package linksem
A formalisation of the core ELF and DWARF file formats written in Lem
Install
Dune Dependency
Authors
Maintainers
Sources
0.8.tar.gz
md5=2075c56715539b3b8f54ae65cc808b8c
sha512=f7c16e4036a1440a6a8d13707a43f0f9f9db0c68489215f948cc300b6a164dba5bf852e58f89503e9d9f38180ee658d9478156ca1a1ef64d6861eec5f9cf43d2
doc/src/linksem_zarith/gnu_ext_symbol_versioning.ml.html
Source file gnu_ext_symbol_versioning.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
(*Generated by Lem from gnu_extensions/gnu_ext_symbol_versioning.lem.*) (** The [gnu_ext_symbol_versioning] defines constants, types and functions * relating to the GNU symbol versioning extensions (i.e. contents of * GNU_VERSYM sections). * * TODO: work out what is going on with symbol versioning. The specification * is completely opaque. *) open Lem_basic_classes open Lem_bool open Lem_list open Lem_maybe open Lem_num open Lem_string open Byte_sequence open Endianness open Error open Elf_dynamic open Elf_file open Elf_header open Elf_interpreted_section open Elf_section_header_table open Elf_symbol_table open Elf_types_native_uint open Missing_pervasives open Show open Gnu_ext_dynamic open Gnu_ext_section_header_table (* Legal values for vd_version (version revision) *) let gnu_ext_ver_def_none : Nat_big_num.num= ( (Nat_big_num.of_int 0)) (** No version *) let gnu_ext_ver_def_current : Nat_big_num.num= ( (Nat_big_num.of_int 1)) (** Current version *) (* Legal values for vd_flags (version information flags) *) let gnu_ext_ver_flg_base : Nat_big_num.num= ( (Nat_big_num.of_int 1)) (** Version definition of file itself *) let gnu_ext_ver_flg_weak : Nat_big_num.num= ( (Nat_big_num.of_int 2)) (** Weak version identifier *) (* Versym symbol index values *) let gnu_ext_ver_ndx_local : Nat_big_num.num= ( (Nat_big_num.of_int 0)) (** Symbol is local *) let gnu_ext_ver_ndx_global : Nat_big_num.num= ( (Nat_big_num.of_int 1)) (** Symbol is global *) let gnu_ext_ver_ndx_loreserve : Nat_big_num.num= (natural_of_hex "0xff00") (** Beginning of reserved entries *) let gnu_ext_ver_ndx_eliminate : Nat_big_num.num= (natural_of_hex "0xff00") (** Symbol is to be eliminated *) (* Legal values for vn_version (version revision) *) let gnu_ext_ver_need_none : Nat_big_num.num= ( (Nat_big_num.of_int 0)) (** No version *) let gnu_ext_ver_need_current : Nat_big_num.num= ( (Nat_big_num.of_int 1)) (** Current version *) (* Legal values for vna_flags *) (* gnu_ext_ver_flg_weak *) (** [gnu_ext_elf32_symbol_version_table] is an array (linked list, here) of * [elf32_half] entries. It has as many entries as the dynamic symbol table * (DT_SYMTAB). I.e., each symbol table entry has its associated entry in the * symbol version table. *) type gnu_ext_elf32_symbol_version_table = Uint32_wrapper.uint32 list type gnu_ext_elf64_symbol_version_table = Uint32_wrapper.uint32 list (*val read_gnu_ext_elf64_versym_table : endianness -> byte_sequence -> error gnu_ext_elf64_symbol_version_table*) let rec read_gnu_ext_elf64_versym_table endian bs:((Uint32_wrapper.uint32)list)error= (if Nat_big_num.equal (Byte_sequence.length0 bs)( (Nat_big_num.of_int 0)) then return [] else bind (read_elf64_half endian bs) (fun (v, bs) -> bind (read_gnu_ext_elf64_versym_table endian bs) (fun next -> return (v :: next)))) type gnu_ext_elf32_verdef = { gnu_ext_elf32_vd_version : Uint32_wrapper.uint32 ; gnu_ext_elf32_vd_flags : Uint32_wrapper.uint32 ; gnu_ext_elf32_vd_ndx : Uint32_wrapper.uint32 ; gnu_ext_elf32_vd_cnt : Uint32_wrapper.uint32 ; gnu_ext_elf32_vd_hash : Uint32_wrapper.uint32 ; gnu_ext_elf32_vd_aux : Uint32_wrapper.uint32 ; gnu_ext_elf32_vd_next : Uint32_wrapper.uint32 } type gnu_ext_elf64_verdef = { gnu_ext_elf64_vd_version : Uint32_wrapper.uint32 ; gnu_ext_elf64_vd_flags : Uint32_wrapper.uint32 ; gnu_ext_elf64_vd_ndx : Uint32_wrapper.uint32 ; gnu_ext_elf64_vd_cnt : Uint32_wrapper.uint32 ; gnu_ext_elf64_vd_hash : Uint32_wrapper.uint32 ; gnu_ext_elf64_vd_aux : Uint32_wrapper.uint32 ; gnu_ext_elf64_vd_next : Uint32_wrapper.uint32 } (*val string_of_gnu_ext_elf32_verdef : gnu_ext_elf32_verdef -> string*) let string_of_gnu_ext_elf32_verdef verdef:string= (unlines [ ("Version: " ^ Uint32_wrapper.to_string verdef.gnu_ext_elf32_vd_version) ; ("Flags: " ^ Uint32_wrapper.to_string verdef.gnu_ext_elf32_vd_flags) ; ("Index: " ^ Uint32_wrapper.to_string verdef.gnu_ext_elf32_vd_ndx) ; ("Count: " ^ Uint32_wrapper.to_string verdef.gnu_ext_elf32_vd_cnt) ; ("Hash: " ^ Uint32_wrapper.to_string verdef.gnu_ext_elf32_vd_hash) ]) (*val string_of_gnu_ext_elf64_verdef : gnu_ext_elf64_verdef -> string*) let string_of_gnu_ext_elf64_verdef verdef:string= (unlines [ ("Version: " ^ Uint32_wrapper.to_string verdef.gnu_ext_elf64_vd_version) ; ("Flags: " ^ Uint32_wrapper.to_string verdef.gnu_ext_elf64_vd_flags) ; ("Index: " ^ Uint32_wrapper.to_string verdef.gnu_ext_elf64_vd_ndx) ; ("Count: " ^ Uint32_wrapper.to_string verdef.gnu_ext_elf64_vd_cnt) ; ("Hash: " ^ Uint32_wrapper.to_string verdef.gnu_ext_elf64_vd_hash) ]) (*val read_gnu_ext_elf32_verdef : endianness -> byte_sequence -> error (gnu_ext_elf32_verdef * byte_sequence)*) let read_gnu_ext_elf32_verdef endian bs0:(gnu_ext_elf32_verdef*Byte_sequence_wrapper.byte_sequence)error= (bind (read_elf32_half endian bs0) (fun (ver, bs0) -> bind (read_elf32_half endian bs0) (fun (flg, bs0) -> bind (read_elf32_half endian bs0) (fun (ndx, bs0) -> bind (read_elf32_half endian bs0) (fun (cnt, bs0) -> bind (read_elf32_word endian bs0) (fun (hsh, bs0) -> bind (read_elf32_word endian bs0) (fun (aux, bs0) -> bind (read_elf32_word endian bs0) (fun (nxt, bs0) -> return ({ gnu_ext_elf32_vd_version = ver; gnu_ext_elf32_vd_flags = flg; gnu_ext_elf32_vd_ndx = ndx; gnu_ext_elf32_vd_cnt = cnt; gnu_ext_elf32_vd_hash = hsh; gnu_ext_elf32_vd_aux = aux; gnu_ext_elf32_vd_next = nxt }, bs0))))))))) (*val read_gnu_ext_elf64_verdef : endianness -> byte_sequence -> error (gnu_ext_elf64_verdef * byte_sequence)*) let read_gnu_ext_elf64_verdef endian bs0:(gnu_ext_elf64_verdef*Byte_sequence_wrapper.byte_sequence)error= (bind (read_elf64_half endian bs0) (fun (ver, bs0) -> bind (read_elf64_half endian bs0) (fun (flg, bs0) -> bind (read_elf64_half endian bs0) (fun (ndx, bs0) -> bind (read_elf64_half endian bs0) (fun (cnt, bs0) -> bind (read_elf64_word endian bs0) (fun (hsh, bs0) -> bind (read_elf64_word endian bs0) (fun (aux, bs0) -> bind (read_elf64_word endian bs0) (fun (nxt, bs0) -> return ({ gnu_ext_elf64_vd_version = ver; gnu_ext_elf64_vd_flags = flg; gnu_ext_elf64_vd_ndx = ndx; gnu_ext_elf64_vd_cnt = cnt; gnu_ext_elf64_vd_hash = hsh; gnu_ext_elf64_vd_aux = aux; gnu_ext_elf64_vd_next = nxt }, bs0))))))))) (*val gnu_ext_elf32_verdef_size : natural*) let gnu_ext_elf32_verdef_size:Nat_big_num.num= ( (Nat_big_num.of_int 160)) (*val gnu_ext_elf64_verdef_size : natural*) let gnu_ext_elf64_verdef_size:Nat_big_num.num= ( (Nat_big_num.of_int 256)) type gnu_ext_elf32_veraux = { gnu_ext_elf32_vda_name : Uint32_wrapper.uint32 ; gnu_ext_elf32_vda_next : Uint32_wrapper.uint32 } type gnu_ext_elf64_veraux = { gnu_ext_elf64_vda_name : Uint32_wrapper.uint32 ; gnu_ext_elf64_vda_next : Uint32_wrapper.uint32 } (*val gnu_ext_elf32_veraux_size : natural*) let gnu_ext_elf32_veraux_size:Nat_big_num.num= ( (Nat_big_num.of_int 64)) (*val gnu_ext_elf64_veraux_size : natural*) let gnu_ext_elf64_veraux_size:Nat_big_num.num= ( (Nat_big_num.of_int 128)) (*val read_gnu_ext_elf32_veraux : endianness -> byte_sequence -> error (gnu_ext_elf32_veraux * byte_sequence)*) let read_gnu_ext_elf32_veraux endian bs0:(gnu_ext_elf32_veraux*Byte_sequence_wrapper.byte_sequence)error= (bind (read_elf32_word endian bs0) (fun (nme, bs0) -> bind (read_elf32_word endian bs0) (fun (nxt, bs0) -> return ({ gnu_ext_elf32_vda_name = nme; gnu_ext_elf32_vda_next = nxt }, bs0)))) (*val read_gnu_ext_elf64_veraux : endianness -> byte_sequence -> error (gnu_ext_elf64_veraux * byte_sequence)*) let read_gnu_ext_elf64_veraux endian bs0:(gnu_ext_elf64_veraux*Byte_sequence_wrapper.byte_sequence)error= (bind (read_elf64_word endian bs0) (fun (nme, bs0) -> bind (read_elf64_word endian bs0) (fun (nxt, bs0) -> return ({ gnu_ext_elf64_vda_name = nme; gnu_ext_elf64_vda_next = nxt }, bs0)))) (*val read_gnu_ext_elf64_veraux_table : endianness -> natural -> byte_sequence -> error (list gnu_ext_elf64_veraux * byte_sequence)*) let rec read_gnu_ext_elf64_veraux_table endian vd_cnt bs:((gnu_ext_elf64_veraux)list*Byte_sequence_wrapper.byte_sequence)error= (if Nat_big_num.equal vd_cnt( (Nat_big_num.of_int 0)) then return ([], bs) else bind (read_gnu_ext_elf64_veraux endian bs) (fun (veraux, _) -> let vda_next = (Uint32_wrapper.to_bigint veraux.gnu_ext_elf64_vda_next) in bind (Byte_sequence.dropbytes vda_next bs) (fun bs -> bind (read_gnu_ext_elf64_veraux_table endian ( Nat_big_num.sub_nat vd_cnt( (Nat_big_num.of_int 1))) bs) (fun (veraux_table, bs) -> return ((veraux :: veraux_table), bs))))) (*val read_gnu_ext_elf64_verdef_table : endianness -> natural -> byte_sequence -> error (list (gnu_ext_elf64_verdef * list gnu_ext_elf64_veraux) * byte_sequence)*) let rec read_gnu_ext_elf64_verdef_table endian verdefnum bs:((gnu_ext_elf64_verdef*(gnu_ext_elf64_veraux)list)list*Byte_sequence_wrapper.byte_sequence)error= (if Nat_big_num.equal verdefnum( (Nat_big_num.of_int 0)) then return ([], bs) else bind (read_gnu_ext_elf64_verdef endian bs) (fun (verdef, _) -> let vd_version = (Uint32_wrapper.to_bigint verdef.gnu_ext_elf64_vd_version) in let vd_aux = (Uint32_wrapper.to_bigint verdef.gnu_ext_elf64_vd_aux) in let vd_cnt = (Uint32_wrapper.to_bigint verdef.gnu_ext_elf64_vd_cnt) in let vd_next = (Uint32_wrapper.to_bigint verdef.gnu_ext_elf64_vd_next) in if not (Nat_big_num.equal vd_version( (Nat_big_num.of_int 1))) then Error.fail ("read_gnu_ext_elf64_verdef_table: unsupported version " ^ (Nat_big_num.to_string vd_version)) else bind (Byte_sequence.dropbytes vd_aux bs) (fun aux_bs -> bind (read_gnu_ext_elf64_veraux_table endian vd_cnt aux_bs) (fun (veraux_table, _) -> bind (Byte_sequence.dropbytes vd_next bs) (fun bs -> bind (read_gnu_ext_elf64_verdef_table endian ( Nat_big_num.sub_nat verdefnum( (Nat_big_num.of_int 1))) bs) (fun (verdef_table, bs) -> return (((verdef, veraux_table) :: verdef_table), bs))))))) type gnu_ext_elf32_verneed = { gnu_ext_elf32_vn_version : Uint32_wrapper.uint32 ; gnu_ext_elf32_vn_cnt : Uint32_wrapper.uint32 ; gnu_ext_elf32_vn_file : Uint32_wrapper.uint32 ; gnu_ext_elf32_vn_aux : Uint32_wrapper.uint32 ; gnu_ext_elf32_vn_next : Uint32_wrapper.uint32 } type gnu_ext_elf64_verneed = { gnu_ext_elf64_vn_version : Uint32_wrapper.uint32 ; gnu_ext_elf64_vn_cnt : Uint32_wrapper.uint32 ; gnu_ext_elf64_vn_file : Uint32_wrapper.uint32 ; gnu_ext_elf64_vn_aux : Uint32_wrapper.uint32 ; gnu_ext_elf64_vn_next : Uint32_wrapper.uint32 } (*val gnu_ext_elf32_verneed_size : natural*) let gnu_ext_elf32_verneed_size:Nat_big_num.num= ( (Nat_big_num.of_int 128)) (*val gnu_ext_elf64_verneed_size : natural*) let gnu_ext_elf64_verneed_size:Nat_big_num.num= ( (Nat_big_num.of_int 224)) (*val read_gnu_ext_elf32_verneed : endianness -> byte_sequence -> error (gnu_ext_elf32_verneed * byte_sequence)*) let read_gnu_ext_elf32_verneed endian bs0:(gnu_ext_elf32_verneed*Byte_sequence_wrapper.byte_sequence)error= (bind (read_elf32_half endian bs0) (fun (ver, bs0) -> bind (read_elf32_half endian bs0) (fun (cnt, bs0) -> bind (read_elf32_word endian bs0) (fun (fle, bs0) -> bind (read_elf32_word endian bs0) (fun (aux, bs0) -> bind (read_elf32_word endian bs0) (fun (nxt, bs0) -> return ({ gnu_ext_elf32_vn_version = ver; gnu_ext_elf32_vn_cnt = cnt; gnu_ext_elf32_vn_file = fle; gnu_ext_elf32_vn_aux = aux; gnu_ext_elf32_vn_next = nxt }, bs0))))))) (*val