package linksem
A formalisation of the core ELF and DWARF file formats written in Lem
Install
Dune Dependency
Authors
Maintainers
Sources
0.8.tar.gz
md5=2075c56715539b3b8f54ae65cc808b8c
sha512=f7c16e4036a1440a6a8d13707a43f0f9f9db0c68489215f948cc300b6a164dba5bf852e58f89503e9d9f38180ee658d9478156ca1a1ef64d6861eec5f9cf43d2
doc/src/linksem_zarith/linkable_list.ml.html
Source file linkable_list.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
(*Generated by Lem from linkable_list.lem.*) open Lem_basic_classes open Lem_function open Lem_string open Lem_string_extra open Lem_tuple open Lem_bool open Lem_list open Lem_list_extra open Lem_set open Lem_set_extra (*import Map*) open Lem_sorting open Lem_num open Lem_maybe open Lem_assert_extra open Byte_sequence open Default_printing open Error open Missing_pervasives open Show open Elf_types_native_uint open Elf_memory_image open Elf_header open Elf_file open Memory_image open Elf_memory_image open Elf_section_header_table open Elf_symbol_table open String_table open Input_list open Elf_memory_image open Elf_memory_image_of_elf64_file type script = byte_sequence0 (* FIXME *) type linkable_object = RelocELF of elf_memory_image (* memory image without address assignments *) (* memory image with address assignments *) | ScriptAST of script (* FIXME: should be elaborated away *) | ControlScriptDefs (*val string_of_linkable_object : linkable_object -> string*) let string_of_linkable_object l:string= ((match l with RelocELF(_) -> "a relocatable file (...)" | SharedELF(_) -> "a shared library (...)" | ScriptAST(_) -> "a linker script (...)" | ControlScriptDefs -> "the control script" )) (* We keep the original input item around, hence the filename and byte sequence * and options. *) type linkable_item = linkable_object * input_item * input_options (*val short_string_of_linkable_item : linkable_item -> string*) let short_string_of_linkable_item item:string= (let (obj, inp, opts) = item in short_string_of_input_item inp) let instance_Show_Show_Linkable_list_linkable_object_dict:(linkable_object)show_class= ({ show_method = string_of_linkable_object}) type linkable_list = linkable_item list type symbol_resolution_oracle = linkable_list -> int -> string -> int list type binding = (Nat_big_num.num * symbol_reference * linkable_item) * (Nat_big_num.num * symbol_definition * linkable_item)option type binding_list = binding list type binding_map = (string, ( (Nat_big_num.num * binding)list)) Pmap.map let image_of_linkable_item item:(Abis.any_abi_feature)annotated_memory_image= ((match item with (RelocELF(image), _, _) -> image | (SharedELF(image), _, _) -> image | _ -> failwith "no image" )) (*val linkable_item_of_input_item_and_options : forall 'abifeature. abi 'abifeature -> input_item -> input_options -> linkable_item*) let linkable_item_of_input_item_and_options a it opts:linkable_object*(string*input_blob*(Command_line.input_unit*(origin_coord)list))*input_options= ((match ((match it with (fname1, Reloc(seq), origin) -> let _ = (prerr_endline ("Considering relocatable file " ^ fname1)) in bind (Elf_file.read_elf64_file seq) (fun e -> return (RelocELF(elf_memory_image_of_elf64_file a fname1 e), it, opts)) | (fname1, Shared(seq), origin) -> (*let _ = Missing_pervasives.errln ("Skipping shared object " ^ fname) in *) fail "unsupported input item" | (fname1, Script(seq), origin) -> (*let _ = Missing_pervasives.errln ("Skipping linker script " ^ fname) in*) fail "unsupported input item" )) with Success(item) -> item | Fail(str) -> failwith (str ^ ": non-ELF or non-relocatable input file") )) (*val string_of_linkable : linkable_item -> string*) let string_of_linkable l:string= ((match l