package liquidsoap-lang
Liquidsoap language library
Install
Dune Dependency
Authors
Maintainers
Sources
liquidsoap-2.2.5.tar.gz
md5=8e4d35b2595e31ef5e7a96b605382787
sha512=3c8c9738cce1adad3707986527b52aac5e5a70f11f58e4aa3647972752275d72d1649657e46cec6afc4c543a4546cc312d1c9b1a4338f9bd6e41c0a702ec5118
doc/src/liquidsoap-lang/repr.ml.html
Source file repr.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
(***************************************************************************** Liquidsoap, a programmable audio stream generator. Copyright 2003-2024 Savonet team This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details, fully stated in the COPYING file at the root of the liquidsoap distribution. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA *****************************************************************************) (** User-friendly representation of types. *) (** Show generalized variables in records. *) let show_record_schemes = ref true (** Use globally unique names for existential variables. *) let global_evar_names = ref false open Type_base include R (** Given a position, find the relevant excerpt. *) let excerpt (start, stop) = try if start.Lexing.pos_fname <> stop.Lexing.pos_fname then raise Exit; let fname = start.Lexing.pos_fname in let l1 = start.Lexing.pos_lnum in let l2 = stop.Lexing.pos_lnum in let ic = open_in fname in let n = ref 1 in while !n < l1 do ignore (input_line ic); incr n done; let lines = ref [] in while !n <= l2 do lines := input_line ic :: !lines; incr n done; close_in ic; let lines = Array.of_list (List.rev !lines) in let lines = let n = Array.length lines in if Array.length lines > 5 then [| lines.(0); lines.(1); "..."; lines.(n - 2); lines.(n - 1) |] else lines in let insert_at x n s = let s1 = String.sub s 0 n in let s2 = String.sub s n (String.length s - n) in s1 ^ x ^ s2 in (* The order is important here because both lines might be the same. *) lines.(Array.length lines - 1) <- insert_at (Console.stop_color ()) (stop.Lexing.pos_cnum - stop.Lexing.pos_bol) lines.(Array.length lines - 1); lines.(0) <- insert_at (Console.start_color [`red]) (start.Lexing.pos_cnum - start.Lexing.pos_bol) lines.(0); let lines = Array.to_list lines in let s = String.concat "\n" lines ^ "\n" in Some s with _ -> None let excerpt_opt = function Some pos -> excerpt pos | None -> None (** Given a strictly positive integer, generate a name in [a-z]+: a, b, ... z, aa, ab, ... az, ba, ... *) let name = let base = 26 in let c i = char_of_int (int_of_char 'a' + i - 1) in let add i suffix = Printf.sprintf "%c%s" (c i) suffix in let rec n suffix i = if i <= base then add i suffix else ( let head = i mod base in let head = if head = 0 then base else head in n (add head suffix) ((i - head) / base)) in n "" (** Generate a globally unique name for evars (used for debugging only). *) let evar_global_name = let evars = Hashtbl.create 10 in let n = ref 0 in fun i -> try Hashtbl.find evars i with Not_found -> incr n; let name = String.uppercase_ascii (name !n) in Hashtbl.add evars i name; name (** Compute the structure that a term represents, given the list of universally quantified variables. Also takes care of computing the printing name of variables, including constraint symbols, which are removed from constraint lists. It supports a mechanism for filtering out parts of the type, which are then translated as `Ellipsis. *) let make ?(filter_out = fun _ -> false) ?