package logtk
Core types and algorithms for logic
Install
Dune Dependency
Authors
Maintainers
Sources
1.5.1.tar.gz
md5=cc320f66f10555c54822da624419e003
sha512=f8d5f7a5ae790bf0388d74261673803cf375f91f92f7b413b70db1ce5841ef55343a208f98727c8551d66f1840ab892f1c0c943a34861d14d79ce469b235a2f2
doc/src/logtk.parsers/trace_tstp.ml.html
Source file trace_tstp.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
(* This file is free software, part of Logtk. See file "license" for more details. *) (** {1 Trace of a TSTP prover} *) open Logtk type id = Ast_tptp.name module T = STerm module A = Ast_tptp module Err = CCResult type term = STerm.t type form = STerm.t type clause = term SLiteral.t list type t = | Axiom of string * string (* filename, axiom name *) | Theory of string (* a theory used to do an inference *) | InferForm of form * step lazy_t | InferClause of clause * step lazy_t and step = { id : id; rule : string; parents : t array; esa : bool; (** Equisatisfiable step? *) } type proof = t let equal p1 p2 = match p1, p2 with | Axiom (f1, n1), Axiom (f2, n2) -> f1 = f2 && n1 = n2 | Theory s1, Theory s2 -> s1 = s2 | InferForm (f1, lazy step1), InferForm(f2, lazy step2) -> step1.id = step2.id && T.equal f1 f2 | InferClause (c1, lazy step1), InferClause(c2, lazy step2) -> begin try step1.id = step2.id && List.for_all2 (SLiteral.equal T.equal) c1 c2 with Invalid_argument _ -> false end | _ -> false let hash p = match p with | Axiom _ | Theory _ -> Hashtbl.hash p | InferForm (_, lazy s) | InferClause (_, lazy s) -> Hashtbl.hash s.id let compare p1 p2 = Pervasives.compare p1 p2 (* FIXME *) (** {2 Constructors and utils} *) let mk_f_axiom ~id f ~file ~name = let step = {id; rule="axiom"; parents = [| Axiom (file,name) |]; esa=false; } in InferForm (f, Lazy.from_val step) let mk_c_axiom ~id c ~file ~name = let step = {id; rule="axiom"; parents = [| Axiom (file,name) |]; esa=false; } in InferClause (c, Lazy.from_val step) let mk_f_step ?(esa=false) ~id f ~rule parents = assert(rule <> "axiom"); let step = {id; rule; parents=Array.of_list parents; esa;} in InferForm (f, Lazy.from_val step) let mk_c_step ?(esa=false) ~id c ~rule parents = assert(rule <> "axiom"); let step = {id; rule; parents=Array.of_list parents; esa;} in InferClause (c, Lazy.from_val step) let is_axiom = function | Axiom _ -> true | _ -> false let is_theory = function | Theory _ -> true | _ -> false let is_step = function | InferClause _ | InferForm _ -> true | Axiom _ | Theory _ -> false let is_proof_of_false = function | InferForm (form, _) when T.equal form T.false_ -> true | InferClause([],_) -> true | InferClause(l,_) -> List.for_all SLiteral.is_false l | _ -> false let get_id = function | InferClause (_, lazy step) | InferForm (_, lazy step) -> step.id | Axiom (_, name) -> A.NameString name | Theory _ -> invalid_arg "Trace_tstp: Theory does not have an ID" let force = function | InferForm (_, step) | InferClause (_, step) -> ignore (Lazy.force step) | Axiom _ | Theory _ -> () (** {2 Proof traversal} *) module StepTbl = Hashtbl.Make(struct type t = proof let equal = equal let hash = hash end) type proof_set = unit StepTbl.t let is_dag proof = (* steps currently being explored *) let current = StepTbl.create 10 in (* steps totally explored *) let closed = StepTbl.create 10 in (* recursive DFS traversal *) let rec check_proof proof = if StepTbl.mem closed proof then () (* ok *) else if StepTbl.mem current proof then raise Exit (* we followed a back link! *) else begin StepTbl.add current proof (); begin match proof with | InferClause (_, lazy step) | InferForm (_, lazy step) -> Array.iter check_proof step.parents | Axiom _ | Theory _ -> () end; (* proof is now totally explored *) StepTbl.remove current proof; StepTbl.add closed proof (); end in try check_proof proof; (* check from root *) true with Exit -> false (* loop detected *) (** Traverse the proof. Each proof node is traversed only once. *) let traverse ?