package lutin
Lutin: modeling stochastic reactive systems
Install
Dune Dependency
Authors
Maintainers
Sources
lutin.2.71.10.tgz
md5=4d07d1263dbc90ab18cbaec55a57dcfe
sha512=2e899aee5e44826827b3626771f7ce01241b1745d48f30b60404cc5cbaa44ac608920e9af3bf171275c429a8b823b3cee7542199b7c4c32919b6bb37e33bf8de
doc/src/lutin/store.ml.html
Source file store.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
(*----------------------------------------------------------------------- ** Copyright (C) - Verimag. ** This file may only be copied under the terms of the CeCill ** Public License **----------------------------------------------------------------------- ** ** File: store.ml ** Main author: erwan.jahier@univ-grenoble-alpes.fr *) open Exp open Value open Constraint open Polyhedron open Util let debug_store = false let debug_store2 = false (* let debug_store = true *) (* let debug_store2 = true *) type p = (Var.vnt list * Poly.t * (int -> string) * Constraint.ineq list) list type range_store = Polyhedron.range Util.StringMap.t type t = { (* This field is used to store where each variable ranges. It is set to [Unsat] when the system becomes unsatisfiable, namely, when the range for one of the variable becomes empty. Some variables are represented by Ranges (polyhedron of dimension one). Some others by plain Polyhedron. The idea is that, at bdd leaves, if it remains some delayed constraints, we switch to a polyhedron representation. *) var : vars_domain ; (* This field is used to substitute a variable by an expression. This is to deal with equalities: when an equality is encountered, we can remove one dimension by putting the equality into a such a substitution. Then we apply it to all the other relations. the value of the substituted variable is then obtained once the other var have been drawn. We add an element to this list if - an equality is encountered during the drawing/bdd-traversal - whenever a variable become bounded (1) after a constraint is added to the store (1) i.e., when the interval is reduced to one single point *) substl : Ne.subst list; (* When the dimension of an atomic formula is greater than 1, we delay its addition to the store until an equality makes it a constraint of dimension 1 (i.e., it contains only 1 var). At bdd leaves, if this list is not empty, it means that the current formula cannot be solved with an interval based solver. In that case, we use a polyhedron solver. *) delay : Constraint.ineq list ; (* Variables that have been constrained. If a formula has not been constraint when the draw is done, we give it its default value if any. *) untouched : Exp.var list } and vars_domain = Unsat of Constraint.t * t | Range of range_store (** contains basically the same info as [t] with a few fields removed *) type t' = { range : range_store ; substl' : Ne.subst list; untouched' : Exp.var list } let unsat_store cstr store= { var = Unsat(cstr,store) ; substl = [] ; delay = [] ; untouched = [] } let (rm : Exp.var list -> Var.name -> Exp.var list) = fun varl vn -> (* Removes in [varl] all the vars which names begins with [vn]. Indeed, when a structured variable "s" is touched, then so do the variables "s.f1", "s.f2[1]", ... *) let is_not_a_prefix_of vn v = let res = let l_vn = String.length vn in let l = String.length v in if l_vn > l then true else (String.sub v 0 l_vn) <> vn in res in (List.filter (fun v -> is_not_a_prefix_of vn (Var.name v)) varl) let (remove_var_from_range_store : t' -> Exp.var -> t') = fun st var -> { range = StringMap.remove (Var.name var) st.range; substl' = st.substl'; untouched' = st.untouched' } let (get_untouched_var : t' -> Exp.var list) = fun st -> st.untouched' (* XXX ougth to be modifiable from the outside. nb : if those values are too big, sim2chro crashes .... *) (* let default_min_float = -10000. *) (* let default_max_float = 10000. *) (* let default_max_int = 10000 *) (* let default_min_int = -10000 *) (* XXX What should be the default values ??? Too big values migth break other tools (e.g., sim2chro...) *) let lucky_max_int = (max_int / 4) let default_max_float = (float_of_int lucky_max_int) (* (float_of_int max_int) /. 