; child.edge_len <- child.edge_len - len; child.edge_key <- child_key; child.parent <- new_node; child.next_sibling <- dummy; new_node) ;; let merge_child ~root ~parent t = let child = t.first_child in let key = t.edge_key in let edge_len = t.edge_len in let child_edge_start = child.edge_start in child.edge_key <- key; if child_edge_start >= edge_len then child.edge_start <- child_edge_start - edge_len else ( let edge_array = t.edge_array in let edge_start = t.edge_start in let common_prefix = edge_start + (edge_len - child_edge_start) in let common = if Array.length edge_array = common_prefix then edge_array else Array.sub edge_array ~pos:0 ~len:common_prefix in let array = Array.append common child.edge_array in child.edge_array <- array; child.edge_start <- t.edge_start); child.edge_len <- edge_len + child.edge_len; let max_edge_squashed = t.max_edge_squashed in let child_max_edge_squashed = child.max_edge_squashed in if max_edge_squashed > child_max_edge_squashed then child.max_edge_squashed <- max_edge_squashed; child.parent <- parent; set_child ~root ~parent ~key ~old_child:t ~new_child:child ;; type find_result = | Found of t | Added of t let rec find_or_add_leaf_in_list ~root ~parent ~array ~index ~key previous current = let current_key = current.edge_key in if X.(key < current_key) then ( let child = fresh_leaf ~root ~parent ~array ~index ~key in child.next_sibling <- current; previous.next_sibling <- child; parent.refcount <- parent.refcount + 1; Added child) else if X.equal key current_key then Found current else find_or_add_leaf_in_list ~root ~parent ~array ~index ~key current current.next_sibling ;; let find_or_add_leaf ~root ~parent ~array ~index = let key = array.(index) in if Root.is_node root parent then ( let children = Root.children root in match Hashtbl.find children key with | Some child -> Found child | None -> let leaf = fresh_leaf ~root ~parent ~array ~index ~key in Hashtbl.add_exn children ~key ~data:leaf; Added leaf) else ( let first_child = parent.first_child in let first_key = first_child.edge_key in if X.(key < first_key) then ( let leaf = fresh_leaf ~root ~parent ~array ~index ~key in leaf.next_sibling <- first_child; parent.first_child <- leaf; parent.refcount <- parent.refcount + 1; Added leaf) else if X.equal key first_key then Found first_child else find_or_add_leaf_in_list ~root ~parent ~array ~index ~key first_child first_child.next_sibling) ;; exception No_such_child let rec get_child_in_list current char = if X.equal current.edge_key char then current else if is_dummy current then raise No_such_child else get_child_in_list current.next_sibling char ;; let get_child0 ~root t char = if Root.is_node root t then ( match Hashtbl.find (Root.children root) char with | Some child -> child | None -> raise No_such_child) else get_child_in_list t.first_child char ;; let get_child ~root t char = try get_child0 ~root t char with | No_such_child -> failwith "get_child: No such child" ;; let get_child_opt ~root t char = match get_child0 ~root t char with | child -> Some child | exception No_such_child -> None ;; let edge_array t = t.edge_array let edge_start t = t.edge_start let edge_length t = t.edge_len let edge_key t = t.edge_key let edge_char t i = if i = 0 then t.edge_key else t.edge_array.(t.edge_start + i) let has_suffix t = is_real t.suffix_link let suffix t = t.suffix_link let parent t = t.parent let count t = t.count module Debug = struct type nonrec t = t let sexp_of_t ({ id; count; delta; _ } as node) = [%message (id : Id.t) (count : int) (delta : int) ~total_count: ((match node.summary with | No_summary -> [%sexp "???"] | Summary { descendents_count; _ } -> [%sexp (node.count + descendents_count : int)]) : Sexp.t) ~label:(label node : X.t array)] ;; end module Summary = struct type nonrec t = summary = | No_summary | Summary of { mutable descendents_count : int ; mutable heavy_descendents_count : int ; mutable heavy_descendents : Id.Set.t ; mutable representative : t } let empty representative = let descendents_count = 0 in let heavy_descendents_count = 0 in let heavy_descendents = Id.Set.empty in Summary { descendents_count ; heavy_descendents_count ; heavy_descendents ; representative } ;; let descendents_count t = match t with | No_summary -> failwith "No summary" | Summary { descendents_count; _ } -> descendents_count ;; let