package magic-trace
Collects and displays high-resolution traces of what a process is doing
Install
Dune Dependency
Authors
Maintainers
Sources
v1.0.1.tar.gz
sha256=77b2e4b3bc769910656d0fdee4839250548aa49486fd3554f6c057f1d64abe99
sha512=1f111db6348673c22a110611182a92c8aa999668dc077c44bc4abcaa72ccb197899ff2577047888627b50fcc9890824de6c82b4fe9f06129190b8b487ec3f716
doc/src/magic-trace.magic_trace_lib/trace_writer.ml.html
Source file trace_writer.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
open! Core open! Import let debug = ref false let is_kernel_address addr = Int64.(addr < 0L) (* Time spans from perf start whenever the machine booted. Perfetto uses floats to represent time spans, which struggles with large spans when we care about small differences in them. To compensate, the trace writer subtracts the time of the first event from all time spans, producing what we call a "mapped time". Only mapped times may be written to the trace file. *) module Mapped_time : sig type t = private Time_ns.Span.t [@@deriving sexp_of, compare] include Comparable with type t := t val start_of_trace : t val create : Time_ns.Span.t -> base_time:Time_ns.Span.t -> t val is_base_time : t -> bool val add : t -> Time_ns.Span.t -> t val diff : t -> t -> Time_ns.Span.t end = struct module T = struct type t = Time_ns.Span.t [@@deriving sexp, compare] end let start_of_trace = Time_ns.Span.zero let create t ~base_time = Time_ns.Span.( - ) t base_time let is_base_time = Time_ns.Span.( = ) Time_ns.Span.zero let add = Time_ns.Span.( + ) let diff = Time_ns.Span.( - ) include T include Comparable.Make (T) end module Pending_event = struct module Kind = struct type t = | Call of { addr : int64 ; offset : int ; from_untraced : bool } | Ret | Ret_from_untraced of { reset_time : Mapped_time.t } [@@deriving sexp_of] end type t = { symbol : Symbol.t ; kind : Kind.t } [@@deriving sexp_of] let create_call location ~from_untraced = let { Event.Location.instruction_pointer; symbol; symbol_offset } = location in { symbol ; kind = Call { addr = instruction_pointer; offset = symbol_offset; from_untraced } } ;; end module Callstack = struct type t = { stack : Symbol.t Stack.t ; create_time : Mapped_time.t } [@@deriving sexp_of] let create ~create_time = { stack = Stack.create (); create_time } let push t v = Stack.push t.stack v let pop t = Stack.pop t.stack let top t = Stack.top t.stack let is_empty t = Stack.is_empty t.stack end module Thread_info = struct type 'thread t = { thread : ('thread[@sexp.opaque]) ; (* This isn't a canonical callstack, but represents all of the information that we know about the callstack at the point in the events up to the current event being processed, and is reflected in the trace at that point. *) mutable callstack : Callstack.t ; inactive_callstacks : Callstack.t Stack.t ; mutable last_decode_error_time : Mapped_time.t ; (* Currently keeping track of the number of frames to unwind during an exception by counting the number of calls to next_frame_descriptor (called during backtrace collection) since the last raise. This fails on raise_notrace but that can be fixed soon. *) frames_to_unwind : int ref ; mutable pending_events : Pending_event.t list ; mutable pending_time : Mapped_time.t ; start_events : (Mapped_time.t * Pending_event.t) Deque.t (* When the last event arrived. Used to give timestamps to events lacking them. *) ; mutable last_event_time : Mapped_time.t } [@@deriving sexp_of] let set_callstack t ~is_kernel_address ~time = let create_time = if is_kernel_address then time else t.last_decode_error_time in t.callstack <- Callstack.create ~create_time ;; let set_callstack_from_addr t ~addr ~time = set_callstack t ~is_kernel_address:(is_kernel_address addr) ~time ;; end module type Trace = Trace_writer_intf.S_trace type 'thread inner = { debug_info : Elf.Addr_table.t ; thread_info : 'thread Thread_info.t Hashtbl.M(Event.Thread).t ; base_time : Time_ns.Span.t ; trace_mode : Trace_mode.t ; trace : (module Trace with type thread = 