(generalized = []) t : t = let split_constr c = List.fold_left (fun (s, constraints) c -> (s, c :: constraints)) ("", []) c in let uvar g var = let constr_symbols, c = split_constr (Constraints.elements var.constraints) in let rec index n = function | v :: tl -> if Var.eq v var then Printf.sprintf "'%s%s" constr_symbols (name n) else index (n + 1) tl | [] -> assert false in let v = index 1 (List.rev g) in (* let v = Printf.sprintf "'%d" i in *) `UVar (v, Constraints.of_list c) in let counter = let c = ref 0 in fun () -> incr c; !c in let evars = Hashtbl.create 10 in let evar var = let constr_symbols, c = split_constr (Constraints.elements var.constraints) in if !global_evar_names || !debug || !debug_levels then ( let v = Printf.sprintf "'%s%s" constr_symbols (evar_global_name var.name) in let v = if !debug_levels then ( let level = var.level in let level = if level = max_int then "∞" else string_of_int level in Printf.sprintf "%s[%s]" v level) else v in `EVar (v, Constraints.of_list c)) else ( let s = try Hashtbl.find evars var.name with Not_found -> let name = String.uppercase_ascii (name (counter ())) in Hashtbl.add evars var.name name; name in `EVar (Printf.sprintf "'%s%s" constr_symbols s, Constraints.of_list c)) in let rec repr g t = if filter_out t then `Ellipsis else ( match t.descr with | Custom c -> c.repr repr g c.typ | Getter t -> `Getter (repr g t) | List { t; json_repr } -> `List (repr g t, json_repr) | Tuple l -> `Tuple (List.map (repr g) l) | Nullable t -> `Nullable (repr g t) | Meth ({ meth = l; optional; scheme = g', u; json_name }, v) -> let gen = List.map (fun v -> match uvar (g' @ g) v with `UVar v -> v) (List.sort_uniq compare g') in `Meth ( R. { name = l; optional; scheme = (gen, repr (g' @ g) u); json_name; }, repr g v ) | Constr { constructor; params } -> `Constr (constructor, List.map (fun (l, t) -> (l, repr g t)) params) | Arrow (args, t) -> `Arrow ( List.map (fun (opt, lbl, t) -> (opt, lbl, repr g t)) args, repr g t ) | Var { contents = Free var } -> if List.exists (Var.eq var) g then uvar g var else evar var | Var { contents = Link (`Covariant, t) } when !debug || !debug_variance -> `Debug ("[>", repr g t, "]") | Var { contents = Link (_, t) } -> repr g t | _ -> raise NotImplemented) in repr generalized t (** Print a type representation. Unless in debug mode, variable identifiers are not shown, and variable names are generated. Names are only meaningful over one printing, as they are re-used. *) let print f t = (* Display the type and return the list of variables that occur in it. * The [par] params tells whether (..)->.. should be surrounded by * parenthesis or not. *) let rec print ~par vars : t -> DS.t = function | `Constr (name, [(_, (`Meth _ as record_type))]) when name = "source" || name = "format" -> Format.open_box (1 + String.length name); Format.fprintf f "%s(" name; let rec extract fields = function | `Meth ({ R.name = field }, base_type) when List.mem_assoc (Some field) fields -> extract fields base_type | `Meth ({ R.scheme = _, `Constr ("never", _) }, base_type) -> extract fields base_type | `Meth (R.{ name = field; optional; scheme = _, ty }, base_type) -> extract ((Some field, (optional, ty)) :: fields) base_type | base_type -> (fields, base_type) in let fields, base_type = extract [] record_type in let fields = List.sort (fun (l, _) (l', _) -> Stdlib.compare l l') fields in let fields = match (base_type, fields) with | `Tuple [], _ -> fields | v, _ -> fields @ [(None, (false, v))] in let _, vars = List.fold_left (fun (first, vars) (lbl, (optional, t)) -> if not first then Format.fprintf f ",@ "; ignore (Option.map (Format.fprintf f "%s%s=" (if optional then "?" else "")) lbl); let vars = print ~par:false vars t in (false, vars)) (true, vars) fields in Format.fprintf f ")"; Format.close_box (); vars | `Constr (name, []) -> Format.fprintf f "%s" name; vars | `Constr ("none", _) -> Format.fprintf f "none"; vars | `Constr (name, params) -> Format.open_box (1 + String.length name); Format.fprintf f "%s(" name; let vars = print_list vars params in Format.fprintf f ")"; Format.close_box (); vars | `Tuple [] -> Format.fprintf f "unit"; vars | `Tuple l -> if par then Format.fprintf f "@[<1>(" else Format.fprintf f "@[<0>"; let rec aux vars = function | [a] -> print ~par:true vars a | a :: l -> let vars = print ~par:true vars a in Format.fprintf f " *@ "; aux vars l | [] -> assert false in let vars = aux vars l in if par then Format.fprintf f ")@]" else Format.fprintf f "@]"; vars | `Nullable t -> let vars = print ~par:true vars t in Format.fprintf f "?"; vars | `Meth (R.