package logtk
Core types and algorithms for logic
Install
Dune Dependency
Authors
Maintainers
Sources
1.6.tar.gz
md5=97cdb2f90468e9e27c7bbe3b4fb160bb
sha512=fee73369f673a91dfa9e265fc69be08b32235e10a495f3af6477d404fcd01e3452a0d012b150f3d7f97c00af2f6045019ad039164bf698f70d771231cc4efe5d
doc/src/logtk.parsers/callProver.ml.html
Source file callProver.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
(* This file is free software, part of Logtk. See file "license" for more details. *) (** {1 Call external provers with TSTP} *) open Logtk module A = Ast_tptp module TT = Trace_tstp module Err = CCResult module ST = STerm type 'a or_error = ('a, string) CCResult.t type untyped = STerm.t (** {2 Description of provers} *) module Prover = struct type t = { name : string; (** name of the prover *) command : string; (** command to call prover*) unsat : string list; (** prover returned unsat *) sat : string list; (** prover returned sat *) } (** data useful to invoke a prover. The prover must read from stdin. The command is interpolated using {! Buffer.add_substitude}, with the given patterns: - "timeout" is the timeout in seconds *) let __table : (string,t) Hashtbl.t = Hashtbl.create 5 let lookup name = Hashtbl.find __table name let list_provers () = Hashtbl.fold (fun n _ acc -> n :: acc) __table [] let register name prover = if Hashtbl.mem __table name then invalid_arg ("prover already registered: "^ name) else Hashtbl.add __table name prover let p_E = { name = "E"; command = "eprover --cpu-limit=${timeout} --auto -l0 --tstp-in --tstp-out"; unsat = ["SZS status Unsat"; "SZS status Theorem"]; sat = ["SZS status Satisfiable"; "SZS status CounterTheorem"]; } let p_Eproof = { p_E with name = "Eproof"; command = "eproof_ram --cpu-limit=${timeout} -tAuto -xAuto -l0 --tstp-in --tstp-out"; } let p_SPASS = { name = "SPASS"; command = "SPASS -TPTP -TimeLimit=${timeout} -Stdin"; unsat = ["Proof found"]; sat = ["Completion found"]; } let p_Zenon = { name = "Zenon"; command = "zenon -itptp -p0 -max-time ${timeout}s -"; unsat = ["PROOF-FOUND"]; sat = ["NO-PROOF"]; } let default = [p_E; p_SPASS] end let name p = p.Prover.name (** {2 Run provers} *) type result = | Unsat | Sat | Unknown | Error of string (* among the strings in [patterns], find if one is a substring of [s] *) let _find_mem patterns s = List.exists (fun p -> CCString.find ~sub:p s >= 0) patterns let call_with_out ?(timeout=30) ?(args=[]) ~prover decls = (* compute input to give to the prover *) let input = CCFormat.sprintf "@[<v>%a@]" (Util.pp_list ~sep:"" (A.pp ST.pp)) decls in (* build command (add arguments to the end) *) let buf = Buffer.create 15 in Buffer.add_substitute buf (function | "timeout" -> string_of_int timeout | s -> s) prover.Prover.command; List.iter (fun arg -> Buffer.add_char buf ' '; Buffer.add_string buf arg) args; let cmd = Buffer.contents buf in Util.debugf 2 "run prover %s" (fun k->k prover.Prover.name); Util.debugf 4 "command is: \"%s\"" (fun k->k cmd); Util.debugf 4 "obligation is: \"%s\"" (fun k->k input); Err.( (* run the prover *) Util.popen ~cmd ~input >>= fun output -> Util.debugf 2 "prover %s done" (fun k->k prover.Prover.name); Util.debugf 4 "output: \"%s\"" (fun k->k output); (* parse output *) let result = if _find_mem prover.Prover.unsat output then Unsat else if _find_mem prover.Prover.sat output then Sat else Unknown in Err.return (result, output) ) let call ?timeout ?args ~prover decls = Err.( call_with_out ?timeout ?args ~prover decls >>= fun (res, _) -> return res ) let decls_of_string ~source str = let lexbuf = Lexing.from_string str in ParseLocation.set_file lexbuf source; Util_tptp.parse_lexbuf lexbuf (* try to parse a proof. Returns a proof option *) let proof_of_decls decls = let res = Trace_tstp.of_decls decls in match res with | Err.Error _ -> None | Err.Ok proof -> Some proof let call_proof ?timeout ?args ~prover decls = Err.( call_with_out ?timeout ?args ~prover decls >>= fun (res, output) -> decls_of_string ~source:("output of prover "^ prover.Prover.name) output >>= Trace_tstp.of_decls >>= fun proof -> return (res, proof) ) module Eprover = struct type result = { answer : szs_answer; output : string; decls : untyped Ast_tptp.t Iter.t option; proof : Trace_tstp.t option; } and szs_answer = | Theorem | CounterSatisfiable | Unknown let string_of_answer = function | Theorem -> "Theorem" | CounterSatisfiable -> "CounterSatisfiable" | Unknown -> "Unknown" (* parse SZS answer *) let parse_answer output = if CCString.mem ~sub:"SZS status Theorem" output then Theorem else if CCString.mem ~sub:"SZS status CounterSatisfiable" output then CounterSatisfiable else Unknown (* run eproof_ram on the given input. returns a result *) let _run_either ?(opts=[]) ?(level=1) ~prover ~steps ~input () = let level' = Printf.sprintf "-l%d" level in let command = [ prover; "--tstp-in"; "--tstp-out"; level'; "-C" ; string_of_int steps; "-xAuto"; "-tAuto" ] @ opts in let cmd = String.concat " " command in Err.( Util.popen ~cmd ~input >>= fun output -> (* parse answer *) let answer = parse_answer output in (* read its output *) let decls, proof = match decls_of_string ~source:"E" output with | Err.Error _ -> None, None | Err.Ok s -> (* try to parse proof, if it's a theorem *) let proof = if answer = Theorem then proof_of_decls s else None in Some s, proof in Err.return { answer; output; decls; proof } ) (* run eproof_ram on the given input. returns a result *) let run_eproof ~steps ~input = _run_either ~prover:"eproof_ram" ~steps ~input () (* run eprover on the given input. returns a result Lwt *) let run_eprover ?opts ?level ~steps ~input () = _run_either ~prover:"eprover" ?opts ?level ~steps ~input () (* explore the surrounding of this list of formulas, returning a list of terms (clausal form) *) let discover ?(opts=[]) ~steps decls = let command = [ "eprover"; "--tstp-in"; "--tstp-out"; "-S"; "--restrict-literal-comparisons"; "-C"; string_of_int steps ] @ opts in let cmd = String.concat " " command in (* build stdin *) let input = CCFormat.sprintf "@[%a@]" (Util.pp_seq ~sep:"" (A.pp ST.pp)) decls in Err.( (* call E *) Util.popen ~cmd ~input >>= fun output -> (* read its output *) decls_of_string ~source:"E" output ) let cnf ?(opts=[]) decls = let command = [ "eprover"; "--tstp-in"; "--tstp-out"; "--cnf" ] @ opts in let cmd = String.concat " " command in (* build stdin *) let input = CCFormat.sprintf "@[%a@]" (Util.pp_seq ~sep:"" (A.pp ST.pp)) decls in Err.( (* call E *) Util.popen ~cmd ~input >>= fun output -> (* read its output *) decls_of_string ~source:"E" output ) end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>