with (_, item, _) -> string_of_triple instance_Show_Show_string_dict instance_Show_Show_Input_list_input_blob_dict (instance_Show_Show_tup2_dict Command_line.instance_Show_Show_Command_line_input_unit_dict (instance_Show_Show_list_dict instance_Show_Show_Input_list_origin_coord_dict)) item )) (* How do we signal "multiple definitions"? * This is part of the policy baked into the particular oracle: * are multiple definitions okay, or do we fail? * * NOTE that multiple definitions *globally* is not the same as * multiple definitions as candidates for a given binding. We * can get the former even if we don't have the latter, in some * weird group/archive arrangements. The right place to detect * this condition is probably when generating the output symtab. *) (*val add_definition_to_map : (natural * symbol_definition * linkable_item) -> Map.map string (list (natural * symbol_definition * linkable_item)) -> Map.map string (list (natural * symbol_definition * linkable_item))*) let add_definition_to_map def_idx_and_def_and_linkable m:((string),((Nat_big_num.num*symbol_definition*(linkable_object*input_item*input_options))list))Pmap.map= (let (def_idx, def, def_linkable) = def_idx_and_def_and_linkable in (match Pmap.lookup def.def_symname m with Some curlist -> Pmap.add def.def_symname ((def_idx, def, def_linkable) :: curlist) m | None -> Pmap.add def.def_symname [(def_idx, def, def_linkable)] m )) (*val all_definitions_by_name : linkable_list -> Map.map string (list (natural * symbol_definition * linkable_item))*) let all_definitions_by_name linkables:((string),((Nat_big_num.num*symbol_definition*linkable_item)list))Pmap.map= ( (* Now that linkables are ELF memory images, we can make the * list of definitions much more easily. *)let list_of_deflists = (Lem_list.mapi (fun (idx1 : int) -> (fun (item : linkable_item) -> let img2 = (image_of_linkable_item item) in let (, all_def_ranges) = (List.split (Multimap.lookupBy0 (Memory_image_orderings.instance_Basic_classes_Ord_Memory_image_range_tag_dict Abis.instance_Basic_classes_Ord_Abis_any_abi_feature_dict) (instance_Basic_classes_Ord_Maybe_maybe_dict (instance_Basic_classes_Ord_tup2_dict instance_Basic_classes_Ord_string_dict (instance_Basic_classes_Ord_tup2_dict instance_Basic_classes_Ord_Num_natural_dict instance_Basic_classes_Ord_Num_natural_dict))) instance_Basic_classes_SetType_var_dict (instance_Basic_classes_SetType_Maybe_maybe_dict (instance_Basic_classes_SetType_tup2_dict instance_Basic_classes_SetType_var_dict (instance_Basic_classes_SetType_tup2_dict instance_Basic_classes_SetType_Num_natural_dict instance_Basic_classes_SetType_Num_natural_dict))) (Memory_image_orderings.tagEquiv Abis.instance_Abi_classes_AbiFeatureTagEquiv_Abis_any_abi_feature_dict) (SymbolDef(null_symbol_definition)) img2.by_tag)) in let all_defs = (Lem_list.map (fun tag -> (match tag with SymbolDef(def) -> (def, item) | _ -> failwith "matched tag not a symbol definition" )) all_def_tags) in let x2 = ([]) in List.fold_right (fun(def, def_linkable) x2 -> if true then (Nat_big_num.of_int idx1, def, def_linkable) :: x2 else x2) all_defs x2 )) linkables) in List.fold_left (fun accum -> (fun deflist -> List.fold_left (fun m -> (fun (def_idx, def, def_linkable) -> add_definition_to_map (def_idx, def, def_linkable) m)) accum deflist )) (Pmap.empty compare) list_of_deflists) type binding_oracle = linkable_list -> (string, ( (Nat_big_num.num * symbol_definition * linkable_item)list)) Pmap.map -> (Nat_big_num.num * symbol_reference * linkable_item) -> (Nat_big_num.num * symbol_definition * linkable_item)option (*val resolve_one_reference_default : forall 'abifeature. abi 'abifeature -> binding_oracle*) let