package logtk
Core types and algorithms for logic
Install
Dune Dependency
Authors
Maintainers
Sources
1.6.tar.gz
md5=97cdb2f90468e9e27c7bbe3b4fb160bb
sha512=fee73369f673a91dfa9e265fc69be08b32235e10a495f3af6477d404fcd01e3452a0d012b150f3d7f97c00af2f6045019ad039164bf698f70d771231cc4efe5d
doc/src/logtk.parsers/util_tip.ml.html
Source file util_tip.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
(* This file is free software, part of Zipperposition. See file "license" for more details. *) (** {1 Utils for TIP} *) open Logtk module E = CCResult module A = Tip_ast module UA = UntypedAST module T = STerm type parser_res = (A.statement Iter.t, string) E.t type 'a parser_ = 'a -> parser_res let parse_lexbuf_ lex = let l = Tip_parser.parse_list Tip_lexer.token lex in Iter.of_list l let parse_lexbuf file : parser_res = try parse_lexbuf_ file |> E.return with e -> E.of_exn e let parse_stdin () : parser_res = let lexbuf = Lexing.from_channel stdin in ParseLocation.set_file lexbuf "stdin"; parse_lexbuf lexbuf let parse_file file : parser_res = if file="stdin" then parse_stdin() else try CCIO.with_in file (fun ic -> let lexbuf = Lexing.from_channel ic in ParseLocation.set_file lexbuf file; parse_lexbuf_ lexbuf) |> E.return with | Sys_error e -> CCResult.fail (Util.err_spf "sys_error when parsing `%s`:@ %s" file e) | e -> E.of_exn e let conv_loc (loc:A.Loc.t): ParseLocation.t = let {A.Loc.file; start_line; start_column; stop_line; stop_column} = loc in ParseLocation.mk file start_line start_column stop_line stop_column let rec conv_ty ty = match ty with | A.Ty_bool -> T.prop | A.Ty_arrow (args,ret) -> T.fun_ty (List.map conv_ty args) (conv_ty ret) | A.Ty_app ("Int",[]) -> T.builtin Builtin.TyInt | A.Ty_app ("Rat",[]) -> T.builtin Builtin.TyRat | A.Ty_app (s, []) -> T.var s (* var or const: let type inference decide *) | A.Ty_app (s, args) -> T.app (T.var s) (List.map conv_ty args) let app ?loc x y = T.app ?loc x [y] let conv_tyvar v = T.V v, Some T.tType let conv_var (v,ty) = T.V v, Some (conv_ty ty) let conv_vars = List.map conv_var (* left-associative *) let rec app_reduce f zero l = match l with | [] -> zero | [x] -> x | [x;y] -> T.app_builtin f [x; y] | x :: y :: tail -> app_reduce f zero (T.app_builtin f [x; y] :: tail) module BA = Builtin.Arith let zero = T.int_ Z.zero let one = T.int_ Z.one let plus_l = app_reduce BA.sum zero let minus_l = app_reduce BA.difference zero let prod_l = app_reduce BA.product one let quotient_l = app_reduce BA.quotient_e one let as_int s = try Some (Z.of_string s) with _ -> None let as_rat s = try Some (Q.of_string s) with _ -> None let rec conv_term (t:A.term): T.t = match t with | A.True -> T.true_ | A.False -> T.false_ | A.App (s,[]) | A.Const s -> (* look for integer constants, but otherwise let type inference distinguish constants and variables *) begin match as_int s, as_rat s with | Some z, _ -> T.int_ z | None, Some q -> T.rat q | None, None -> T.var s end | A.App (f,l) -> let l = List.map conv_term l in begin match f, l with | "+", _ -> plus_l l | "-", _ -> minus_l l | "*", _ -> prod_l l | "/", _ -> quotient_l l | ">=", [a;b] -> T.app_builtin BA.greatereq [a;b] | "<=", [a;b] -> T.app_builtin BA.lesseq [a;b] | ">", [a;b] -> T.app_builtin BA.greater [a;b] | "<", [a;b] -> T.app_builtin BA.less [a;b] | "mod", [a;b] -> T.app_builtin BA.remainder_e [a;b] | "div", [a;b] -> T.app_builtin BA.quotient_e [a;b] | _ -> T.app_const f l end | A.HO_app (a,b) -> app (conv_term a) (conv_term b) | A.If (a,b,c) -> T.ite (conv_term a)(conv_term b)(conv_term c) | A.Distinct l -> l |> List.rev_map conv_term |> CCList.diagonal |> List.rev_map (fun (a,b) -> T.neq a b) |> T.and_ ?loc:None | A.Match (u,l) -> let u = conv_term u in let l = List.map (function | A.Match_default t -> T.Match_default (conv_term t) | A.Match_case (s,vars,t) -> let vars = List.map (fun v->T.V v) vars in T.Match_case (s,vars,conv_term t)) l in T.match_ u l | A.Let (l,u) -> let l = List.map (fun (v,t) -> T.V v, conv_term t) l in let u = conv_term u in T.let_ l u | A.Fun (v,t) -> let v = conv_var v in let t = conv_term t in T.lambda [v] t | A.Eq (a,b) -> T.eq (conv_term a)(conv_term b) | A.Imply (a,b) -> T.imply (conv_term a)(conv_term b) | A.And l -> T.and_ (List.map conv_term l) | A.Or l -> T.or_ (List.map conv_term l) | A.Not a -> T.not_ (conv_term a) | A.Forall (vars,body) -> let vars = conv_vars vars in let body = conv_term body in T.forall vars body | A.Exists (vars,body) -> let vars = conv_vars vars in let body = conv_term body in T.exists vars body | A.Cast (a,_) -> conv_term a let conv_decl (d:A.ty A.fun_decl): string * T.t = let tyvars = List.map conv_tyvar d.A.fun_ty_vars in let ty_args = List.map conv_ty d.A.fun_args in let ty_ret = conv_ty d.A.fun_ret in let ty = T.forall_ty tyvars (T.fun_ty ty_args ty_ret) in d.A.fun_name, ty (* return [f, vars, ty_f] *) let conv_def (d:A.typed_var A.fun_decl): string * T.typed_var list * T.t = let tyvars = List.map conv_tyvar d.A.fun_ty_vars in let vars = List.map conv_var d.A.fun_args in let ty_args = List.map (CCFun.compose snd conv_ty) d.A.fun_args in let ty_ret = conv_ty d.A.fun_ret in let ty = T.forall_ty tyvars (T.fun_ty ty_args ty_ret) in d.A.fun_name, tyvars @ vars, ty let conv_def ?loc decl body = (* translate into definitions *) let f, vars, ty_f = conv_def decl in let vars_as_t = List.map (function | T.Wildcard, _ -> assert false | T.V s, _ -> T.var s) vars in let def = let body = conv_term body in T.forall ?loc vars (T.eq ?loc (T.app_const ?loc f vars_as_t) body) in UA.mk_def f ty_f [def] let convert (st:A.statement): UA.statement list = let loc = CCOpt.map conv_loc st.A.loc in Util.debugf 3 "@[<2>convert TIP statement@ @[%a@]@,%a@]" (fun k->k A.pp_stmt st ParseLocation.pp_opt loc); match st.A.stmt with | A.Stmt_decl_sort (s,i) -> let ty = T.fun_ty (CCList.init i (fun _ -> T.tType) ) T.tType in [UA.decl ?loc s ty] | A.Stmt_decl d -> let s, ty = conv_decl d in [UA.decl ?loc s ty] | A.Stmt_assert t -> let t = conv_term t in [UA.assert_ ?loc t] | A.Stmt_lemma t -> let t = conv_term t in [UA.lemma ?loc t] | A.Stmt_assert_not (tyvars,g) -> (* goal *) let tyvars = List.map conv_tyvar tyvars in let g = conv_term g in let g = T.forall ?loc tyvars g in [UA.goal ?loc g] | A.Stmt_data (tyvars, l) -> let l = List.map (fun (id, cstors) -> let cstors = List.map (fun c -> let args = c.A.cstor_args |> List.map (CCPair.map CCOpt.return conv_ty) in c.A.cstor_name, args) cstors in {UA. data_name=id; data_vars=tyvars; data_cstors=cstors; }) l in [UA.data ?loc l] | A.Stmt_check_sat -> [] (* trivial *) | A.Stmt_fun_def fr | A.Stmt_fun_rec fr -> (* translate into definitions *) let l = [conv_def ?loc fr.A.fr_decl fr.A.fr_body] in [UA.def ?loc l] | A.Stmt_funs_rec {A. fsr_decls; fsr_bodies } -> assert (List.length fsr_decls = List.length fsr_bodies); let l = List.map2 (conv_def ?loc) fsr_decls fsr_bodies in [UA.def ?loc l] let convert_seq = Iter.flat_map_l convert
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>