package logtk
Core types and algorithms for logic
Install
Dune Dependency
Authors
Maintainers
Sources
1.6.tar.gz
md5=97cdb2f90468e9e27c7bbe3b4fb160bb
sha512=fee73369f673a91dfa9e265fc69be08b32235e10a495f3af6477d404fcd01e3452a0d012b150f3d7f97c00af2f6045019ad039164bf698f70d771231cc4efe5d
doc/src/logtk.solving/lpo.ml.html
Source file lpo.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
(* This file is free software, part of Zipperposition. See file "license" for more details. *) (** {1 Constraint Solving for LPO} *) open Logtk module SI = Msat.Solver_intf let section = Util.Section.(make ~parent:(make "solving") "lpo") (** {6 Constraints} *) module Constraint = struct type expr = ID.t type t = | EQ of expr * expr | LE of expr * expr | LT of expr * expr | And of t list | Or of t list | Not of t | True (* tautology *) | False (* impossible constraint *) let eq a b = EQ (a,b) let neq a b = Not (EQ (a, b)) let le a b = LE (a,b) let lt a b = LT (a,b) let ge a b = LE (b,a) let gt a b = LT (b,a) let and_ l = And l let or_ l = Or l let not_ t = Not t let imply a b = Or [Not a; b] let true_ = True let false_ = False module Seq = struct let exprs c k = let rec iter c = match c with | EQ (a,b) | LE(a,b) | LT(a,b) -> k a; k b | And l | Or l -> List.iter iter l | Not t -> iter t | True | False -> () in iter c end let pp_expr = ID.pp let rec pp out t = match t with | EQ (a,b) -> Format.fprintf out "(= %a %a)" pp_expr a pp_expr b | LE (a,b) -> Format.fprintf out "(<= %a %a)" pp_expr a pp_expr b | LT (a,b) -> Format.fprintf out "(< %a %a)" pp_expr a pp_expr b | And l -> Format.fprintf out "(and %a)" (Util.pp_list ~sep:" " pp) l | Or l -> Format.fprintf out "(or %a)" (Util.pp_list ~sep:" " pp) l | Not t -> Format.fprintf out "(not %a)" pp t | True -> CCFormat.string out "true" | False -> CCFormat.string out "false" let to_string = CCFormat.to_string pp (* simplify the constraints *) let rec simplify t = match t with | EQ (a, b) when ID.equal a b -> true_ | LE (a, b) when ID.equal a b -> true_ | LT (a, b) when ID.equal a b -> false_ | Not (Not t) -> simplify t | Not True -> true_ | Not False -> true_ | Not (And l) -> simplify (or_ (List.map not_ l)) | Not (Or l) -> simplify (and_ (List.map not_ l)) | And [] -> true_ | Or [] -> true_ | And [x] -> simplify x | Or [x] -> simplify x | And l -> let l' = List.fold_left flatten_and [] l in begin match l' with | [] -> true_ | _ when List.mem false_ l' -> false_ | [x] -> x | _ -> and_ l' end | Or l -> let l' = List.fold_left flatten_or [] l in begin match l' with | [] -> false_ | _ when List.mem true_ l' -> true_ | [x] -> x | _ -> or_ l' end | _ -> t and flatten_or acc t = match simplify t with | False -> acc | Or l -> List.fold_left flatten_or acc l | t' -> t' :: acc and flatten_and acc t = match simplify t with | True -> acc | And l -> List.fold_left flatten_and acc l | t' -> t' :: acc end module Solution = struct type t = (ID.t * ID.t) list (* constraint that prohibits this solution. We build the clause that makes at least one a>b false. *) let neg_to_constraint sol = let module C = Constraint in let l = List.map (fun (a,b) -> C.le a b) sol in C.or_ l let pp out s = Util.pp_list (Util.pp_pair ~sep:" > " ID.pp ID.pp) out s let to_string = CCFormat.to_string pp end