'thread) ; annotate_inferred_start_times : bool } type t = T : 'thread inner -> t let sexp_of_inner inner = [%sexp_of: _ Thread_info.t Hashtbl.M(Event.Thread).t] inner.thread_info ;; let sexp_of_t (T inner) = sexp_of_inner inner let allocate_pid (type thread) (t : thread inner) ~name : int = let module T = (val t.trace) in T.allocate_pid ~name ;; let allocate_thread (type thread) (t : thread inner) ~pid ~name : thread = let module T = (val t.trace) in T.allocate_thread ~pid ~name ;; let write_duration_begin (type thread) (t : thread inner) ~args ~thread ~name ~(time : Mapped_time.t) : unit = let module T = (val t.trace) in T.write_duration_begin ~args ~thread ~name ~time:(time :> Time_ns.Span.t) ;; let write_duration_end (type thread) (t : thread inner) ~args ~thread ~name ~(time : Mapped_time.t) : unit = let module T = (val t.trace) in T.write_duration_end ~args ~thread ~name ~time:(time :> Time_ns.Span.t) ;; let write_duration_complete (type thread) (t : thread inner) ~args ~thread ~name ~(time : Mapped_time.t) ~(time_end : Mapped_time.t) : unit = let module T = (val t.trace) in T.write_duration_complete ~args ~thread ~name ~time:(time :> Time_ns.Span.t) ~time_end:(time_end :> Time_ns.Span.t) ;; let write_duration_instant (type thread) (t : thread inner) ~args ~thread ~name ~(time : Mapped_time.t) : unit = let module T = (val t.trace) in T.write_duration_instant ~args ~thread ~name ~time:(time :> Time_ns.Span.t) ;; let real_trace (trace : Tracing.Trace.t) = let module T = struct type thread = Tracing.Trace.Thread.t let allocate_pid = Tracing.Trace.allocate_pid trace let allocate_thread = Tracing.Trace.allocate_thread trace let write_duration_begin = Tracing.Trace.write_duration_begin trace ~category:"" let write_duration_end = Tracing.Trace.write_duration_end trace ~category:"" let write_duration_complete = Tracing.Trace.write_duration_complete trace ~category:"" let write_duration_instant = Tracing.Trace.write_duration_instant trace ~category:"" end in (module T : Trace with type thread = Tracing.Trace.Thread.t) ;; let map_time t time = Mapped_time.create time ~base_time:t.base_time let write_hits (T t) hits = if not (List.is_empty hits) then ( let pid = allocate_pid t ~name:"Snapshot symbol hits" in let thread = allocate_thread t ~pid ~name:"hits" in List.iter hits ~f:(fun (sym, (hit : Breakpoint.Hit.t)) -> let is_default_symbol = String.( = ) sym Magic_trace.Private.stop_symbol in let name = [%string "hit %{sym}"] in let time = map_time t hit.timestamp in let args = Tracing.Trace.Arg. [ "timestamp", Int (Time_ns.Span.to_int_ns hit.timestamp) ; "tid", Int (Pid.to_int hit.tid) ; "ip", Pointer hit.ip ] in (* Args that are computed from captured registers are only meaningful on our special stop symbol, we still capture them regardless, but on other symbols they'll just have confusing broken values. *) let args = if is_default_symbol then Tracing.Trace.Arg. [ "timestamp_passed", Int (Time_ns.Span.to_int_ns hit.passed_timestamp) ; "arg", Int hit.passed_val ] @ args else args in (* For the special symbol, if present the passed timestamp comes from Magic_trace.mark_start and marks the start of a region of interest. We check it for validity since it's possible someone uses an older version of [Magic_trace.take_snapshot] and that should at least produce a valid trace. *) let valid_timestamp = Time_ns.Span.( hit.passed_timestamp > t.base_time && hit.passed_timestamp < hit.timestamp) in let start = if is_default_symbol && valid_timestamp then map_time t hit.passed_timestamp else time in write_duration_complete t ~thread ~args ~name ~time:start ~time_end:time)) ;; let create_expert ~trace_mode ~debug_info ~earliest_time ~hits ~annotate_inferred_start_times trace = let base_time = List.fold hits ~init:earliest_time ~f:(fun acc (_, (hit : Breakpoint.Hit.t)) -> Time_ns.Span.min acc hit.timestamp) in let t = T { debug_info = Option.value debug_info ~default:(Int.Table.create ()) ; thread_info = Hashtbl.create (module Event.Thread) ; base_time ; trace_mode ; trace ; annotate_inferred_start_times } in write_hits t hits; t ;; let create ~trace_mode ~debug_info ~earliest_time ~hits ~annotate_inferred_start_times trace = create_expert ~trace_mode ~debug_info ~earliest_time ~hits ~annotate_inferred_start_times (real_trace trace) ;; let write_pending_event' (type thread) (t : thread inner) (thread : thread Thread_info.t) time { Pending_event.symbol; kind } = let symbol = Symbol.demangle symbol in let display_name = Symbol.display_name symbol in match kind with | Call { addr; offset; from_untraced } -> (* Adding a call is always the result of seeing something new on the top of the stack, so the base address is just the current base address. *) let base_address = Int64.(addr - of_int offset) in let open Tracing.Trace.Arg in let symbol_args = (* Using [Interned] may cause some issues with the 32k interned string limit, on sufficiently large programs if the trace goes through a lot of different code, but that'll also be a problem with the span names. This will just make it happen around twice as fast. It does make the traces noticeably smaller. The real solution is to get around to improving the interning table management in the trace writer library. --- [base_address] might be lie in the kernel, in which case [to_int] will fail (but that's alright, because we wouldn't have a symbol for it in the executable's [debug_info] anyway). *) let address = [ "address", Pointer addr ] in match symbol with | From_perf_map { start_addr = _; size = _; function_ = _ } -> address @ [ "symbol", Interned display_name ] | _ -> (match Option.bind (Int64.to_int base_address) ~f:(Hashtbl.find t.debug_info) with | None -> address @ [ "symbol", Interned display_name ] | Some (info : Elf.Location.t) -> address @ [ "line", Int info.line ; "col", Int info.col ; "symbol", Interned display_name ] @ (match info.filename with | Some x -> [ "file", Interned x ] | None -> [])) in let inferred_start_time_arg = if from_untraced then [ "inferred_start_time", Interned "true" ] else [] in let args = symbol_args @ inferred_start_time_arg in let name = if t.annotate_inferred_start_times && from_untraced then display_name ^ " [inferred start time]" else display_name in write_duration_begin t ~thread:thread.thread ~name ~time ~args | Ret -> write_duration_end t ~name:display_name ~time ~thread:thread.thread ~args:[] | Ret_from_untraced { reset_time } -> write_duration_complete t ~time:reset_time ~time_end:time ~name:(Symbol.display_name Unknown) ~thread:thread.thread ~args:[] ;; (* It would be reasonable to also have returns consume time, but making them not consume time substantially reduces the frequency where we need to use zero-duration events. In general the traces are easier to read if returns aren't counted as consuming time. *) let consumes_time { Pending_event.symbol = _; kind } = match kind with | Call _ -> true | Ret | Ret_from_untraced _ -> false ;; let write_pending_event (t : _ inner) (thread : _ Thread_info.t) time (ev : Pending_event.t) = match ev.kind with | Ret_from_untraced _ | Call { from_untraced = true; _ } -> Deque.enqueue_front thread.start_events (time, ev) | Call _ when Mapped_time.is_base_time time -> Deque.enqueue_back thread.start_events (time, ev) | _ -> write_pending_event' t thread time ev ;; let flush (t : _ inner) ~to_time (thread : _ Thread_info.t) = (* Try to evenly distribute the time between timestamp updates between all the time-consuming events in the batch. *) let count = List.count thread.pending_events ~f:consumes_time in let total_ns = Mapped_time.diff to_time thread.pending_time |> Time_ns.Span.to_int_ns in let ns_offset = ref 0 in let = ref 0 in List.iter (List.rev thread.pending_events) ~f:(fun ev -> let = if consumes_time ev then ( incr shares_consumed; (total_ns - !ns_offset) / (count - !shares_consumed + 1)) else 0 in let time = Mapped_time.add thread.pending_time (Time_ns.Span.of_int_ns !ns_offset) in ns_offset := !ns_offset + ns_share; write_pending_event t thread time ev); thread.pending_time <- to_time; thread.pending_events <- [] ;; let add_event (t : _ inner) (thread : _ Thread_info.t) time ev = if Mapped_time.