(traversed=StepTbl.create 11) proof k = (* set of already traversed proof nodes; queue of proof nodes yet to traverse *) let queue = Queue.create () in Queue.push proof queue; while not (Queue.is_empty queue) do let proof = Queue.take queue in if StepTbl.mem traversed proof then () else begin StepTbl.add traversed proof (); (* traverse premises first *) begin match proof with | Axiom _ | Theory _ -> () | InferForm (_, lazy step) | InferClause (_, lazy step) -> Array.iter (fun proof' -> Queue.push proof' queue) step.parents end; (* call [k] on the proof *) k proof; end done let to_seq proof = Iter.from_iter (fun k -> traverse proof k) (** Depth of a proof, ie max distance between the root and any axiom *) let depth proof = let explored = StepTbl.create 11 in let depth = ref 0 in let q = Queue.create () in Queue.push (proof, 0) q; while not (Queue.is_empty q) do let (p, d) = Queue.pop q in if StepTbl.mem explored proof then () else begin StepTbl.add explored proof (); match p with | Axiom _ -> depth := max d !depth | Theory _ -> () | InferForm(_, lazy step) | InferClause (_, lazy step) -> (* explore parents *) Array.iter (fun p -> Queue.push (p, d+1) q) step.parents end done; !depth let size proof = Iter.length (to_seq proof) (** {2 IO} *) type 'a or_error = ('a, string) CCResult.t let of_decls decls = let steps = Hashtbl.create 16 in (* maps names to steps *) let root = ref None in (* (one) root of proof *) (* find a proof name *) let find_step name = try Hashtbl.find steps name with Not_found -> failwith (CCFormat.sprintf "proof step %a not found in derivation" A.pp_name name) in (* read information about the source of the clause/formula *) let read_info info = match info with | A.GList [A.GString ("'proof'" | "proof")] -> `Proof | A.GNode("inference", [A.GString rule; A.GList [A.GNode ("status", [A.GString status])]; A.GList parents]) -> (* lazily lookup parent steps by their name in the derivation *) let parents = lazy (Array.map (fun data -> match data with | A.GInt i -> find_step (A.NameInt i) | A.GString s -> find_step (A.NameString s) | A.GNode ("theory", [A.GString th]) -> Theory th | _ -> failwith (CCFormat.sprintf "not a valid parent: %a" A.pp_general data)) (Array.of_list parents)) in let esa = status <> "thm" in `Parents (rule, esa, parents) | A.GNode ("file", (A.GString file :: A.GString name :: _)) -> let parents = Lazy.from_val [|(Axiom (file,name))|] in `Parents ("axiom", false, parents) | A.GNode ("trivial", _) -> `Parents ("trivial", false, Lazy.from_val [||]) | A.GInt i -> let parent = find_step (A.NameInt i) in `Parents ("trivial", false, Lazy.from_val [|parent|]) | A.GString s -> let parent = find_step (A.NameString s) in `Parents ("trivial", false, Lazy.from_val [|parent|]) | _ -> Util.debugf 1 "not a valid proof step: %a" (fun k->k A.pp_general_debugf info); `NoIdea in (* what to do if a step is read *) let add_step id step = match step with | InferForm _ | InferClause _ -> if is_proof_of_false step && !root = None then root := Some step; Util.debugf 3 "add step %a (root? %B)" (fun k->k A.pp_name id (is_proof_of_false step)); Hashtbl.replace steps id step; | Axiom _ | Theory _ -> () in (* traverse declarations *) Iter.iter begin fun decl -> match decl with | A.CNF (_name, _role, _c, info :: _) -> Util.debugf 3 "@[<2>convert step@ @[%a@]@]" (fun k->k (A.pp T.pp) decl); begin match read_info info with | `Proof | `NoIdea -> () | `Parents (_rule, _esa, _parents) -> assert false (* FIXME let step = lazy {id=name; esa; rule; parents=Lazy.force