heavy_descendents_count t = match t with | No_summary -> failwith "No summary" | Summary { heavy_descendents_count; _ } -> heavy_descendents_count ;; let heavy_descendents t = match t with | No_summary -> failwith "No summary" | Summary { heavy_descendents; _ } -> heavy_descendents ;; let representative t = match t with | No_summary -> failwith "No summary" | Summary { representative; _ } -> representative ;; let add_grand_child t ~grand_child_total_count = match t with | No_summary -> failwith "No summary" | Summary s -> s.descendents_count <- s.descendents_count - grand_child_total_count ;; let add_child t ~child_total_count = match t with | No_summary -> failwith "No summary" | Summary s -> s.descendents_count <- s.descendents_count + child_total_count ;; let add_child_heavy_count t ~child ~child_heavy_count = match t with | No_summary -> failwith "No summary" | Summary s -> (match child.summary with | No_summary -> failwith "No summary" | Summary { heavy_descendents; representative; _ } -> s.heavy_descendents_count <- s.heavy_descendents_count + child_heavy_count; s.heavy_descendents <- Set.union s.heavy_descendents heavy_descendents; if Set.length heavy_descendents = Set.length s.heavy_descendents then s.representative <- representative) ;; let add_grand_child_heavy_count t ~grand_child_heavy_count = match t with | No_summary -> failwith "No summary" | Summary s -> s.heavy_descendents_count <- s.heavy_descendents_count - grand_child_heavy_count ;; let add_heavy_descendent t ~node = match t with | No_summary -> failwith "No summary" | Summary s -> s.heavy_descendents <- Set.add s.heavy_descendents node.id ;; let finalize_representative t ~node = match t with | No_summary -> failwith "No summary" | Summary s -> let node_length = Set.length s.heavy_descendents in let rep_descendents = heavy_descendents s.representative.summary in let rep_length = Set.length rep_descendents in if node_length > rep_length then s.representative <- node else ( assert (node_length = rep_length); s.heavy_descendents <- rep_descendents) ;; end let has_summary t = match t.summary with | No_summary -> false | Summary _ -> true ;; let reset_summary t = t.summary <- Summary.empty t let descendents_count t = Summary.descendents_count t.summary let heavy_descendents_count t = Summary.heavy_descendents_count t.summary let heavy_descendents t = Summary.heavy_descendents t.summary let representative t = Summary.representative t.summary let total_count t = count t + descendents_count t let light_count t = total_count t - heavy_descendents_count t let is_heavy t ~heaviness_threshold = let light_count = light_count t in let delta = t.delta in light_count + delta > heaviness_threshold ;; let heavy_count t ~heaviness_threshold = if is_heavy t ~heaviness_threshold then total_count t else heavy_descendents_count t ;; let contains_heavy t ~heaviness_threshold = let total_count = total_count t in let delta = t.delta in total_count + delta > heaviness_threshold ;; module Debug_full = struct type nonrec t = t let rec sexp_of_t ({ id ; count ; delta ; max_edge_squashed ; max_child_squashed ; edge_array ; edge_start ; edge_len ; parent ; suffix_link ; summary ; first_child ; _ } as node) = let child_ids = let rec siblings node = if is_real node then node :: siblings node.next_sibling else [] in siblings first_child |> List.map ~f:(fun node -> node.id) in let summary_data = match summary with | No_summary -> [%sexp "No_summary"] | Summary _ -> [%message "" ~total_count:(total_count node : int) ~light_count:(light_count node : int) ~max_light_count:(light_count node + max_edge_squashed : int) ~heavy_descendents_count:(heavy_descendents_count node : int) ~heavy_descendents:(heavy_descendents node : Id.Set.t)] in let representative = match summary with | No_summary -> [%sexp "<no summary>"] | Summary _ -> if same node (representative node) then [%sexp "<self>"] else [%sexp (representative node : t)] in [%message (id : Id.t) ~label:(label node : X.t array) (count : int) (delta : int) (max_edge_squashed : int) (max_child_squashed : int) (summary_data : Sexp.t) ~edge:(Array.sub edge_array ~pos:edge_start ~len:edge_len : X.t array) (parent.id : Id.t) (suffix_link.id : Id.t) (child_ids : Id.t list) (representative : Sexp.t)] ;; end let update_parent_totals t ~root = if not (Root.is_node root t) then ( let total_count = total_count