2.**(float_of_int (!Util.precision + 1)) *) let default_min_float = (-. default_max_float) let default_max_int = (Num.Int lucky_max_int) let default_min_int = (Num.Int (-lucky_max_int)) let zero = Num.Int 0 let one_of_num = function | I _ -> I (Num.Int 1) | F _ -> F 1.0 (* exported *) let (create : Exp.var list -> t) = fun var_l -> let (add_one_var : range_store * Ne.subst list -> Exp.var -> range_store * Ne.subst list) = fun (tbl,sl) var -> let to_num_opt = function | Some(Numer(Ival(min))) -> Some (Ival(min)) | Some(Numer(Uminus(Ival(min)))) -> Some (Ival(Num.minus_num min)) | Some(Numer(Fval(min))) -> Some (Fval(min)) | Some(Numer(Uminus(Fval(min)))) -> Some (Fval(-.min)) | None -> None | _ -> output_string stderr "Only immediate constant are allowed in variable ranges.\n"; flush stderr; assert false in let range = match (to_num_opt (Var.min var)), (to_num_opt (Var.max var)) with | Some(Ival(min)), Some(Ival(max)) -> RangeI(min, max) | None, Some(Ival(max)) -> RangeI(default_min_int, max) | Some(Ival(min)), None -> RangeI(min, default_max_int) | Some(Fval(min)), Some(Fval(max)) -> RangeF(min, max) | None, Some(Fval(max)) -> RangeF(default_min_float, max) | Some(Fval(min)), None -> RangeF(min, default_max_float) | None, None -> ( match Var.typ var with Type.IntT -> RangeI(default_min_int, default_max_int) | Type.FloatT -> RangeF(default_min_float, default_max_float) | _ -> assert false ) | _ -> print_string ((Var.to_string var) ^ "\n"); flush stdout; assert false in let subst_opt = (* sometimes, range are actually subst ! *) match range with | RangeI (n1,n2) -> if n1=n2 then Some (I n1) else None | RangeF (n1,n2) -> if n1=n2 then Some (F n1) else None in match subst_opt with | Some v -> tbl, ((Var.name var, one_of_num v), Ne.make "" v)::sl | None -> StringMap.add (Var.name var) range tbl, sl in let tbl,sl = List.fold_left (add_one_var) (StringMap.empty,[]) var_l in { var = Range(tbl) ; substl = sl; delay = []; untouched = var_l } (* Normalised atomic constraints *) type nac = | NSupF of float (** > *) | NSupEqF of float (** >= *) | NInfF of float (** < *) | NInfEqF of float (** <= *) (* | NEqF of float (** = *) *) | NSupEqI of Num.num (** >= *) | NInfEqI of Num.num (** <= *) (* | NEqI of Num.num (** = *) *) (****************************************************************************) (* Pretty printing *) let (range_to_string : range -> string) = fun range -> match range with RangeI(min, max) -> ("[" ^ (Num.string_of_num min) ^ ", " ^ (Num.string_of_num max) ^ "] ") | RangeF(min, max) -> ("[" ^ (string_of_float min) ^ ", " ^ (string_of_float max) ^ "] ") (* exported *) let (to_string : t -> string) = fun s -> let var_str = ("\n*** Variable ranges: \n" ^ match s.var with Unsat(_,_) -> "Empty store" | Range(tbl) -> (StringMap.fold (fun vn range acc -> (" " ^ vn ^ " in " ^ (range_to_string range) ^ "\n" ^ acc) ) tbl "\n" ) ) and substl_str = if s.substl = [] then "" else ("\n*** Substitutions: \n" ^ Ne.substl_to_string s.substl) and delay_str = if s.delay = [] then "" else ("\n*** Delayed constraints: \n" ^ List.fold_left (fun acc d -> acc ^ "\n" ^ (Constraint.ineq_to_string d)) "" s.delay) in (var_str ^ substl_str ^ delay_str) and (t'_to_string : t' -> string) = fun s -> let var_str = ( "\n*** Variable ranges: \n" ^ (StringMap.fold (fun vn range acc -> (" " ^ vn ^ " in " ^ (range_to_string range) ^ "\n" ^ acc) ) s.range "\n" ) ) and substl_str = ("\n*** Substitutions: \n" ^ Ne.substl_to_string s.substl') in (var_str ^ substl_str) let (print_store : t -> unit) = fun s -> Format.print_string (to_string s) (****************************************************************************) (* Note that we check the satisfiability of constraints over polyhedra at bdd leaves, which, in some circumstances, migth be inefficient. The point is that, if we chose to check the formula satisfiability during the bdd traversal, we take the risk that a very big polyhedron is created whereas it was not necessary (because of forthcoming equalities that would reduce its dimension). And creating polyhedron with too big (>15) dimensions simply runs forever, which is really bad. *) (* exported *) exception No_polyedral_solution let (switch_to_polyhedron_representation_do : int -> t -> t' * p) = fun verb store -> (* handle delayed constraints using polyhedron *) match store.var with Unsat(_,_) -> print_string ("\nZZZ Dead code reached, oups...\n") ; flush stdout; raise No_polyedral_solution (* this ougth to be dead code ... *) | Range tbl -> if store.delay = [] then ( { range = tbl; substl' = store.substl; untouched' = store.untouched } , [] ) else let (tbl2, touched_vars, poly_l) = (* side effect: this function also removes from [store] variables that are put into the polyhedron store *) Polyhedron.build_poly_list_from_delayed_cstr verb tbl store.delay in List.iter (fun (_, poly, _, _) -> if Poly.is_empty poly then ( if debug_store then ( print_string (to_string store); print_string "\n The polyhedron is empty .\n"; flush stdout ); raise No_polyedral_solution ) ) poly_l; ( { range = tbl2; substl' = store.substl ; untouched' = List.fold_left (rm) store.untouched touched_vars } , poly_l ) (* tabulate the result as this translation is expensive *) let poly_table = ref (Hashtbl.create 1) let poly_table_size = ref 0 (* exported *) let (switch_to_polyhedron_representation : int -> t -> t' * p) = fun verb store -> (Util.tabulate_result poly_table poly_table_size 100 switch_to_polyhedron_representation_do verb store) (****************************************************************************) (****************************************************************************) let (compute_volume_do : int -> t -> float) = fun verb store -> let eps = !(Util.eps) in let factor = 1.0 /. eps in (* In order to compare the number of solutions in a integer polyhedron and in a float one, we multiply the volume of the float polyhedron by 2 ^ precision. *) match store.var with Unsat(_,_) -> 0.0 | _ -> let (store', poly_l) = switch_to_polyhedron_representation verb store in let range_vol = Util.StringMap.fold (fun _vn r acc -> match r with | RangeI(min, max) -> acc *. (Num.float_of_num (Num.succ_num (Num.sub_num max min))) | RangeF(min, max) -> acc *. (max -. min +. eps) *. factor ) store'.range 1.0 in let poly_vol = List.fold_left (fun acc (_,p,r2n,_) -> acc *. factor *. (Polyhedron.volume p r2n)) 1.0 poly_l in range_vol *. poly_vol (* tabulate the result of the volume computation *) let store_volume = ref (Hashtbl.create 1) let store_volume_size = ref 0 let (compute_volume : int -> t -> float) = fun verb store -> let volume = (Util.tabulate_result store_volume store_volume_size 100 compute_volume_do verb store) in if debug_store then ( print_string ( " ******* The store \n" ^ (to_string store) ^ " has volume " ^ (string_of_float volume) ^ "\n"); flush stdout; ); volume (****************************************************************************) let (_div : int -> int -> int) = fun x y -> (* I define my own integer division as the division of Pervasives does not consistently rounds its result (ie, the result is round to the least integer if it is positive, and to the greatest integer if it is negative). *) let xf = float_of_int x and yf = float_of_int y in int_of_float (floor (xf /.yf)) let (normalise : Constraint.ineq -> Var.name * nac ) = fun cstr -> (* Transform atomic formula into a data type that is easier to process. Fails if [cstr] contains more than one variable (in which case the constraint should have been delayed). *) let (get_vn_and_constant : Ne.t -> ( (* ne = ax+b*) Value.num (* The constant b *) * Value.num (* The coefficient of the variable a *) * Var.name (* The name of the variable x *) ) ) = fun ne -> let list = Ne.fold (fun vn num acc -> (vn,num)::acc) ne [] in match list with (* 0 var *) [("", cst)] -> ( match cst with I(_) -> (cst, I(Num.Int 0) , "") | F(_) -> (cst, F(0.), "") ) (* 1 var *) | [("", cst); (vn, coeff)] -> (cst, coeff, vn) | [(vn, coeff); ("", cst)] -> (cst, coeff, vn) | [(vn, coeff)] -> ( match coeff with I(_) -> (I(Num.Int 0), coeff, vn) | F(_) -> (F(0.), coeff, vn) ) (* more than 1 var *) | _ -> assert false in match cstr with GZ(ne) -> (* coeff.x + cst > 0 *) let (cst, coeff, vn) = get_vn_and_constant ne in ( match (cst, coeff) with (I(i_cst), I(i_coeff)) -> let i = Num.quo_num (Num.minus_num i_cst) i_coeff in if Num.gt_num i_coeff zero then (vn, NSupEqI(Num.succ_num i)) else if Num.eq_num (Num.mod_num i_cst i_coeff) zero then (vn, NInfEqI(Num.pred_num i)) else (vn, NInfEqI(i)) | (F(f_cst), F(f_coeff)) -> if f_coeff > 0. then (vn, NSupF(-.f_cst /. f_coeff)) else (vn, NInfF(-.f_cst /. f_coeff)) | (I(i), F(f)) -> failwith ("*** Error: " ^ (Num.string_of_num i) ^ " is an integer and " ^ (string_of_float f) ^ " is a float.\n") | (F(f), I(i)) -> failwith ("*** Error: " ^ (Num.string_of_num i) ^ " is an integer and " ^ (string_of_float f) ^ " is a float.\n") ) | GeqZ(ne) -> let (cst, coeff, vn) = get_vn_and_constant ne in ( match (cst, coeff) with (I(i_cst), I(i_coeff)) -> let i = Num.quo_num (Num.minus_num i_cst) i_coeff in if Num.gt_num i_coeff zero then if Num.eq_num (Num.mod_num i_cst i_coeff) zero then (vn, NSupEqI(i)) else (vn, NSupEqI(Num.succ_num i)) else if Num.eq_num (Num.mod_num i_cst i_coeff) zero then (vn, NInfEqI(i)) else (vn, NInfEqI(i)) | (F(f_cst), F(f_coeff)) -> if f_coeff > 0. then (vn, NSupEqF(-.f_cst /. f_coeff)) else (vn, NInfEqF(-.f_cst /. f_coeff)) | (I(_), F(_)) -> assert false | (F(_), I(_)) -> assert false ) let (make_subst : Var.name -> Value.num -> Ne.subst) = fun vn value -> (* returns a subst from [vn] to [value] *) match value with I _ -> ((vn, (I (Num.Int 1))), Ne.make "" value) | F _ -> ((vn, (F 1.)), Ne.make "" value) (** if a constraint [cstr] = [GeqZ(ne)] is such that the store contains the constraint [eqZ(-ne)] among its delayed variables, then [cstr] turns out to be an equality. In that case, this function returns [ne] as well as the store with the delayed constraint [eqZ(-ne)] removed. *) (* let (is_ineq_cstr_an_eq : Constraint.t -> t -> (t * Ne.t) option) = *) (* fun cstr store -> *) (* let ne = *) (* match cstr with *) (* GZ(ne) -> ne *) (* | GeqZ(ne) -> ne *) (* | _ -> assert false *) (* in *) (* let rec get_cstr ne d acc = *) (* match d with *) (* [] -> raise Not_found *) (* | GZ(ne2)::dtail -> *) (* if ne = ne2 *) (* then GZ(ne2), List.rev_append acc dtail *) (* else get_cstr ne dtail (GZ(ne2)::acc) *) (* | GeqZ(ne2)::dtail -> *) (* if ne = ne2 *) (* then GeqZ(ne2), List.rev_append acc dtail *) (* else get_cstr ne dtail (GeqZ(ne2)::acc) *) (* | _ -> assert false *) (* in *) (* let d2 = *) (* try *) (* match cstr, (get_cstr ne d []) with *) (* | GeqZ(ne), (GZ(_), d2) -> GZ(ne)::d2 *) (* (* Indeed, GeqZ(ne) => GZ(ne) *) *) (* | _ -> d *) (* with *) (* Not_found -> d *) (* in *) (* let new_d = *) (* try *) (* if *) (* match cstr, (get_cstr (Ne.neg ne) d []) with *) (* GeqZ(ne), (GeqZ(_), d2) -> true *) (* | _ -> false *) (* then *) (* *) (* else *) (* *) (* with *) (* Not_found -> d *) (* in *) (* exported *) let rec (add_constraint : t -> Formula_to_bdd.t -> Constraint.t -> t) = fun store bddt cstr0 -> let cstr = Constraint.apply_substl store.substl cstr0 in let _ = if debug_store2 then ( print_string ( "add_constraint (" ^ (string_of_int (Formula_to_bdd.get_index_from_linear_constraint bddt cstr0)) ^ ") " ^ (Constraint.to_string cstr) ^ " \n"); flush stdout ); if debug_store then ( print_string "\n>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n " ; print_string ">>>> The store before adding: " ; print_string (Constraint.to_string cstr); print_string (to_string store); flush stdout ); in let eps = !(Util.eps) in let (var, sl, d, uvars) = (store.var, store.substl, store.delay, store.untouched) in let dim = Constraint.dimension cstr in let res = if dim = 0 then ( match cstr with EqZ(ne) -> add_eq_to_store store bddt ne | Bv _ -> assert false | Ineq(GZ(ne)) -> if ( match (Ne.find "" ne) with Some v -> Value.num_sup_zero v | None -> false ) then store else ( if debug_store2 then ( print_string ( "\nAdding constraint " ^ (Constraint.to_string cstr) ^ " leads to an empty store.\n") ; flush stdout); unsat_store (Ineq(GZ(ne))) store ) | Ineq(GeqZ(ne)) -> if ( match (Ne.find "" ne) with Some v -> Value.num_supeq_zero v | None -> true ) then store else ( if debug_store2 then ( print_string ( "\nAdding constraint " ^ (Constraint.to_string cstr) ^ " leads to an empty store.\n") ; flush stdout); unsat_store (Ineq(GeqZ(ne))) store ) ) else if dim > 1 then (* We could also choose not to delay those constraints and switch to the polyhedron representation for the concerned variables there. What is the better solution really ??? *) ( match cstr with EqZ(ne) -> add_eq_to_store store bddt ne | Bv _ -> assert false | Ineq ineq -> if debug_store then ( let cstr_str = (Constraint.to_string cstr) in print_string "\n ==> delay " ; print_string cstr_str; flush stdout ); { var=var ; substl=sl ; delay = ineq::d ; untouched = uvars} ) else (* dim = 1 *) match store.var with Unsat(cstr, store) -> if debug_store2 then print_string ( "\nAdding constraint " ^ (Constraint.to_string cstr) ^ " leads to an empty store.\n") ; unsat_store cstr store | Range(tbl) -> ( match cstr with EqZ(ne) -> add_eq_to_store store bddt ne | Bv _ -> assert false | Ineq ineq -> let (vn, nac) = normalise ineq in ( match ( nac, try (mfind vn tbl) with Not_found -> print_string ("\n" ^ vn ^ " not found in the table!\n"); StringMap.iter (fun key range -> print_string ( "\n\t" ^ key ^ " " ^ (Polyhedron.range_to_string range) ); ) tbl; flush stdout; assert false ) with (NSupEqI(i), RangeI(min, max)) -> if Num.le_num i min then {var=Range(tbl) ; substl=sl ; delay=d ; untouched = rm uvars vn} else if Num.gt_num i max then {var=Unsat(cstr, store) ; substl=sl ; delay=d ; untouched = rm uvars vn} else (* min < i <= max *) let tbl1, sl1, d1, da = if Num.eq_num i max then (* Whenever, a variable becomes bounded, we: - add it to the list of substitutions - remove it from the store. - check if delayed cstr should be awaked once this new subst has been applied *) let s = make_subst vn (I max) in let d' = (List.map (Constraint.apply_subst_ineq s) d ) in let (d_awake, d_delay) = List.partition (fun ineq -> Constraint.dimension_ineq ineq <= 1) d' in (StringMap.remove vn tbl, s::sl, d_delay, d_awake) else ( StringMap.add vn (RangeI(i, max)) tbl, sl, d, [] ) in (* Applying the waked constraints *) List.fold_left (fun acc cstr -> if debug_store2 then ( print_string "\n <== awake "; print_string (Constraint.ineq_to_string cstr); flush stdout ); add_constraint acc bddt (Ineq cstr) ) { var=Range(tbl1) ; substl=sl1 ; delay=d1 ; untouched = rm uvars vn} da | (NInfEqI(i), RangeI(min, max)) -> if Num.lt_num i min then { var=Unsat(cstr, store) ; substl=sl ; delay=d; untouched = rm uvars vn } else if Num.ge_num i max then { var=Range(tbl) ; substl=sl ; delay=d; untouched = rm uvars vn } else (* min <= i < max *) let tbl1, sl1, d1, da = if Num.eq_num i min then let s = make_subst vn (I min) in let (d_awake, d_delay) = List.partition (fun ineq -> Constraint.dimension_ineq ineq <= 1) (List.map (Constraint.apply_subst_ineq s) d) in (StringMap.remove vn tbl, s::sl, d_delay, d_awake) else ( StringMap.add vn (RangeI(min,i)) tbl, sl, d, [] ) in (* Applying the waked constraints *) List.fold_left (fun acc cstr -> if debug_store2 then ( print_string "\n <== awake "; print_string (Constraint.ineq_to_string cstr); flush stdout ); add_constraint acc bddt (Ineq cstr)) { var=Range(tbl1) ; substl=sl1 ; delay=d1; untouched = rm uvars vn } da | (NSupEqF(f), RangeF(min, max)) -> if f <= min then {var=Range(tbl) ; substl=sl ; delay=d; untouched = rm uvars vn } else if f > max then {var=Unsat(cstr, store) ; substl=sl ; delay=d; untouched = rm uvars vn } else (* min < f <= max *) let tbl1, sl1, d1, da = if f = max then let s = make_subst vn (F max) in let (d_awake, d_delay) = List.partition (fun ineq -> Constraint.dimension_ineq ineq <= 1) (List.map (Constraint.apply_subst_ineq s) d) in (StringMap.remove vn tbl, s::sl, d_delay, d_awake) else ( StringMap.add vn (RangeF(f, max)) tbl, sl, d, [] ) in (* Applying the waked constraints *) List.fold_left (fun acc cstr -> if debug_store2 then ( print_string "\n <== awake "; print_string (Constraint.ineq_to_string cstr); flush stdout ); add_constraint acc bddt (Ineq cstr)) { var=Range(tbl1) ; substl=sl1 ; delay=d1; untouched = rm uvars vn } da | (NInfEqF(f), RangeF(min, max)) -> if f < min then {var=Unsat(cstr, store) ; substl=sl ; delay=d ; untouched = rm uvars vn } else if f >= max then {var=Range(tbl) ; substl=sl ; delay=d ; untouched = rm uvars vn } else (* min <= f < max *) let tbl1, sl1, d1, da = if f = min then let s = make_subst vn (F min) in let (d_awake, d_delay) = List.partition (fun ineq -> Constraint.dimension_ineq ineq <= 1) (List.map (Constraint.apply_subst_ineq s) d) in (StringMap.remove vn tbl, s::sl, d_delay, d_awake) else ( StringMap.add vn (RangeF(min, f)) tbl, sl, d, [] ) in (* Applying the waked constraints *) List.fold_left (fun acc cstr -> if debug_store2 then ( print_string "\n <== awake "; print_string (Constraint.ineq_to_string cstr); flush stdout ); add_constraint acc bddt (Ineq cstr)) { var=Range(tbl1) ; substl=sl1 ; delay=d1; untouched = rm uvars vn } da | (NSupF(f), RangeF(min, max)) -> if f < min then {var=Range(tbl) ; substl=sl ; delay=d ; untouched = rm uvars vn } else if f >= max then {var=Unsat(cstr, store) ; substl=sl ; delay=d ; untouched = rm uvars vn } else (* min <= f < max *) let (tbl1, sl1, d1, da) = if (f +. eps) = max then let s = make_subst vn (F max) in let (d_awake, d_delay) = List.partition (fun ineq -> Constraint.dimension_ineq ineq <= 1) (List.map (Constraint.apply_subst_ineq s) d) in (StringMap.remove vn tbl, s::sl, d_delay, d_awake) else ( StringMap.add vn (RangeF(f+.eps, max)) tbl, sl, d, [] ) in (* Applying the waked constraints *) List.fold_left (fun acc cstr -> if debug_store2 then ( print_string "\n <== awake "; print_string (Constraint.ineq_to_string cstr); flush stdout ); add_constraint acc bddt (Ineq cstr)) { var=Range(tbl1) ; substl=sl1 ; delay=d1 ; untouched = rm uvars vn } da | (NInfF(f), RangeF(min, max)) -> if f <= min then {var=Unsat(cstr, store) ; substl=sl ; delay=d ; untouched = rm uvars vn } else if f > max then {var=Range(tbl) ; substl=sl ; delay=d ; untouched = rm uvars vn } else (* min < f <= max *) let tbl1, sl1, d1, da = if (f -. eps) = min then let s = make_subst vn (F min) in let (d_awake, d_delay) = List.partition (fun ineq -> Constraint.dimension_ineq