( <> ) time thread.pending_time then flush t ~to_time:time thread; thread.pending_events <- ev :: thread.pending_events ;; let opt_pid_to_string opt_pid = match opt_pid with | None -> "?" | Some pid -> Pid.to_string pid ;; (* A practical, but not perfect, fix for #155: If events happen with the exact same timestamp as a decode error, stacks break. We implement this "#155 hack" to prevent that: If an event happens at exactly the same time as the previous decode error, slide it forward by one nanosecond. Maintain the invariant that no event which follows a decode error has the same timestamp as that decode error. This should have minimal impact on the timestamps displayed to the user, they're precise to at most ~40ns anyhow. But it does make sure our stacks always come out in the right order. Also worth noting is that despite the fact that we're changing timestamps, this can't reorder events. 1ns is the minimum amount of time by which timestamps can differ. So even if there were more events exactly 1ns after the decode error, they'll be seen as having the exact same timestamp as the events that happened during the decode error. *) let hack_155 (thread_info : _ Thread_info.t) time = let last_decode_error_time = thread_info.last_decode_error_time in if Mapped_time.( = ) time last_decode_error_time && Mapped_time.( <> ) last_decode_error_time Mapped_time.start_of_trace then Mapped_time.add time (Time_ns.Span.of_int_ns 1) else time ;; let event_time t (event : Event.t) (thread_info : _ Thread_info.t) = let event_time = Event.time event in let unadjusted_time = match%optional.Time_ns_unix.Span.Option event_time with | None -> (* Decode errors sometimes do not have a timestamp, so we pretend they happen at the same time as the last event. *) thread_info.last_event_time | Some time -> let time = map_time t time in thread_info.last_event_time <- time; time in hack_155 thread_info unadjusted_time ;; let create_thread t event = let thread = Event.thread event in let effective_time = match%optional.Time_ns_unix.Span.Option Event.time event with | None -> Mapped_time.start_of_trace | Some time -> map_time t time in let trace_pid = allocate_pid t ~name:[%string "%{opt_pid_to_string thread.pid}/%{opt_pid_to_string thread.tid}"] in let thread = allocate_thread t ~pid:trace_pid ~name:"main" in { Thread_info.thread ; callstack = Callstack.create ~create_time:effective_time ; inactive_callstacks = Stack.create () ; last_decode_error_time = effective_time ; frames_to_unwind = ref 0 ; pending_events = [] ; pending_time = Mapped_time.start_of_trace ; start_events = Deque.create () ; last_event_time = effective_time } ;; let call t thread_info ~time ~location = let ev = Pending_event.create_call location ~from_untraced:false in add_event t thread_info time ev; Callstack.push thread_info.callstack location.symbol ;; let ret t (thread_info : _ Thread_info.t) ~time = match Callstack.pop thread_info.callstack with | Some symbol -> add_event t thread_info time { symbol; kind = Ret } | None -> (* No known stackframe was popped --- could occur if the start of the snapshot started in the middle of a tracing region *) add_event t thread_info time { symbol = From_perf "[unknown]" ; kind = Ret_from_untraced { reset_time = thread_info.callstack.create_time } } ;; let check_current_symbol t (thread_info : _ Thread_info.t) ~time (location : Event.Location.t) = (* After every operation, we should be in a situation where the current symbol under the pc matches the symbol at the top of the callstack. This can go out-of-sync with jumps between functions (e.g. tailcalls, PLT) or returns out of the highest known function, so we have to correct the top of the stack here. *) match Callstack.top thread_info.callstack with | Some known when not ([%compare.equal: Symbol.t] known location.symbol) -> ret t thread_info ~time; call t thread_info ~time ~location | Some _ -> () | None -> (* If we have no callstack left, then we just returned out of something we didn't see the call for. Since we're in snapshot mode, this happens with functions called before the perf events started, so add in a call that begins at the start of the trace for that pid. These shouldn't be buffered for spreading since we want them exactly at the reset time. *) let ev = Pending_event.create_call location ~from_untraced:true in write_pending_event t thread_info thread_info.callstack.create_time ev; Callstack.push thread_info.callstack location.symbol ;; let unwind_stack t (thread_info : _ Thread_info.t) ~time diff = let frames_to_unwind = thread_info.frames_to_unwind in for _ = 0 to !frames_to_unwind + diff do ret t thread_info ~time done; frames_to_unwind := 0 ;; let ret_track_exn_data t thread_info ~time = let { Thread_info.callstack; frames_to_unwind; _ } = thread_info in (match Callstack.top callstack with | Some (From_perf symbol) -> (match symbol with | "caml_next_frame_descriptor" -> incr frames_to_unwind | "caml_raise_exn" -> unwind_stack t thread_info ~time (-2) | "caml_raise_exception" -> unwind_stack t thread_info ~time 1 | _ -> ()) | _ -> ()); ret t thread_info ~time ;; let rec clear_callstack t (thread_info : _ Thread_info.t) ~time = match Callstack.top thread_info.callstack with | None -> () | Some _ -> ret t thread_info ~time; clear_callstack t thread_info ~time ;; (* Unlike [clear_callstack], [clear_all_callstacks] also returns from all inactive callstacks. *) let rec clear_all_callstacks t thread_info ~time = clear_callstack t thread_info ~time; match Stack.pop thread_info.inactive_callstacks with | None -> () | Some callstack -> thread_info.callstack <- callstack; clear_all_callstacks t thread_info ~time ;; let assert_trace_mode t event trace_modes = if List.find trace_modes ~f:(Trace_mode.equal t.trace_mode) |> Option.is_none then (* CR-someday cgaebel: Should this raise? *) Core.eprint_s [%message "BUG: assumptions violated, saw an unexpected event for this trace mode" ~trace_mode:(t.trace_mode : Trace_mode.t) (event : Event.t)] ;; let end_of_thread t (thread_info : _ Thread_info.t) ~time : unit = let to_time = thread_info.pending_time in Deque.iter' thread_info.start_events `front_to_back ~f:(fun (time, ev) -> write_pending_event' t thread_info time ev); Deque.clear thread_info.start_events; clear_all_callstacks t thread_info ~time; flush t ~to_time thread_info ;; let end_of_trace (T t) = (* CR-someday cgaebel: I wish this iteration had a defined order; it'd make magic-trace a little bit more deterministic. *) Hashtbl.iter t.thread_info ~f:(fun thread_info -> end_of_thread t thread_info ~time:thread_info.last_event_time) ;; (* Write perf_events into a file as a Fuschia trace (stack events). Events should be collected with --itrace=be or cre, and -F pid,tid,time,flags,addr,sym,symoff as per the constants defined above. *) let write_event (T t) event = let thread = Event.thread event in let thread_info = Hashtbl.find_or_add t.thread_info thread ~default:(fun () -> create_thread t event) in let thread = thread_info.thread in let time = event_time t event thread_info in let outer_event = event in match event with | Error { thread = _; instruction_pointer; message; time = _ } -> let name = sprintf !"[decode error: %s]" message in write_duration_instant t ~thread ~name ~time ~args:[]; end_of_thread t thread_info ~time; thread_info.last_decode_error_time <- time; let is_kernel_address = match instruction_pointer with | None -> false | Some ip -> is_kernel_address ip in Thread_info.set_callstack thread_info ~is_kernel_address ~time | Ok event -> let { Event.Ok.thread = _ (* Already used this to look up thread info. *) ; time = _ (* Already in scope. Also, this time hasn't been [map_time]'d. *) ; kind ; trace_state_change (* [src] is useful, but we don't use it for mostly historical reasons. It's not semantically important that we ignore it here. *) ; src = _ ; dst } = event in (match kind, trace_state_change