{ name = l; scheme = _, a }, b) as t -> if not !debug then ( (* Find all methods. *) let rec aux = function | `Meth (R.{ name = l; optional; scheme = t; json_name }, u) -> let m, u = aux u in ((l, optional, t, json_name) :: m, u) | u -> ([], u) in let m, t = aux t in (* Filter out duplicates. *) let rec aux = function | (l, o, t, json_name) :: m -> (l, o, t, json_name) :: aux (List.filter (fun (l', _, _, _) -> l <> l') m) | [] -> [] in let m = aux m in (* Put latest addition last. *) (* let m = List.rev m in *) (* Sort methods according to label. *) let m = List.sort (fun (l, _, _, _) (l', _, _, _) -> compare l l') m in (* First print the main value. *) let vars = if t = `Tuple [] then ( Format.fprintf f "@,@[<hv 2>{@,"; vars) else ( let vars = print ~par:true vars t in Format.fprintf f "@,@[<hv 2>.{@,"; vars) in let vars = if m = [] then vars else ( let rec gen = function | (x, _) :: g -> x ^ "." ^ gen g | [] -> "" in let gen g = if !show_record_schemes then gen (List.sort compare g) else "" in let rec aux vars = function | [(l, optional, (g, t), Some json_name)] -> let optional = if optional then "?" else "" in Format.fprintf f "%s%s as %s%s : %s" (Lang_string.quote_utf8_string json_name) optional l optional (gen g); print ~par:true vars t | [(l, optional, (g, t), None)] -> let optional = if optional then "?" else "" in Format.fprintf f "%s%s : %s" l optional (gen g); print ~par:false vars t | (l, optional, (g, t), Some json_name) :: m -> let optional = if optional then "?" else "" in Format.fprintf f "%s%s as %s%s : %s" (Lang_string.quote_utf8_string json_name) optional l optional (gen g); let vars = print ~par:false vars t in Format.fprintf f ",@ "; aux vars m | (l, optional, (g, t), None) :: m -> let optional = if optional then "?" else "" in Format.fprintf f "%s%s : %s" l optional (gen g); let vars = print ~par:false vars t in Format.fprintf f ",@ "; aux vars m | [] -> assert false in aux vars m) in Format.fprintf f "@]@,}"; vars) else ( let vars = print ~par:true vars b in Format.fprintf f ".{%s = " l; let vars = print ~par:false vars a in Format.fprintf f "}"; vars) | `List (t, `Tuple) -> Format.fprintf f "@[<1>["; let vars = print ~par:false vars t in Format.fprintf f "]@]"; vars | `List (t, `Object) -> Format.fprintf f "@[<1>["; let vars = print ~par:false vars t in Format.fprintf f "] as json.object@]"; vars | `Getter t -> Format.fprintf f "{"; let vars = print ~par:false vars t in Format.fprintf f "}"; vars | (`EVar (_, c) | `UVar (_, c)) when Constraints.cardinal c = 1 && (Constraints.choose c).univ_descr <> None -> let constr = Constraints.choose c in Format.fprintf f "%s" (Option.get constr.univ_descr); vars | `EVar (name, c) | `UVar (name, c) -> Format.fprintf f "%s" name; if not (Constraints.is_empty c) then DS.add (name, c) vars else vars | `Arrow (p, t) -> if par then Format.fprintf f "@[<hov 1>(" else Format.fprintf f "@[<hov 0>"; Format.fprintf f "@[<1>("; let _, vars = List.fold_left (fun (first, vars) (opt, lbl, kind) -> if not first then Format.fprintf f ",@ "; if opt then Format.fprintf f "?"; if lbl <> "" then Format.fprintf f "%s : " lbl; let vars = print ~par:true vars kind in (false, vars)) (true, vars) p in Format.fprintf f ")@] ->@ "; let vars = print ~par:false vars t in if par then Format.fprintf f ")@]" else Format.fprintf f "@]"; vars | `Ellipsis -> Format.fprintf f "_"; vars | `Range_Ellipsis -> Format.fprintf f "..."; vars | `Debug (a, b, c) -> Format.fprintf f "%s" a; let vars = print ~par:false vars b in Format.fprintf f "%s" c; vars and print_list ?