parents} in let c = List.map SLiteral.of_form c in let p = InferClause (c, step) in add_step name p *) end | A.FOF(name, _role, f, info :: _) | A.TFF (name, _role, f, info :: _) -> Util.debugf 3 "convert step %a" (fun k->k (A.pp T.pp) decl); begin match read_info info with | `Proof | `NoIdea -> () | `Parents (rule, esa, parents) -> let step = lazy{id=name; esa; rule; parents=Lazy.force parents} in let p = InferForm (f, step) in add_step name p end | A.TypeDecl _ | A.FOF _ | A.CNF _ | A.TFF _ | A.THF _ | A.Include _ | A.IncludeOnly _ | A.NewType _ -> () end decls; match !root with | None -> Err.fail "could not find the root of the TSTP proof" | Some p -> try (* force proofs to trigger errors here *) traverse p force; Err.return p with Failure msg -> Err.fail msg let parse ?(recursive=true) filename = Err.( Util_tptp.parse_file ~recursive filename >>= fun decls -> Util.debugf 1 "@[<2>decls:@ @[<hv>%a@]@]" (fun k->k (Util.pp_seq ~sep:"" (A.pp T.pp)) decls); of_decls decls ) let _extract_axiom proof = match proof with | Axiom (f,n) -> f,n | _ -> assert false let _pp_clause out c = match c with | [] -> T.pp out T.false_ | _ -> Format.fprintf out "@[%a@]" (Util.pp_list ~sep:" | " (SLiteral.pp T.pp)) c let _print_parent p = match p with | InferForm _ | InferClause _ -> CCFormat.to_string A.pp_name (get_id p) | Theory s -> CCFormat.sprintf "theory(%s)" s | Axiom (f,n) -> CCFormat.sprintf "file('%s', %s)" f n (* pure fof? (no types but $i/$o) *) let _form_is_fof _f = false (* FIXME *) let pp_tstp out proof = traverse proof (fun p -> match p with | Axiom _ -> () | Theory s -> CCFormat.fprintf out "theory(%s)" s | InferClause(c, lazy ({rule="axiom";_} as step)) when is_axiom step.parents.(0)-> let id = get_id p in let f,n = _extract_axiom step.parents.(0) in Format.fprintf out "cnf(%a, axiom, (%a), file('%s', %s)).\n" A.pp_name id _pp_clause c f n | InferForm(f, lazy ({rule="axiom"; _} as step)) when is_axiom step.parents.(0)-> let id = get_id p in let file,n = _extract_axiom step.parents.(0) in Format.fprintf out "tff(%a, axiom, %a, file('%s', %s)).\n" A.pp_name id T.pp f file n | InferForm(f, lazy step) -> let id = get_id p in let ids = Array.map _print_parent step.parents in let status = if step.esa then "esa" else "thm" in let kind = if _form_is_fof f then "fof" else "tff" in Format.fprintf out "%s(%a, plain, %a, inference('%s', [status(%s)], [%a])).\n" kind A.pp_name id T.pp (T.close_all Binder.Forall f) step.rule status (CCFormat.array CCFormat.string) ids | InferClause(c, lazy step) -> let id = get_id p in let ids = Array.map _print_parent step.parents in let status = if step.esa then "esa" else "thm" in Format.fprintf out "cnf(%a, plain, %a, inference('%s', [status(%s)], [%a])).\n" A.pp_name id _pp_clause c step.rule status (CCFormat.array CCFormat.string) ids ) let pp0 out proof = match proof with | Axiom (f,n) -> Format.fprintf out "axiom(%s, %s)" f n | Theory s -> Format.fprintf out "theory(%s)" s | InferClause (c, _) -> Format.fprintf out "proof for %a (id %a)" _pp_clause c A.pp_name (get_id proof) | InferForm (f, _) -> Format.fprintf out "proof for %a (id %a)" T.pp f A.pp_name (get_id proof) let pp1 out proof = match proof with | Axiom (f,n) -> Format.fprintf out "axiom(%s, %s)" f n | Theory s -> Format.fprintf out "theory(%s)" s | InferClause (c, lazy step) -> Format.fprintf out "proof for %a (id %a) from\n %a" _pp_clause c A.pp_name (get_id proof) CCFormat.(array ~sep:(return "@. ") pp0) step.parents | InferForm (f, lazy step) -> Format.fprintf out "proof for %a (id %a) from\n %a" T.pp f A.pp_name (get_id proof) CCFormat.(array ~sep:(return "@. ") pp0) step.parents let pp = pp0 let to_string = CCFormat.to_string pp
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>