module C = Constraint (** Functor to use Sat, and encode/decode the solution. Use "Solving Partial Order Constraints for LPO Termination", Codish & al *) module MakeSolver(X : sig end) = struct module Lit = struct type t = int let fresh = let n = ref 0 in fun () -> incr n; !n let sign x = x>0 let abs = abs let pp = Format.pp_print_int let dummy = 0 let neg i = -i let hash i = i land max_int let equal i j = i=j let norm i = if i>0 then i, SI.Same_sign else -i, SI.Negated end module Solver = Msat.Make_pure_sat(struct module Formula = Lit type proof = unit end) let solver = Solver.create ~size:`Big () (* propositional atoms map symbols to the binary digits of their index in the precedence *) module Atom : sig type t val make : ID.t -> int -> t val equal : t -> t -> bool val hash : t -> int val print : Format.formatter -> t -> unit end = struct type t = ID.t * int let make s i = s, i let equal (s1,i1)(s2,i2) = ID.equal s1 s2 && i1 = i2 let hash (s,i) = Hash.combine3 42 (ID.hash s) (Hash.int i) let print fmt (s,i) = Format.fprintf fmt "%a/%d" ID.pp s i end module AtomTbl = CCHashtbl.Make(Atom) let atom_to_int_ = AtomTbl.create 16 let int_to_atom_ = Hashtbl.create 16 (* unique "literal" (int) for this atom *) let atom_to_lit a = try AtomTbl.find atom_to_int_ a with Not_found -> let i = Lit.fresh () in AtomTbl.add atom_to_int_ a i; Hashtbl.add int_to_atom_ i a; i (* get the propositional variable that represents the n-th bit of [s] *) let digit s n = atom_to_lit (Atom.make s n) module F = Msat_tseitin.Make(Lit) (* encode [a < b]_n where [n] is the number of digits. either the n-th digit of [a] is false and the one of [b] is true, or they are equal and [a < b]_{n-1}. @return a formula *) let rec encode_lt ~n a b = if n = 0 then F.f_false else let d_a = F.make_atom (digit a n) and d_b = F.make_atom (digit b n) in F.make_or [ F.make_and [ F.make_not d_a; d_b ] ; F.make_and [ F.make_equiv d_a d_b; encode_lt ~n:(n-1) a b] ] (* encode [a <= b]_n, with not [b < a]_n. *) let encode_leq ~n a b = F.make_not (encode_lt ~n b a) (* encode [a = b]_n, digit per digit *) let rec encode_eq ~n a b = if n = 0 then F.f_true else let d_a = F.make_atom (digit a n) and d_b = F.make_atom (digit b n) in F.make_and [ F.make_equiv d_a d_b; encode_eq ~n:(n-1) a b ] (* encode a constraint with [n] bits into a formula. *) let rec encode_constr ~n c = match c with | C.EQ(a,b) -> encode_eq ~n a b | C.LE(a,b) -> encode_leq ~n a b | C.LT(a,b) -> encode_lt ~n a b | C.And l -> F.make_and (List.rev_map (encode_constr ~n) l) | C.Or l -> F.make_or (List.rev_map (encode_constr ~n) l) | C.Not c' -> F.make_not (encode_constr ~n c') | C.True -> F.f_true | C.False -> F.f_false (* function to extract symbol -> int from a solution *) let int_of_symbol sat ~n s : int = let r = ref 0 in for i = n downto 1 do let lit = digit s i in let is_true = sat.SI.eval lit in if is_true then r := 2 * !r + 1 else r := 2 * !r done; Util.debugf ~section 3 "index of symbol %a in precedence is %d" (fun k->k ID.pp s !r); !r (* extract a solution *) let get_solution sat ~n (symbols:ID.t list) : (ID.t * ID.t) list = let syms = List.rev_map (fun s -> int_of_symbol sat ~n s, s) symbols in (* sort in increasing order *) let syms = List.sort (fun (n1,_)(n2,_) -> n1-n2) syms