package liquidsoap-lang
Liquidsoap language library
Install
Dune Dependency
Authors
Maintainers
Sources
liquidsoap-2.2.3.tar.gz
md5=988ffcff06b32998c0810cc667247121
sha512=5e256f5413e933eecffa6a53ef17a0f586df1dcbb18de70c627b344f21d6f2c92ea770e4d9a416ac0a1aa4d21ce8872849cbe81c1ba6d9acfb973913a8dbb36c
doc/src/liquidsoap-lang/lang_core.ml.html
Source file lang_core.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
(***************************************************************************** Liquidsoap, a programmable audio stream generator. Copyright 2003-2023 Savonet team This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details, fully stated in the COPYING file at the root of the liquidsoap distribution. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA *****************************************************************************) include Value module Ground = Term.Ground open Ground module Methods = Term.Methods type t = Type.t type module_name = string type scheme = Type.scheme type value = Value.t = { pos : Pos.Option.t; value : in_value; methods : value Methods.t; } (** Type construction *) let int_t = Type.make Type.Ground.int let unit_t = Type.make Type.unit let float_t = Type.make Type.Ground.float let bool_t = Type.make Type.Ground.bool let string_t = Type.make Type.Ground.string let tuple_t l = Type.make (Type.Tuple l) let product_t a b = tuple_t [a; b] let rec record_t = function | [] -> unit_t | (l, t) :: r -> Type.meth l ([], t) (record_t r) let rec optional_record_t = function | [] -> unit_t | (l, t) :: r -> Type.meth ~optional:true l ([], t) (optional_record_t r) let rec method_t t0 = function | [] -> t0 | (l, t, doc) :: r -> Type.meth l t ~doc (method_t t0 r) let rec optional_method_t t0 = function | [] -> t0 | (l, t, doc) :: r -> Type.meth l t ~doc ~optional:true (optional_method_t t0 r) let of_tuple_t t = match (Type.deref t).Type.descr with Type.Tuple l -> l | _ -> assert false let of_product_t t = match of_tuple_t t with [a; b] -> (a, b) | _ -> assert false let fun_t p b = Type.make (Type.Arrow (p, b)) let list_t t = Type.make Type.(List { t; json_repr = `Tuple }) let of_list_t t = match (Type.deref t).Type.descr with | Type.(List { t }) -> t | _ -> assert false let nullable_t t = Type.make (Type.Nullable t) let univ_t ?(constraints = []) () = Type.var ~constraints () let getter_t a = Type.make (Type.Getter a) let ref_t a = Type.reference a (** Value construction *) let mk ?pos value = { pos; value; methods = Methods.empty } let unit = mk unit let int i = mk (Ground (Int i)) let bool i = mk (Ground (Bool i)) let float i = mk (Ground (Float i)) let string i = mk (Ground (String i)) let tuple l = mk (Tuple l) let product a b = tuple [a; b] let list l = mk (List l) let null = mk Null let meth v l = { v with methods = List.fold_left (fun v (k, m) -> Methods.add k m v) v.methods l; } let record = meth unit let val_fun p f = mk (FFI (p, f)) let term_fun p tm = mk (Fun (p, [], tm)) let val_cst_fun p c = let p = List.map (fun (l, d) -> (l, "_", d)) p in let f t tm = let tm = Term.make ~t tm in mk (Fun (p, [], tm)) in let mkg g = Type.make g in (* Convert the value into a term if possible, to enable introspection, mostly for printing. *) match c.value with | Null -> f (Type.var ()) Term.Null | Tuple [] -> f (Type.make Type.unit) Term.unit | Ground (Int i) -> f (mkg Type.Ground.int) (Term.Ground (Term.Ground.Int i)) | Ground (Bool i) -> f (mkg Type.Ground.bool) (Term.Ground (Term.Ground.Bool i)) | Ground (Float i) -> f (mkg Type.Ground.float) (Term.Ground (Term.Ground.Float i)) | Ground (String i) -> f (mkg Type.Ground.string) (Term.Ground (Term.Ground.String i)) | _ -> mk (FFI (p, fun _ -> c)) let reference get set = let get = val_fun [] (fun _ -> get ()) in let set = val_fun [("", "", None)] (fun p -> List.assoc "" p |> set; unit) in meth get [("set", set)] (** Helpers for defining builtin functions. *) type proto = (string * t * value option * string option) list let builtin_type p t = Type.make (Type.Arrow (List.map (fun (lbl, t, opt, _) -> (opt <> None, lbl, t)) p, t)) let meth_fun = meth let mk_module_name ?base name = if String.index_opt name '.' <> None then failwith ("module name " ^ name ^ " has a dot in it!"); match base with None -> name | Some b -> b ^ "." ^ name let add_builtin ~category ~descr ?