resolve_one_reference_default a linkables defmap ref_idx_and_ref_and_linkable:(Nat_big_num.num*symbol_definition*(linkable_object*(string*input_blob*(Command_line.input_unit*(origin_coord)list))*input_options))option= (let (ref_idx, ref1, ref_linkable) = ref_idx_and_ref_and_linkable in (* Get the list of all definitions whose name matches. * Don't match empty names. * How should we handle common symbols here? * A common symbol is a potential definition, so it goes in the def list. *) let (defs_and_linkables_with_matching_name : (Nat_big_num.num * symbol_definition * linkable_item) list) = ((match Pmap.lookup ref1.ref_symname defmap with Some (l : ( (Nat_big_num.num * symbol_definition * linkable_item)list)) -> l | None -> [] )) in (* Filter the list by eligibility rules. * Normally, * * - any .o file can supply any other .o file on the command line * - any .a file supplies only files appearing to its left * i.e. "it is searched once for definitions" * - does a .o file supply a .a file? to both its right and left? Experimentally, YES. * * So the restrictions are * - archives may not supply weak references * - archives may only supply to the left, or to themselves, or to objects in the same group *) let (ref_obj, (ref_fname, ref_blob, (ref_u, ref_coords)), ref_options) = ref_linkable in let ref_is_weak = (Nat_big_num.equal (get_elf64_symbol_binding ref1.ref_syment) stb_weak) in let def_is_eligible = (fun (def_idx, def, def_linkable) -> let ref_is_unnamed = (ref1.ref_symname = "") in let ref_is_to_defined_or_common_symbol = ( not (Nat_big_num.equal (Uint32_wrapper.to_bigint ref1.ref_syment.elf64_st_shndx) stn_undef)) in let def_sym_is_ref_sym = ( Nat_big_num.equal ref_idx def_idx && (Nat_big_num.equal ref1.ref_sym_scn def.def_sym_scn && Nat_big_num.equal ref1.ref_sym_idx def.def_sym_idx)) in let (def_obj, (def_fname, def_blob, def_origin), def_options) = def_linkable in let (def_u, def_coords) = def_origin in let (def_in_group, def_in_archive) = ((match def_coords with InArchive(aid, aidx, _, _) :: InGroup(gid1, gidx) :: [_] -> (Some gid1, Some aid) | InArchive(aid, aidx, _, _) :: [_] -> (None, Some aid) | InGroup(gid1, gidx) :: [_] -> (Some gid1, None) | [_] -> (None, None) | _ -> failwith "internal error: didn't understand origin coordinates of definition" )) in let ref_is_leftmore = (Nat_big_num.less_equal ref_idx def_idx) in (* For simplicity we include the case of "same archive" in "in group with". *) let ref_is_in_group_with_def = ((match def_in_group with None -> false | Some def_gid -> (match ref_coords with InArchive(_, _, _, _) :: InGroup(gid1, _) :: [_] -> Nat_big_num.equal gid1 def_gid | InGroup(gid1, _) :: [_] -> Nat_big_num.equal gid1 def_gid | _ -> false ) )) in (* but maybe same archive? *) (* DEBUGGING: print some stuff out if we care about this symbol. *)let _ = (if (ref_fname = "backtrace.o") && (def.def_symname = "_Unwind_GetCFA") then (*Missing_pervasives.errln ("saw backtrace.o referencing _Unwind_GetCFA; coords are " ^ "def: " ^ (show def_coords) ^ ", ref: " ^ (show ref_coords) ^ "; ref_is_in_group_with_def: " ^ (show ref_is_in_group_with_def) ^ "; def_in_group: " ^ (show def_in_group))*) () else ()) in let ref_and_def_are_in_same_archive = ((match (def_coords, ref_coords) with (InArchive(x1, _, _, _) :: _, InArchive(x2, _, _, _) :: _) -> Nat_big_num.equal x1 x2 | _ -> false )) in let def_is_in_archive = ((match def_in_archive with Some _ -> true | None -> false )) in if ref_is_to_defined_or_common_symbol then def_sym_is_ref_sym else if ref_is_unnamed then false else if def_is_in_archive then (* Weak references *can* be resolved to archive members... * if the reference itself is also in the