in (* build solution by imposing f>g iff n(f) > n(g) *) let _, _, sol = List.fold_left (fun (cur_n,other_s,acc) (n,s) -> if n = cur_n then n, s::other_s, acc (* yet another symbol with rank [n] *) else begin (* elements of [other_s] have a lower rank, force them to be smaller *) assert (cur_n < n); let acc = List.fold_left (fun acc s' -> (s, s') :: acc) acc other_s in n, [s], acc end ) (~-1,[],[]) syms in sol let print_lit fmt i = if not (Lit.sign i) then Format.fprintf fmt "¬"; try let a = Hashtbl.find int_to_atom_ (Lit.abs i) in Atom.print fmt a with Not_found -> Format.fprintf fmt "L%d" (abs (i : Lit.t :> int)) (* tseitin *) let print_clause fmt c = Format.fprintf fmt "@[<hv2>%a@]" (Util.pp_list ~sep:" or " print_lit) c let print_clauses fmt c = Format.fprintf fmt "@[<v>%a@]" (Util.pp_list ~sep:"" print_clause) c (* solve the given list of constraints *) let solve_list l = (* count the number of symbols *) let symbols = Iter.of_list l |> Iter.flat_map C.Seq.exprs |> ID.Set.of_seq |> ID.Set.elements in let num = List.length symbols in (* the number of digits required to map each symbol to a distinct int *) let n = int_of_float (ceil (log (float_of_int num) /. log 2.)) in Util.debugf ~section 2 "constraints on %d symbols -> %d digits (%d bool vars)" (fun k->k num n (n * num)); let encode_constr c = Util.debugf ~section 5 "encode constr %a..." (fun k->k C.pp c); let f = encode_constr ~n c in Util.debugf ~section 5 " ... @[<2>%a@]" (fun k->k F.pp f); let clauses = F.make_cnf f in Util.debugf ~section 5 " ... @[<0>%a@]" (fun k->k print_clauses clauses); Solver.assume solver clauses (); Util.debug ~section 5 "form assumed" in List.iter encode_constr l; (* generator of solutions *) let rec next () = Util.debug ~section 5 "check satisfiability"; match Solver.solve solver with | Solver.Sat sat -> Util.debug ~section 5 "next solution exists, try to extract it..."; let solution = get_solution sat ~n symbols in Util.debugf ~section 5 "... solution is %a" (fun k->k Solution.pp solution); (* obtain another solution: negate current one and continue *) let tl = lazy (negate ~n solution) in LazyList.Cons (solution, tl) | Solver.Unsat _ -> Util.debug ~section 5 "no solution"; LazyList.Nil and negate ~n:_ solution = (* negate current solution to get the next one... if any *) let c = Solution.neg_to_constraint solution in encode_constr c; match Solver.solve solver with | Solver.Sat _ -> next() | Solver.Unsat _ -> LazyList.Nil in lazy (next()) end let solve_multiple l = let l = List.rev_map C.simplify l in Util.debugf ~section 2 "lpo: solve constraints %a" (fun k->k (CCFormat.list C.pp) l); let module S = MakeSolver(struct end) in S.solve_list l (** {6 LPO} *) (* constraint that some term in [l] is bigger than [b] *) let any_bigger ~orient_lpo l b = match l with | [] -> C.false_ | [x] -> orient_lpo x b | _ -> (* any element of [l] bigger than [r]? *) C.or_ (List.rev_map (fun x -> orient_lpo x b) l) (* [a] bigger than all the elements of [l] *) and all_bigger ~orient_lpo a l = match l with | [] -> C.true_ | [x] -> orient_lpo a x | _ -> C.and_ (List.rev_map (fun y -> orient_lpo a y) l) (* constraint for l1 >_lex l2 (lexicographic extension of LPO) *) and lexico_order ~eq ~orient_lpo l1 l2 = assert (List.length l1 = List.length l2); let c = List.fold_left2 (fun constr a b -> match constr with | Some _ -> constr | None when eq a b -> None | None -> Some (orient_lpo a b)) None l1 l2 in match c with | None -> C.false_ (* they are equal *) | Some c -> c module FO = struct module T = Term type term = T.t module TC = T.Classic (* constraint for a > b *) let rec orient_lpo a b = match TC.view a, TC.view b with | (TC.Var _ | TC.DB _), _ -> C.false_ (* a variable cannot be > *) | _, _ when T.subterm ~sub:b a -> C.true_ (* trivial subterm property --> ok! *) | TC.App (f, ((_::_) as l)), TC.App (g, l') when List.length l = List.length l' -> (* three cases: either some element of [l] is > [r], or precedence of first symbol applies, or lexicographic case applies (with non empty lists) *) C.or_ [ C.and_ [ C.eq f g ; lexico_order ~eq:T.equal ~orient_lpo l l' ] (* f=g, lexicographic order of subterms *) ; C.and_ [ C.gt f g ; all_bigger ~orient_lpo a l' ] (* f>g and a > all subterms of b *) ; any_bigger ~orient_lpo l b (* some subterm of a is > b *) ] | TC.App (f, l), TC.App (g, l') -> (* two cases: either some element of [l] is > [r], or precedence of first symbol applies *) C.or_ [ C.and_ [ C.gt f g ; all_bigger ~orient_lpo a l' ] (* f>g and a > all subterms of b *) ; any_bigger ~orient_lpo l b (* some subterm of a is > b *) ] | TC.App (_, l), _ -> (* only the subterm property can apply *) any_bigger ~orient_lpo l b | TC.AppBuiltin _, _ | _, TC.AppBuiltin _ | TC.NonFO, _ -> (* no clue... *) C.false_ let orient_lpo_list l = List.map (fun (l,r) -> let c = orient_lpo l r in let c' = C.simplify c in Util.debugf ~section 2 "constr %a simplified into %a" (fun k->k C.pp c C.pp c'); c') l end module TypedSTerm = struct module T = TypedSTerm type term = T.t (* constraint for a > b *) let rec orient_lpo a b = match T.view a, T.view b with | T.Var _ , _ -> C.false_ (* a variable cannot be > *) | _ when T.equal a b -> C.false_ | _ when T.is_subterm ~strict:true b ~of_:a -> C.true_ (* trivial subterm property --> ok! *) | T.App (f, l), T.App (g, l') -> begin match T.view f, T.view g with | T.Const f, T.Const g when List.length l = List.length l' -> (* three cases: either some element of [l] is > [r], or precedence of first symbol applies, or lexicographic case applies (with non empty lists) *) C.or_ [ C.and_ [ C.eq f g ; lexico_order ~eq:T.equal ~orient_lpo l l' ] (* f=g, lexicographic order of subterms *) ; C.and_ [ C.gt f g ; all_bigger ~orient_lpo a l' ] (* f>g and a > all subterms of b *) ; any_bigger ~orient_lpo l b (* some subterm of a is > b *) ] | T.Const f, T.Const g -> (* two cases: either some element of [l] is > [r], or precedence of first symbol applies *) C.or_ [ C.and_ [ C.gt f g ; all_bigger ~orient_lpo a l' ] (* f>g and a > all subterms of b *) ; any_bigger ~orient_lpo l b (* some subterm of a is > b *) ] | _ -> C.false_ (* no clue *) end | T.App (f, l), _ when T.is_const f -> (* only the subterm property can apply *) any_bigger ~orient_lpo l b | _ -> (* no clue... *) C.false_ let orient_lpo_list l = List.map (fun (l,r) -> let c = orient_lpo l r in let c' = C.simplify c in Util.debugf ~section 2 "constr %a simplified into %a" (fun k->k C.pp c C.pp c'); c') l end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>