(flags = []) ?(meth = []) ?(examples = []) ?base name proto return_t f = let name = mk_module_name ?base name in let return_t = let meth = List.map (fun (l, t, d, _) -> (l, t, d)) meth in method_t return_t meth in let f = if meth = [] then f else ( let meth = List.map (fun (l, _, _, f) -> (l, f)) meth in fun p -> meth_fun (f p) meth) in let t = builtin_type proto return_t in let value = { pos = None; value = FFI (List.map (fun (lbl, _, opt, _) -> (lbl, lbl, opt)) proto, f); methods = Methods.empty; } in let doc () = let meth, return_t = Type.split_meths return_t in let t = builtin_type proto return_t in let generalized = Typing.filter_vars (fun _ -> true) t in let examples = List.map (fun e -> (* Remove leading and trailing newline *) let e = if e.[0] = '\n' then String.sub e 1 (String.length e - 1) else e in let e = if e.[String.length e - 1] = '\n' then String.sub e 0 (String.length e - 1) else e in e) examples in let arguments = List.map (fun (l, t, d, doc) -> ( (if l = "" then None else Some l), Doc.Value. { arg_type = Repr.string_of_scheme (generalized, t); arg_default = Option.map Value.to_string d; arg_description = doc; } )) proto in let methods = List.map (fun (m : Type.meth) -> let d = m.doc in let d = if d = "" then None else Some d in ( m.meth, Doc.Value. { meth_type = Repr.string_of_scheme m.scheme; meth_description = d; } )) meth in Doc.Value. { typ = Repr.string_of_scheme (generalized, t); category; flags; description = descr; examples; arguments; methods; } (* to_plugin_doc category flags examples descr proto return_t *) in let doc = Lazy.from_fun doc in let generalized = Typing.filter_vars (fun _ -> true) t in Environment.add_builtin ~doc (String.split_on_char '.' name) ((generalized, t), value); name let add_builtin_value ~category ~descr ?(flags = []) ?base name value t = let name = mk_module_name ?base name in let generalized = Typing.filter_vars (fun _ -> true) t in let doc () = Doc.Value. { typ = Repr.string_of_scheme (generalized, t); category; flags; description = descr; examples = []; arguments = []; methods = []; } in Environment.add_builtin ~doc:(Lazy.from_fun doc) (String.split_on_char '.' name) ((generalized, t), value); name let add_builtin_base ~category ~descr ?flags ?base name value t = add_builtin_value ~category ~descr ?flags ?base name { pos = t.Type.pos; value; methods = Methods.empty } t let add_module ?base name = let name = mk_module_name ?base name in Environment.add_module (String.split_on_char '.' name); name let module_name name = name (* Delay this function in order not to have Lang depend on Evaluation. *) let apply_fun : (?pos:Pos.t -> value -> env -> value) ref = ref (fun ?pos:_ _ -> assert false) let apply f p = !Hooks.collect_after (fun () -> !apply_fun f p) (** {1 High-level manipulation of values} *) let to_unit t = match t.value with Tuple [] -> () | _ -> assert false let to_bool t = match t.value with Ground (Bool b) -> b | _ -> assert false let to_bool_getter t = match t.value with | Ground (Bool b) -> fun () -> b | Fun _ | FFI _ -> ( fun () -> match (apply t []).value with | Ground (Bool b) -> b | _ -> assert false) | _ -> assert false let to_fun f = match f.value with | Fun _ | FFI _ -> fun args -> apply f args | _ -> assert false let to_string t = match t.value with Ground (String s) -> s | _ -> assert false let to_string_getter t = match t.value with | Ground (String s) -> fun () -> s | Fun _ | FFI _ -> ( fun () -> match (apply t []).value with | Ground (String s) -> s | _ -> assert false) | _ -> assert false let to_float t = match t.value with Ground (Float s) -> s | _ -> assert false let to_float_getter t = match t.value with | Ground (Float s) -> fun () -> s | Fun _ | FFI _ -> ( fun () -> match (apply t []).value with | Ground (Float s) -> s | _ -> assert false) | _ -> assert false let to_int t = match t.value with Ground (Int s) -> s | _ -> assert false let to_int_getter t = match t.value with | Ground (Int n) -> fun () -> n | Fun _ | FFI _ -> ( fun () -> match (apply t []).value with | Ground (Int n) -> n | _ -> assert false) | _ -> assert false let to_num t = match t.value with | Ground (Int n) -> `Int n | Ground (Float x) -> `Float x | _ -> assert false let to_list t = match t.value with List l -> l | _ -> assert false let to_tuple t = match t.value with Tuple l -> l | _ -> assert false let to_option t = match t.value with Null -> None | _ -> Some t let to_valued_option convert v = Option.map convert (to_option v) let to_default_option ~default convert v = Option.value ~default (to_valued_option convert v) let to_product t = match t.value with Tuple [a; b] -> (a, b) | _ -> assert false let to_string_list l = List.map to_string (to_list l) let to_int_list l = List.map to_int (to_list l) let to_getter t = match t.value with | Fun ([], _, _) | FFI ([], _) -> fun () -> apply t [] | _ -> fun () -> t let to_ref t = let m, t = split_meths t in let get = to_getter t in let set = let f = List.assoc "set" m in fun x -> ignore (apply f [("", x)]) in (get, set) let to_valued_ref getc setc t = let get, set = to_ref t in ((fun () -> getc (get ())), fun x -> set (setc x)) (** [assoc lbl n l] returns the [n]th element in [l] * of which the first component is [lbl]. *) let rec assoc label n = function | [] -> raise Not_found | (l, e) :: tl -> if l = label then if n = 1 then e else assoc label (n - 1) tl else assoc label n tl let raise_error = Runtime_error.raise let runtime_error_of_exception ~bt ~kind exn = match exn with | Runtime_error.Runtime_error error -> error | _ -> let pos = match Printexc.backtrace_slots bt with | None -> [] | Some entries -> List.fold_left (fun pos slot -> match Printexc.Slot.location slot with | None -> pos | Some { Printexc.filename = pos_fname; line_number = pos_lnum; start_char = pos_bol; end_char = pos_cnum; } -> let p = { Lexing.pos_fname; pos_lnum; pos_bol; pos_cnum } in (p, p) :: pos) [] (List.rev (Array.to_list entries)) in Runtime_error.make ~pos ~message:(Printexc.to_string exn) kind let raise_as_runtime ~bt ~kind exn = match exn with | Runtime_error.Runtime_error _ -> Printexc.raise_with_backtrace exn bt | _ -> Printexc.raise_with_backtrace (Runtime_error.Runtime_error (runtime_error_of_exception ~bt ~kind exn)) bt let environment () = let l = Unix.environment () in (* Split at first occurrence of '='. Return v,"" if * no '=' could be found. *) let split s = try let pos = String.index s '=' in (String.sub s 0 pos, String.sub s (pos + 1) (String.length s - pos - 1)) with _ -> (s, "") in let l = Array.to_list l in List.map split l (* This is used to pass position in application environment. *) module Single_position = struct let t = method_t unit_t [ ("filename", ([], string_t), "filename"); ("line_number", ([], int_t), "line number"); ("character_offset", ([], int_t), "character offset"); ] let to_value { Lexing.pos_fname; pos_lnum; pos_bol; pos_cnum } = meth unit [ ("filename", string pos_fname); ("line_number", int pos_lnum); ("character_offset", int (pos_cnum - pos_bol)); ] let of_value v = { Lexing.pos_fname = to_string (invoke v "filename"); pos_lnum = to_int (invoke v "line_number"); pos_bol = 0; pos_cnum = to_int (invoke v "character_offset"); } end module Position = struct let t = method_t unit_t [ ("position_start", ([], Single_position.t), "Starting position"); ("position_end", ([], Single_position.t), "Ending position"); ( "to_string", ([], fun_t [(true, "prefix", string_t)] string_t), "Render as string" ); ] let to_value (start, _end) = meth unit [ ("position_start", Single_position.to_value start); ("position_end", Single_position.to_value _end); ( "to_string", val_fun [("prefix", "prefix", Some (string "At "))] (fun p -> let prefix = to_string (List.assoc "prefix" p) in string (Pos.to_string ~prefix (start, _end))) ); ] let of_value v = ( Single_position.of_value (invoke v "position_start"), Single_position.of_value (invoke v "position_end") ) end module Stacktrace = struct let t = list_t Position.t let to_value l = list (List.map Position.to_value l) let of_value v = List.map Position.of_value (to_list v) end let pos_var = "_pos_" let pos env = Stacktrace.of_value (List.assoc pos_var env)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>