archive. *) ((not ref_is_weak) || ref_and_def_are_in_same_archive) && ( ref_is_leftmore || (ref_and_def_are_in_same_archive || ref_is_in_group_with_def) ) else true ) in let eligible_defs = (List.filter def_is_eligible defs_and_linkables_with_matching_name) in let (maybe_target_def_idx, maybe_target_def, maybe_target_def_linkable) = ((match eligible_defs with [] -> (None, None, None) | [(def_idx, def, def_linkable)] -> (Some def_idx, Some def, Some def_linkable) | (d_idx, d, d_l) :: more_pairs -> (* Break ties by * - putting defs in relocs (or --defsym or linker script, a.k.a. command line) ahead of defs in archives; * - else whichever definition appeared first in the left-to-right order. *) let sorted = (insertSortBy (fun (d_idx1, d1, (_, (_, _, (_, d_l1_coords)), _)) -> (fun (d_idx2, d2, (_, (_, _, (_, d_l2_coords)), _)) -> (match (d_l1_coords, d_l2_coords) with (InCommandLine(_) :: _, InCommandLine(_) :: _) -> Nat_big_num.less d_idx1 d_idx2 | (InCommandLine(_) :: _, _) -> (* command-line wins *) true | (_, InCommandLine(_) :: _) -> (* command-line wins *) false | (_, _) -> Nat_big_num.less d_idx1 d_idx2 ))) eligible_defs) in (match sorted with (first_d_idx, first_d, first_d_l) :: _ -> (Some first_d_idx, Some first_d, Some first_d_l) | _ -> failwith "impossible: sorted list is shorter than original" ) )) in let refstr = ("`" ^ (ref1.ref_symname ^ ("' (" ^ ((if Nat_big_num.equal (Uint32_wrapper.to_bigint ref1.ref_syment.elf64_st_shndx) shn_undef then "UND" else "defined") ^ (" symbol at index " ^ ((Nat_big_num.to_string ref1.ref_sym_idx) ^ (" in symtab " ^ ((Nat_big_num.to_string ref1.ref_sym_scn) ^ (" in " ^ (ref_fname ^ ")")))))))))) in (*let _ = Missing_pervasives.errs ("Bound a reference from " ^ refstr ^ " to ") in*) (match (maybe_target_def_idx, maybe_target_def, maybe_target_def_linkable) with (Some target_def_idx, Some target_def, Some target_def_linkable) -> (*let _ = Missing_pervasives.errln (" a definition in "^ (show (target_def_linkable))) in*) Some(target_def_idx, target_def, target_def_linkable) | (None, None, None) -> (*let _ = Missing_pervasives.errln " no definition" in*) if ref_is_weak (* || a.symbol_is_generated_by_linker ref.ref_symname *) then None else (* failwith ("undefined symbol: " ^ refstr) *) None (* FIXME: do a check, *after* the linker script has been interpreted, * that all remaining undefined symbols are permitted by the ABI/policy. *) | _ -> failwith "impossible: non-matching maybes for target_def_idx and target_def" )) (*val resolve_all : linkable_list -> Map.map string (list (natural * symbol_definition * linkable_item)) (* all definitions *) -> binding_oracle -> list (natural * symbol_reference * linkable_item) -> list ((natural * symbol_reference * linkable_item) * maybe (natural * symbol_definition * linkable_item))*) let resolve_all linkables all_defs oracle refs:((Nat_big_num.num*symbol_reference*(linkable_object*input_item*input_options))*(Nat_big_num.num*symbol_definition*linkable_item)option)list= (Lem_list.map (fun (ref_idx, ref1, ref_linkable) -> ((ref_idx, ref1, ref_linkable), (oracle linkables all_defs (ref_idx, ref1, ref_linkable)))) refs) (* To accumulate which inputs are needed, we work with a list of undefineds, starting with those * in the forced-output objects. We then iteratively build a list of all needed symbol definitions, * pulling in the objects that contain them, until we reach a fixed point. *) (*val resolve_undefs_in_one_object : linkable_list -> Map.map string (list (natural * symbol_definition * linkable_item)) (* all definitions *) -> binding_oracle -> natural -> list ((natural * symbol_reference * linkable_item) * maybe (natural * symbol_definition * linkable_item))*) let resolve_undefs_in_one_object linkables all_defs oracle idx1:((Nat_big_num.num*symbol_reference*linkable_item)*(Nat_big_num.num*symbol_definition*linkable_item)option)list= ( (* Get this object's list of references *)let item = ((match Lem_list.list_index linkables (Nat_big_num.to_int idx1) with Some it -> it | None -> failwith "impossible: linkable not in list of linkables" )) in let img2 = (image_of_linkable_item item) in let (, all_ref_ranges) = (List.split (Multimap.lookupBy0 (Memory_image_orderings.instance_Basic_classes_Ord_Memory_image_range_tag_dict Abis.instance_Basic_classes_Ord_Abis_any_abi_feature_dict) (instance_Basic_classes_Ord_Maybe_maybe_dict (instance_Basic_classes_Ord_tup2_dict instance_Basic_classes_Ord_string_dict (instance_Basic_classes_Ord_tup2_dict instance_Basic_classes_Ord_Num_natural_dict instance_Basic_classes_Ord_Num_natural_dict))) instance_Basic_classes_SetType_var_dict (instance_Basic_classes_SetType_Maybe_maybe_dict (instance_Basic_classes_SetType_tup2_dict instance_Basic_classes_SetType_var_dict (instance_Basic_classes_SetType_tup2_dict instance_Basic_classes_SetType_Num_natural_dict instance_Basic_classes_SetType_Num_natural_dict))) (Memory_image_orderings.tagEquiv Abis.instance_Abi_classes_AbiFeatureTagEquiv_Abis_any_abi_feature_dict) (SymbolRef(null_symbol_reference_and_reloc_site)) img2.by_tag)) in (* By using SymbolRef, we are extracting and binding each relocation site individually. * since there might be more than one relocation site referencing the same symbol name, * in a given object. * * We are also binding SymbolRefs that have no relocation, which occur when there's * an UND symbol which is not actually used by a relocation site, but is nevertheless * in need of being resolved. * * We don't (for the moment) want to make different decisions for different reloc sites * in the same object referencing the same symbol. So we dedup from a list to a set. *) let all_refs = (Pset.from_list compare (Lem_list.map (fun tag -> (match tag with SymbolRef(r) -> r.ref | _ -> failwith "matched tag not a relocation site" )) all_ref_tags)) in let ref_triples = (let x2 =(Pset.from_list (tripleCompare Nat_big_num.compare compare (tripleCompare compare (tripleCompare compare compare (pairCompare compare (lexicographic_compare compare))) compare)) []) in Pset.fold (fun ref1 x2 -> if true then Pset.add (idx1, ref1, item) x2 else x2) all_refs x2) in (*let _ = Missing_pervasives.errln ("object " ^ (show item) ^ " has " ^ (show (Set.size ref_triples)) ^ " reloc references (symname, sym_scn, sym_idx, st_shndx) (" ^ (show (List.map (fun x -> ("\"" ^ x.ref_symname ^ "\"", x.ref_sym_scn, x.ref_sym_idx, natural_of_elf64_half x.ref_syment.elf64_st_shndx)) (Set_extra.toList all_refs))) ^ ")") in*) let und_ref_triples = (let x2 =(Pset.from_list (tripleCompare Nat_big_num.compare compare (tripleCompare compare (tripleCompare compare compare (pairCompare compare (lexicographic_compare compare))) compare)) []) in Pset.fold (fun(idx1, ref1, ref_item) x2 -> if Nat_big_num.equal (Uint32_wrapper.to_bigint ref1.ref_syment.elf64_st_shndx) shn_undef then Pset.add (idx1, ref1, ref_item) x2 else x2) ref_triples x2) in (*let _ = Missing_pervasives.errln ("... of which " ^ (show (Set.size und_ref_triples)) ^ " are to undefined symbols: (symname, sym_scn, sym_idx, st_shndx) (" ^ (show (List.map (fun (idx, x, _) -> ("\"" ^ x.ref_symname ^ "\"", x.ref_sym_scn, x.ref_sym_idx, natural_of_elf64_half x.ref_syment.elf64_st_shndx)) (Set_extra.toList und_ref_triples))) ^ ")") in*) resolve_all linkables all_defs oracle (Pset.elements ref_triples)) (*val accumulate_bindings_bf : forall 'abifeature. abi 'abifeature -> linkable_list -> Map.map string (list (natural * symbol_definition * linkable_item)) (* all definitions *) -> set natural (* inputs fully-bound so far *) -> list natural (* ordered list of inputs to bind next *) -> list ((natural * symbol_reference * linkable_item) * maybe (natural * symbol_definition * linkable_item)) (* bindings made so far *) -> list ((natural * symbol_reference * linkable_item) * maybe (natural * symbol_definition * linkable_item))*) (* all accumulated bindings bindings *) let rec accumulate_bindings_bf a linkables all_defs fully_bound to_bind bindings_accum:((Nat_big_num.num*symbol_reference*linkable_item)*(Nat_big_num.num*symbol_definition*linkable_item)option)list= ( (* This is like foldl, except that each stage * can add stuff to the work list *)(match to_bind with [] -> bindings_accum (* termination *) | l_idx :: more_idx -> (* Get the new bindings for this object *) let new_bindings = (resolve_undefs_in_one_object linkables all_defs (resolve_one_reference_default a) l_idx) in let new_fully_bound = (Pset.add l_idx fully_bound) in (* Which of the new bindings are to objects * not yet fully bound or not yet in the to-bind list? *) let new_bindings_def_idx = (list_concat_map (fun (ref1, maybe_def_and_idx_and_linkable) -> (match maybe_def_and_idx_and_linkable with Some (def_idx, def, def_linkable) -> [def_idx] | None -> [] ) ) new_bindings) in let new_bindings_def_idx_set = (Pset.from_list Nat_big_num.compare new_bindings_def_idx) in let included_linkables_idx = (Pset.(union) fully_bound ((Pset.from_list Nat_big_num.compare to_bind))) in let new_l_idx = (Pset.diff new_bindings_def_idx_set included_linkables_idx) in let new_l_idx_list = (Pset.elements new_l_idx) in (*let _ = Missing_pervasives.errln ( if List.null new_l_idx_list then "Fully bound references in " ^ (show (List.index linkables (natFromNatural l_idx))) ^ " using only already-included linkables (" ^ (show (List.map (fun i -> List.index linkables (natFromNatural i)) (Set_extra.toList included_linkables_idx))) else "Including additional linkables " ^ (show (List.mapMaybe (fun i -> List.index linkables (natFromNatural i)) new_l_idx_list)) ) in*) accumulate_bindings_bf a linkables all_defs new_fully_bound ( List.rev_append (List.rev more_idx) new_l_idx_list) ( List.rev_append (List.rev bindings_accum) new_bindings) )) (* We need a generalised kind of depth-first search in which there are multiple start points. * Also, we always work one object at a time, not one edge at a time; when we pull in an object, * we resolve *all* the references therein. *) (*val accumulate_bindings_objectwise_df : forall 'abifeature. abi 'abifeature -> linkable_list -> Map.map string (list (natural * symbol_definition * linkable_item)) (* all definitions *) -> list ((natural * symbol_reference * linkable_item) * maybe (natural * symbol_definition * linkable_item)) (* bindings made so far *) -> set natural (* inputs fully-bound so far -- these are "black" *) -> list natural (* inputs scheduled for binding -- these include any "grey" (in-progress) nodes *and* any nodes that we have committed to exploring (the "start nodes"). Because we're depth-first, we prepend our adjacent nodes to this list, making them grey, then we recurse by taking from the head. We must always filter out the prepended nodes from the existing list, to ensure we don't recurse infinitely. *) -> list ((natural * symbol_reference * linkable_item) * maybe (natural * symbol_definition * linkable_item))*) (* all accumulated bindings bindings *) let rec accumulate_bindings_objectwise_df a linkables all_defs bindings_accum blacks greys:((Nat_big_num.num*symbol_reference*linkable_item)*(Nat_big_num.num*symbol_definition*linkable_item)option)list= ((match