with | Some Call, (None | Some End) -> call t thread_info ~time ~location:dst | ( Some (Call | Syscall | Return | Hardware_interrupt | Iret | Sysret | Jump) , Some Start ) | Some (Hardware_interrupt | Jump), Some End -> raise_s [%message "BUG: magic-trace devs thought this event was impossible, but you just proved \ them wrong. Please report this to \ https://github.com/janestreet/magic-trace/issues/" (event : Event.Ok.t)] | None, Some End -> call t thread_info ~time ~location:Event.Location.untraced | Some Syscall, Some End -> (* We should only be getting these under /u *) assert_trace_mode t outer_event [ Userspace ]; call t thread_info ~time ~location:Event.Location.syscall | Some Return, Some End -> call t thread_info ~time ~location:Event.Location.returned | Some Return, None -> ret_track_exn_data t thread_info ~time; check_current_symbol t thread_info ~time dst | None, Some Start -> (* Might get this under /u, /k, and /uk, but we need to handle them all differently. *) if Trace_mode.equal t.trace_mode Kernel then ( (* We're back in the kernel after having been in userspace. We have a brand new stack to work with. [clear_callstack] here should only be clearing the [untraced] frame here pushed by [End (Iret | Sysret)]. *) clear_callstack t thread_info ~time; Thread_info.set_callstack_from_addr thread_info ~addr:dst.instruction_pointer ~time) else if Callstack.is_empty thread_info.callstack then (* View stopping tracing always as a call (typically the result of a call into a special library / linker), with starting tracing again as exiting it. The one exception is the initial start of the trace for that process, when there is no stack and a prior end won't have pushed a synthetic stack frame. *) call t thread_info ~time ~location:dst else (* We don't call [check_current_symbol] here because stops don't change the program location in most cases, and when a call to a symbol page faults, the restart after the page fault at the new location would get treated as a tail call if we did call [check_current_symbol]. *) ret_track_exn_data t thread_info ~time | Some ((Syscall | Hardware_interrupt) as kind), None -> (* We should only be getting [Syscall] these under /uk, but we can get [Hardware_interrupt] under /uk, /k. *) [ [ Trace_mode.Userspace_and_kernel ] ; (if [%compare.equal: Event.Kind.t] kind Hardware_interrupt then [ Kernel ] else []) ] |> List.concat |> assert_trace_mode t outer_event; (* A syscall or hardware interrupt can be modelled as operating on a new stack, and shouldn't be allowed to modify the previous stack. Also, hardware interrupts can occur during syscalls, so we maintain a "stack of callstacks" here. *) Stack.push thread_info.inactive_callstacks thread_info.callstack; Thread_info.set_callstack_from_addr thread_info ~addr:dst.instruction_pointer ~time; call t thread_info ~time ~location:dst | Some (Iret | Sysret), Some End -> (* We should only be getting these under /k *) assert_trace_mode t outer_event [ Kernel ]; clear_callstack t thread_info ~time; call t thread_info ~time ~location:Event.Location.untraced | Some ((Iret | Sysret) as kind), None -> (* We should only get [Sysret] under /uk, but might get [Iret] under /k as well (because the kernel can be interrupted). *) [ [ Trace_mode.Userspace_and_kernel ] ; (if [%compare.equal: Event.Kind.t] kind Iret then [ Kernel ] else []) ] |> List.concat |> assert_trace_mode t outer_event; clear_callstack t thread_info ~time; (match Stack.pop thread_info.inactive_callstacks with | Some callstack -> thread_info.callstack <- callstack | None -> Thread_info.set_callstack_from_addr thread_info ~addr:dst.instruction_pointer ~time; check_current_symbol t thread_info ~time dst) | Some Jump, None -> check_current_symbol t thread_info ~time dst (* (None, _) comes up when perf spews something magic-trace doesn't recognize. Instead of crashing, ignore it and keep going. *) | None, _ -> ()); if !debug then print_s (sexp_of_inner t) ;;
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>