(first = true) ?(acc = []) vars = function | [] -> vars | (_, x) :: l -> if not first then Format.fprintf f ","; let vars = print ~par:false vars x in print_list ~first:false ~acc:(x :: acc) vars l in Format.fprintf f "@["; begin match t with (* We're only printing a variable: ignore its [repr]esentation. *) | `EVar (_, c) when not (Constraints.is_empty c) -> Format.fprintf f "something that is %s" (String.concat " and " (List.map string_of_constr (Constraints.elements c))) | `UVar (_, c) when not (Constraints.is_empty c) -> Format.fprintf f "anything that is %s" (String.concat " and " (List.map string_of_constr (Constraints.elements c))) (* Print the full thing, then display constraints *) | _ -> let constraints = print ~par:false DS.empty t in let constraints = DS.elements constraints in if constraints <> [] then ( let constraints = List.map (fun (name, c) -> ( name, String.concat " and " (List.map string_of_constr (Constraints.elements c)) )) constraints in let constraints = List.stable_sort (fun (_, a) (_, b) -> compare a b) constraints in let group : ('a * 'b) list -> ('a list * 'b) list = function | [] -> [] | (i, c) :: l -> let rec group prev acc = function | [] -> [(List.rev acc, prev)] | (i, c) :: l -> if prev = c then group c (i :: acc) l else (List.rev acc, prev) :: group c [i] l in group c [i] l in let constraints = group constraints in let constraints = List.map (fun (ids, c) -> String.concat ", " ids ^ " is " ^ c) constraints in Format.fprintf f "@ @[<2>where@ "; Format.fprintf f "%s" (List.hd constraints); List.iter (fun s -> Format.fprintf f ",@ %s" s) (List.tl constraints); Format.fprintf f "@]") end; Format.fprintf f "@]" let to_string t = print Format.str_formatter t; Format.fprintf Format.str_formatter "@?"; Format.flush_str_formatter () let print_type f t = print f (make t) let print_scheme f (generalized, t) = if !debug then List.iter (fun v -> print f (make ~generalized (Type_base.make (Var (ref (Free v))))); Format.fprintf f ".") generalized; print f (make ~generalized t) (** String representation of a type. *) let string_of_type ?generalized t = to_string (make ?generalized t) (* This is filled in there in order to avoid cyclic dependencies. *) let () = Type_base.to_string_fun := string_of_type (** String representation of a type scheme. *) let string_of_scheme (g, t) = string_of_type ~generalized:g t type explanation = bool * Type_base.t * Type_base.t * t * t exception Type_error of explanation let print_type_error ~formatter error_header ((flipped, ta, tb, a, b) : explanation) = error_header ta.pos; match b with | `Meth (R.{ name = l; scheme = [], `Ellipsis }, `Ellipsis) when not flipped -> Format.fprintf formatter "this value has no method `%s`@.@[<2> Its type is %s.@]@." l (string_of_type ta) | _ -> let inferred_pos a = let dpos = (deref a).pos in if a.pos = dpos then "" else ( match dpos with | None -> "" | Some p -> " (inferred at " ^ Pos.to_string ~prefix:"" p ^ ")") in let ta, tb, a, b = if flipped then (tb, ta, b, a) else (ta, tb, a, b) in Format.fprintf formatter "this value has type@.@[<2> %a@]%s@ " print a (inferred_pos ta); Format.fprintf formatter "but it should be a %stype of%s@.@[<2> %a@]%s@]@." (if flipped then "super" else "sub") (match tb.pos with | None -> "" | Some p -> Printf.sprintf " the type of the value at %s" (Pos.to_string ~prefix:"" p)) print b (inferred_pos tb)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>