t in let parent = t.parent in let suffix = t.suffix_link in let grand_parent = t.parent.suffix_link in if is_real parent then Summary.add_child parent.summary ~child_total_count:total_count; if is_real suffix then Summary.add_child suffix.summary ~child_total_count:total_count; if is_real grand_parent then Summary.add_grand_child grand_parent.summary ~grand_child_total_count:total_count) ;; let update_delta_from_parent_or_suffix t ~parent_or_suffix ~root = if not (Root.is_node root t) then if Root.is_node root parent_or_suffix then (* Funny things happen at the root node - its total count actually ends up being the number of _entries_ and in general has no relation to the total counts of its children. *) () else ( let parent_total_count = total_count parent_or_suffix in let parent_delta = parent_or_suffix.delta in let total_count = total_count t in let delta = t.delta in if total_count + delta > parent_total_count + parent_delta then ( (* The above inequality can't hold for the "true" values of [delta] and [parent_delta], so (since [parent_delta] is an overapproximation) we know that the true delta is at most this: *) let delta = parent_total_count + parent_delta - total_count in assert (delta >= 0); t.delta <- delta)) ;; let update_delta_from_parents t ~root = update_delta_from_parent_or_suffix t ~parent_or_suffix:t.parent ~root; update_delta_from_parent_or_suffix t ~parent_or_suffix:t.suffix_link ~root ;; let update_parent_heavy_totals t ~root ~heaviness_threshold = if not (Root.is_node root t) then ( let heavy_count = heavy_count t ~heaviness_threshold in let parent = t.parent in let suffix = t.suffix_link in let grand_parent = t.parent.suffix_link in if is_real parent then Summary.add_child_heavy_count parent.summary ~child:t ~child_heavy_count:heavy_count; if is_real suffix then Summary.add_child_heavy_count suffix.summary ~child:t ~child_heavy_count:heavy_count; if is_real grand_parent then Summary.add_grand_child_heavy_count grand_parent.summary ~grand_child_heavy_count:heavy_count) ;; let finalize_summary t ~heaviness_threshold = if is_heavy t ~heaviness_threshold then Summary.add_heavy_descendent t.summary ~node:t; Summary.finalize_representative t.summary ~node:t ;; let iter_over_child_list f current = let current = ref current in while not (phys_equal !current dummy) do let child = !current in f child; current := child.next_sibling done ;; let iter_children t ~root ~f = if Root.is_node root t then Hashtbl.iter ~f (Root.children root) else iter_over_child_list f t.first_child ;; let fold_over_child_list ~f current acc = let acc = ref acc in let current = ref current in while not (phys_equal !current dummy) do let child = !current in acc := f child !acc; current := child.next_sibling done; !acc ;; let fold_children t ~root ~init ~f = if Root.is_node root t then Hashtbl.fold ~f:(fun ~key:_ ~data acc -> f data acc) (Root.children root) ~init else fold_over_child_list ~f t.first_child init ;; let add_to_count t ~count = t.count <- t.count + count let register_for_compression ~queue ~depth t = if Queue.Item.is_dummy t.queue_item then Queue.add queue ~depth ~node:t ;; let add_squashed_child t ~upper_bound = if upper_bound > t.max_child_squashed then t.max_child_squashed <- upper_bound ;; let add_squashed_edge t ~upper_bound = if upper_bound > t.max_edge_squashed then t.max_edge_squashed <- upper_bound ;; let rec squash ~root ~queue ~threshold ~depth ~count ~upper_bound ~refcount t = t.count <- 0; let parent = t.parent in let suffix = t.suffix_link in let grand_parent = t.parent.suffix_link in add_squashed_edge t ~upper_bound; add_squashed_child parent ~upper_bound; let parent_depth = depth - t.edge_len in let suffix_depth = depth - 1 in let grand_parent_count = 0 - count in add_to_count grand_parent ~count:grand_parent_count; add_to_count parent ~count; add_to_count suffix ~count; if is_removable refcount then ( let parent_refcount = remove_child ~root ~parent ~child:t in if is_mergable_or_removable parent_refcount then register_for_compression ~queue ~depth:parent_depth parent) else if is_mergable refcount then merge_child ~root ~parent t; if is_mergable_or_removable refcount then ( let suffix_refcount = remove_incoming ~root suffix in if is_removable suffix_refcount then ( let count = suffix.count in let delta = suffix.delta in let upper_bound = count + delta