greys with [] -> bindings_accum (* termination *) | l_idx :: more_idx -> (* Get the new bindings for this object *) let new_bindings = (resolve_undefs_in_one_object linkables all_defs (resolve_one_reference_default a) l_idx) in (* We pull in the whole object at a time ("objectwise"), so by definition, * we have created bindings for everything in this object; it's now black. *) let new_fully_bound = (Pset.add l_idx blacks) in (* Which of the new bindings are to objects * not yet fully bound or not yet in the to-bind list? *) let new_bindings_def_idx = (list_concat_map (fun (ref1, maybe_def_and_idx_and_linkable) -> (match maybe_def_and_idx_and_linkable with Some (def_idx, def, def_linkable) -> [def_idx] | None -> [] ) ) new_bindings) in let new_bindings_def_idx_set = (Pset.from_list Nat_big_num.compare new_bindings_def_idx) in (* this is the "black or grey" set. *) let included_linkables_idx = (Pset.(union) blacks ((Pset.from_list Nat_big_num.compare greys))) in (* these are the white ones that we're adjacent to *) let new_l_idx = (Pset.diff new_bindings_def_idx_set included_linkables_idx) in let new_l_idx_list = (Pset.elements new_l_idx) in (* What is the new grey-alike list? (This is the list we tail-recurse down.) * It's * - the existing grey-alike list * - with any new (were-white) objects prepended * - ... and filtered to *remove* these from the existing list (avoid duplication). *) let new_grey_list = (List.rev_append (List.rev new_l_idx_list) (List.filter (fun x -> not ( Pset.mem x new_l_idx)) more_idx)) in (* whether or not we've not uncovered any new white nodes, we tail-recurse *) (*let _ = (if List.null new_l_idx_list then Missing_pervasives.errln ("Fully bound references in " ^ (show (List.index linkables (natFromNatural l_idx))) ^ " using only already-included linkables (" ^ (show (List.map (fun i -> List.index linkables (natFromNatural i)) (Set_extra.toList included_linkables_idx))) ) else Missing_pervasives.errln ("Including additional linkables " ^ (show (List.mapMaybe (fun i -> List.index linkables (natFromNatural i)) new_l_idx_list)))) in*) accumulate_bindings_objectwise_df a linkables all_defs ( List.rev_append (List.rev bindings_accum) new_bindings) (new_fully_bound : Nat_big_num.num Pset.set) (new_grey_list : Nat_big_num.num list) )) (* Rather than recursively expanding the link by searching for definitions of undefs, * the GNU linker works by recursing/looping along the list of *linkables*, testing whether * any of the defs satisfies a currently-undef'd thing. On adding a new undef'd thing, * we re-search only from the current archive, not from the beginning (i.e. the * "def_is_leftmore or def_in_same_archive" logic). * * Why is this not the same as depth-first? One example is if we pull in a new object * which happens to have two undefs: one satisfied by the *first* element in the current archive, * and one satisfied by the last. * * In the GNU algorithm, we'll pull in the first archive element immediately afterwards, because * we'll re-traverse the archive and find it's needed. * * In the depth-first algorithm, it depends entirely on the ordering of the new bindings, i.e. * the symtab ordering of the two undefs. If the later-in-archive def was bound *first*, we'll * recurse down *that* object's dependencies first. * * So if we sort the new grey list * so that bindings formed in order of *current archive def pos*, * will we get the same behaviour? * We can't really do this, because we have no "current archive". * * Need to rewrite the algorithm to fold along the list of linkables. *)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>