ineq <= 1) (List.map (Constraint.apply_subst_ineq s) d) in (StringMap.remove vn tbl, s::sl, d_delay, d_awake) else ( StringMap.add vn (RangeF(min, f-.eps)) tbl, sl, d, [] ) in (* Applying the waked constraints *) List.fold_left (fun acc cstr -> if debug_store2 then ( print_string "\n <== awake "; print_string (Constraint.ineq_to_string cstr); flush stdout ); add_constraint acc bddt (Ineq cstr) ) { var=Range(tbl1) ; substl=sl1 ; delay=d1 ; untouched = rm uvars vn } da | _ -> assert false ) ) in if debug_store then ( print_string "\n>>>> The Store after:\n"; print_string (to_string res); print_string "\n<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< \n"; flush stdout ); res and (add_eq_to_store : t -> Formula_to_bdd.t -> Ne.t -> t) = fun store bddt ne -> (* [add_eq_to_store s e] returns the store [s] with the numeric constraint [EqZ(e)] added. *) if debug_store2 then ( print_string ("add_eq_to_store " ^ (Ne.to_string ne) ^ " \n"); print_string (to_string store); flush stdout; ); let dim = Ne.dimension ne in if dim = 0 then match (Ne.find "" ne) with | Some x -> if Value.num_eq_zero x then store else unsat_store (EqZ ne) store | None -> store else (* dim > 0 *) match Ne.split ne with | Ne.No_solution -> unsat_store (EqZ ne) store | Ne.Dont_know -> store | Ne.Split(vn, coef, ne_rest) -> (* if ne = "a0 + a1x1 + a2x2 + ...", then - vn,coef = ("x1", a1) (or any other indexes except the constant one !!!), - and ne_rest = "a0 + a2x2 + ..." *) let coef_neg = Value.neg coef in let store1 = (* Propagates the bounds of vn (min and max) to what (-a0).vn will be substituted to. *) match store.var with Unsat(_,_) -> assert false | Range(tbl) -> let range_vn = try mfind vn tbl with Not_found -> print_string (vn ^ " not found\n store= "); print_string (to_string store); assert false in let (vn_min, vn_max) = match range_vn with | RangeI(min, max) -> I min, I max | RangeF(min, max) -> F min, F max in let (vn_min1, vn_max1) = if Value.num_supeq_zero coef_neg then (Value.mult_num coef_neg vn_min, Value.mult_num coef_neg vn_max) else (Value.mult_num coef_neg vn_max, Value.mult_num coef_neg vn_min) in let cstr_min = Ineq (GeqZ(Ne.diff ne_rest (Ne.make "" vn_min1))) and cstr_max = Ineq (GeqZ(Ne.diff (Ne.make "" vn_max1) ne_rest)) in let new_store_var = (* We do not need the bounds of [vn] anymore *) Range(StringMap.remove vn tbl) in let storea = { var = new_store_var; substl = store.substl; delay = store.delay ; untouched = rm store.untouched vn } in let storeb = add_constraint storea bddt cstr_min in let storec = add_constraint storeb bddt cstr_max in storec in (* The new substitution *) let s = ((vn, coef_neg), ne_rest) in (* [vn] elimination in the delayed constraints *) let d = store1.delay in let d2 = List.map (Constraint.apply_subst_ineq s) d in (* Some delayed constraints may have been awaken by this substitution (awake = become of dim 1). *) let (waked, d3) = List.partition (fun cstr -> Constraint.dimension_ineq cstr <= 1) d2 in let store2 = List.fold_left (fun acc cstr -> if debug_store2 then ( print_string ( "\n <== awake "^ (Constraint.ineq_to_string cstr)); flush stdout ); add_constraint acc bddt (Ineq cstr)) { var = store1.var; substl = s::(store1.substl); delay = d3 ; untouched = store1.untouched } waked in store2 (*******************************************************************************) (* exported *) let (is_store_satisfiable : int -> t -> bool) = fun verb store -> match store.var with Unsat(cstr,store) -> if verb >= 2 then ( print_string ( "# adding the constraint " ^ (Constraint.to_string cstr) ^ " led to an empty set of solution"); print_string (" when added to the store " ^ (to_string store)); print_string "\n"; flush stdout ); false | _ -> true
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>