in if upper_bound < threshold then squash ~root ~queue ~threshold ~depth:suffix_depth ~count ~upper_bound ~refcount:suffix_refcount suffix else register_for_compression ~queue ~depth:suffix_depth suffix) else if is_mergable suffix_refcount then register_for_compression ~queue ~depth:suffix_depth suffix) ;; let maybe_squash_item ~root ~queue ~threshold ~depth item = let node = item.node in let refcount = node.refcount in if not (is_mergable_or_removable refcount) then Queue.remove ~node ~item else ( let count = node.count in let delta = node.delta in let upper_bound = count + delta in if upper_bound < threshold then ( Queue.remove ~node ~item; squash ~root ~queue ~threshold ~depth ~count ~upper_bound ~refcount node)) ;; let compress ~root ~threshold = let queue = Root.queue root in Queue.iter queue (maybe_squash_item ~root ~queue ~threshold) ;; let add_to_count ~root ~depth ~count t = let queue = Root.queue root in add_to_count ~count t; register_for_compression ~queue ~depth t ;; end module Cursor : sig type t val create : at:Node.t -> t val goto : t -> Node.t -> unit val retract : t -> distance:int -> unit type find_result = | Found | Added of { parent : Node.t ; leaf : Node.t } val find_or_add_leaf : root:Node.Root.t -> t -> array:X.t array -> index:int -> find_result val split_at : root:Node.Root.t -> t -> Node.t val goto_suffix : root:Node.Root.t -> t -> Node.t -> unit end = struct type t = { mutable parent : Node.t ; mutable len : int ; mutable child : Node.t } (* = parent if len is 0 *) let create ~at = { parent = at; len = 0; child = at } let goto t node = t.parent <- node; t.len <- 0; t.child <- node ;; let rec retract t ~distance = let len = t.len in if len > distance then t.len <- len - distance else if len = distance then ( t.len <- 0; t.child <- t.parent) else ( let distance = distance - len in let parent = t.parent in t.child <- parent; t.parent <- Node.parent parent; t.len <- Node.edge_length parent; retract t ~distance) ;; (* Move cursor 1 character towards child. Child assumed not equal to parent. *) let extend t = let len = t.len + 1 in if Node.edge_length t.child <= len then ( t.parent <- t.child; t.len <- 0) else t.len <- len ;; (* Try to move cursor n character towards child. Child assumed not equal to parent. Returns number of characters actually moved. Guaranteed to move at least 1 character. *) let extend_n t n = let len = t.len in let target = len + n in let edge_len = Node.edge_length t.child in if edge_len <= target then ( t.parent <- t.child; t.len <- 0; edge_len - len) else ( t.len <- target; n) ;; type find_result = | Found | Added of { parent : Node.t ; leaf : Node.t } let find_or_add_leaf ~root t ~array ~index = let len = t.len in let parent = t.parent in if len = 0 then ( match Node.find_or_add_leaf ~root ~parent ~array ~index with | Found child -> t.child <- child; extend t; Found | Added leaf -> Added { parent; leaf }) else ( let char = array.(index) in let next_char = Node.edge_char t.child len in if X.equal char next_char then ( extend t; Found) else ( let child = t.child in let parent = Node.split_edge ~root ~parent ~child ~len in let leaf = Node.add_leaf ~root ~parent ~array ~index ~key:char in goto t parent; Added { parent; leaf })) ;; let split_at ~root t = let len = t.len in if len = 0 then t.parent else ( let node = Node.split_edge ~root ~parent:t.parent ~child:t.child ~len in goto t node; node) ;; let rec rescan ~root t ~array ~start ~len = if len <> 0 then ( if t.len = 0 then ( let char = array.(start) in let child = Node.get_child ~root t.parent char in t.child <- child); let diff = extend_n t len in let start = start + diff in let len = len - diff in rescan ~root t ~array ~start ~len) ;; let rescan1 ~root t ~key = if t.len = 0 then ( let child = Node.get_child ~root t.parent key in t.child <- child); extend t ;; let rec goto_suffix ~root t node = if Node.Root.is_node root node then goto t node else if Node.has_suffix node then goto t (Node.suffix node) else ( let parent = Node.parent node in let len = Node.edge_length node in if len = 1 then if Node.Root.is_node root parent then goto t parent else ( let key = Node.edge_key node in goto_suffix ~root t parent; rescan1 ~root t ~key) else ( let array = Node.edge_array node in let start = Node.edge_start node in if Node.Root.is_node root parent then ( goto t parent; let start = start + 1 in let len = len - 1 in rescan ~root t ~array ~start ~len) else ( goto_suffix ~root t parent; rescan ~root t ~array ~start ~len))) ;; end module Elaborated : sig module Plain_node = Node module Node : sig type t [@@deriving sexp_of] val plain : t -> Plain_node.t val parent : t -> t val suffix : t -> t val children : t -> (X.t array, t) List.Assoc.t val prefixes : t -> (X.t array, t) List.Assoc.t end type t val of_root : Plain_node.Root.t -> merge_prefixes:bool -> t val find_node_exn : t -> Plain_node.t -> Node.t end = struct module Plain_node = Node module Node = struct type t = { plain : Plain_node.t ; mutable parent : t ; mutable suffix : t ; children : (X.t array, t) List.Assoc.t ; mutable prefixes : (X.t array, t) List.Assoc.t } let plain t = t.plain let parent t = t.parent let suffix t = t.suffix let children t = t.children let prefixes t = t.prefixes let rec sexp_of_t t = let total_count = if Plain_node.has_summary t.plain then [%sexp (Plain_node.total_count t.plain : int)] else [%sexp "???"] in [%message "" ~count:(Plain_node.count t.plain : int) (total_count : Sexp.t) ~id:(Plain_node.id t.plain : Plain_node.Id.t) ~prefixes:(t.prefixes : (X.t array, t) List.Assoc.t) ~children:(t.children : (X.t array, t) List.Assoc.t)] ;; end type t = Node.t Plain_node.Id.Table.t let find_node_exn t node = Hashtbl.find_exn t (Plain_node.id node) let of_root plain_root ~merge_prefixes : t = let t = Plain_node.Id.Table.create () in let plain_root_node = Plain_node.Root.node plain_root in let rec dummy : Node.t = { plain = plain_root_node ; parent = dummy ; suffix = dummy ; children = [] ; prefixes = [] } in let rec mk_node plain : Node.t = let children = Plain_node.fold_children plain ~root:plain_root ~init:[] ~f:(fun plain_child children -> let edge = Array.sub (Plain_node.edge_array plain_child) ~pos:(Plain_node.edge_start plain_child) ~len:(Plain_node.edge_length plain_child) in let child = mk_node plain_child in (edge, child) :: children) in let parent = dummy (* fix in second pass *) in let suffix = dummy (* fix in second pass *) in let prefixes = [] (* fix in second pass *) in let node : Node.t = { plain; parent; suffix; children; prefixes } in Hashtbl.add_exn t ~key:(Plain_node.id plain) ~data:node; node in let root = mk_node plain_root_node in root.parent <- root; root.suffix <- root; let rec fix_back_pointers (node : Node.t) ~parent ~leading_edge = node.parent <- parent; let suffix = find_node_exn t (Plain_node.suffix node.plain) in node.suffix <- suffix; suffix.prefixes <- (leading_edge, node) :: suffix.prefixes; List.iter node.children ~f:(fun (_, child) -> fix_back_pointers child ~parent:node ~leading_edge) in List.iter root.children ~f:(fun (edge, child) -> let leading_edge = (* Just the part of the edge taken off by the suffix link, which is to say, the first character *) [| edge.(0) |] in fix_back_pointers child ~parent:root ~leading_edge); let rec do_merge_prefixes (node : Node.t) = node.prefixes <- List.map node.prefixes ~f:(fun (leading_edge, child) -> (* Find a chain of prefixes with count 0, only one prefix, and no children *) let rec chain (desc : Node.t) edges = if Plain_node.count desc.plain <> 0 then edges, desc else ( match desc.children, desc.prefixes with | [], [ (edge, child) ] -> chain child (edge :: edges) | _ -> edges, desc) in let edges, last_child = chain child [ leading_edge ] in Array.concat edges, last_child); List.iter node.children ~f:(fun (_, child) -> do_merge_prefixes child) in if merge_prefixes then do_merge_prefixes root; t ;; end type state = | Uncompressed | Compressed of X.t array type t = { root : Node.Root.t ; mutable max_length : int ; mutable count : int ; bucket_size : int ; mutable current_bucket : int ; mutable remaining_in_current_bucket : int ; active : Cursor.t ; mutable previous_length : int ; mutable state : state ; mutable heaviness_threshold : int } let create ~tolerance = let root = Node.Root.create () in let max_length = 0 in let count = 0 in let bucket_size = Float.to_int (Float.round_up (1.0 /. tolerance)) in let current_bucket = 0 in let remaining_in_current_bucket = bucket_size in let active = Cursor.create ~at:(Node.Root.node root) in let previous_length = 0 in let state = Uncompressed in let heaviness_threshold = 0 in { root ; max_length ; count ; bucket_size ; current_bucket ; remaining_in_current_bucket ; active ; previous_length ; state ; heaviness_threshold } ;; let update_summaries ~heaviness_threshold t = let root = t.root in let nodes : Node.t list array = Array.create ~len:(t.max_length + 1) [] in let rec loop depth node = Node.reset_summary node; let depth = depth + Node.edge_length node in nodes.(depth) <- node :: nodes.(depth); Node.iter_children ~root ~f:(loop depth) node in loop 0 (Node.Root.node root); (* We can improve the deltas once we know the total counts (see [Node.update_delta_from_parent]), but deltas figure in what's a heavy hitter, so we end up with three passes: 1. Accumulate totals (bottom-up) 2. Use totals to improve deltas (top-down) 3. Use deltas to calculate heavy hitters (bottom-up) *) for i = t.max_length downto 0 do List.iter nodes.(i) ~f:(fun node -> Node.update_parent_totals ~root node) done; for i = 1 to t.max_length do List.iter nodes.(i) ~f:(fun node -> Node.update_delta_from_parents ~root node) done; for i = t.max_length downto 0 do List.iter nodes.(i) ~f:(fun node -> Node.finalize_summary ~heaviness_threshold node; Node.update_parent_heavy_totals ~root ~heaviness_threshold node) done ;; let rec ensure_suffix ~root cursor t = if not (Node.has_suffix t) then ( Cursor.goto_suffix ~root cursor t; let suffix = Cursor.split_at ~root cursor in ensure_suffix ~root cursor suffix; Node.set_suffix ~root t ~suffix) ;; let insert t ~common_prefix array ~count = assert (count > 0); let len = Array.length array in let total_len = common_prefix + len in if total_len > t.max_length then t.max_length <- total_len; t.count <- t.count + count; let root = t.root in let active = t.active in let array, len, base = match t.state with | Uncompressed -> Cursor.retract active ~distance:(t.previous_length - common_prefix); array, len, common_prefix | Compressed previous_label -> let common = Array.sub previous_label ~pos:0 ~len:common_prefix in let array = Array.append common array in array, total_len, 0 in let rec loop array len base root active index j = if index >= len then ( let destination = Cursor.split_at ~root active in ensure_suffix ~root active destination; destination) else loop_inner array len base root active index j and loop_inner array len base root active index j = if j > base + index then loop array len base root active (index + 1) j else ( match Cursor.find_or_add_leaf ~root active ~array ~index with | Found -> loop array len base root active (index + 1) j | Added { parent; leaf } -> Cursor.goto_suffix ~root active parent; let leaf_suffix = if Node.has_suffix parent then loop_inner array len base root active index (j + 1) else ( let suffix = Cursor.split_at ~root active in let leaf_suffix = loop_inner array len base root active index (j + 1) in Node.set_suffix ~root parent ~suffix; leaf_suffix) in Node.set_suffix ~root leaf ~suffix:leaf_suffix; leaf) in let destination = loop array len base root active 0 0 in Node.add_to_count ~root ~depth:total_len ~count destination; let remaining = t.remaining_in_current_bucket - 1 in if remaining <= 0 then ( t.current_bucket <- t.current_bucket + 1; t.remaining_in_current_bucket <- t.bucket_size; let destination_label = Node.label destination in Cursor.goto active (Node.Root.node t.root); let threshold = t.current_bucket in Node.compress ~root ~threshold; t.previous_length <- 0; t.state <- Compressed destination_label) else ( t.remaining_in_current_bucket <- remaining; Cursor.goto active destination; t.previous_length <- total_len; t.state <- Uncompressed) ;; let root t = t.root let threshold_of_frequency t frequency = Float.to_int (Float.round_down (frequency *. Float.of_int t.count)) ;; let total_count t = t.count let maximum_depth t = t.max_length let calculate_totals t ~heaviness_frequency = let heaviness_threshold = heaviness_frequency |> threshold_of_frequency t in update_summaries ~heaviness_threshold t; t.heaviness_threshold <- heaviness_threshold ;; let is_heavy t node = Node.is_heavy node ~heaviness_threshold:t.heaviness_threshold let contains_heavy t node = Node.contains_heavy node ~heaviness_threshold:t.heaviness_threshold ;; let dump_subtree t node = let elaborated_tree = Elaborated.of_root t.root ~merge_prefixes:true in let elaborated_node = Elaborated.find_node_exn elaborated_tree node in Elaborated.Node.sexp_of_t elaborated_node ;; end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>