read_gnu_ext_elf64_verneed : endianness -> byte_sequence -> error (gnu_ext_elf64_verneed * byte_sequence)*) let read_gnu_ext_elf64_verneed endian bs0:(gnu_ext_elf64_verneed*Byte_sequence_wrapper.byte_sequence)error= (bind (read_elf64_half endian bs0) (fun (ver, bs0) -> bind (read_elf64_half endian bs0) (fun (cnt, bs0) -> bind (read_elf64_word endian bs0) (fun (fle, bs0) -> bind (read_elf64_word endian bs0) (fun (aux, bs0) -> bind (read_elf64_word endian bs0) (fun (nxt, bs0) -> return ({ gnu_ext_elf64_vn_version = ver; gnu_ext_elf64_vn_cnt = cnt; gnu_ext_elf64_vn_file = fle; gnu_ext_elf64_vn_aux = aux; gnu_ext_elf64_vn_next = nxt }, bs0))))))) type gnu_ext_elf32_vernaux = { gnu_ext_elf32_vna_hash : Uint32_wrapper.uint32 ; gnu_ext_elf32_vna_flags : Uint32_wrapper.uint32 ; gnu_ext_elf32_vna_other : Uint32_wrapper.uint32 ; gnu_ext_elf32_vna_name : Uint32_wrapper.uint32 ; gnu_ext_elf32_vna_next : Uint32_wrapper.uint32 } type gnu_ext_elf64_vernaux = { gnu_ext_elf64_vna_hash : Uint32_wrapper.uint32 ; gnu_ext_elf64_vna_flags : Uint32_wrapper.uint32 ; gnu_ext_elf64_vna_other : Uint32_wrapper.uint32 ; gnu_ext_elf64_vna_name : Uint32_wrapper.uint32 ; gnu_ext_elf64_vna_next : Uint32_wrapper.uint32 } (*val string_of_gnu_ext_elf32_vernaux : gnu_ext_elf32_vernaux -> string*) let string_of_gnu_ext_elf32_vernaux vernaux:string= (unlines [ ("Hash: " ^ Uint32_wrapper.to_string vernaux.gnu_ext_elf32_vna_hash) ; ("Flags: " ^ Uint32_wrapper.to_string vernaux.gnu_ext_elf32_vna_flags) ; ("Other: " ^ Uint32_wrapper.to_string vernaux.gnu_ext_elf32_vna_other) ; ("Name: " ^ Uint32_wrapper.to_string vernaux.gnu_ext_elf32_vna_name) ; ("Next: " ^ Uint32_wrapper.to_string vernaux.gnu_ext_elf32_vna_next) ]) (*val string_of_gnu_ext_elf64_vernaux : gnu_ext_elf64_vernaux -> string*) let string_of_gnu_ext_elf64_vernaux vernaux:string= (unlines [ ("Hash: " ^ Uint32_wrapper.to_string vernaux.gnu_ext_elf64_vna_hash) ; ("Flags: " ^ Uint32_wrapper.to_string vernaux.gnu_ext_elf64_vna_flags) ; ("Other: " ^ Uint32_wrapper.to_string vernaux.gnu_ext_elf64_vna_other) ; ("Name: " ^ Uint32_wrapper.to_string vernaux.gnu_ext_elf64_vna_name) ; ("Next: " ^ Uint32_wrapper.to_string vernaux.gnu_ext_elf64_vna_next) ]) (*val gnu_ext_elf32_vernaux_size : natural*) let gnu_ext_elf32_vernaux_size:Nat_big_num.num= ( (Nat_big_num.of_int 16)) (*val gnu_ext_elf64_vernaux_size : natural*) let gnu_ext_elf64_vernaux_size:Nat_big_num.num= ( (Nat_big_num.of_int 224)) (*val read_gnu_ext_elf32_vernaux : endianness -> byte_sequence -> error (gnu_ext_elf32_vernaux * byte_sequence)*) let read_gnu_ext_elf32_vernaux endian bs0:(gnu_ext_elf32_vernaux*Byte_sequence_wrapper.byte_sequence)error= (bind (read_elf32_word endian bs0) (fun (hsh, bs0) -> bind (read_elf32_half endian bs0) (fun (flg, bs0) -> bind (read_elf32_half endian bs0) (fun (otr, bs0) -> bind (read_elf32_word endian bs0) (fun (nme, bs0) -> bind (read_elf32_word endian bs0) (fun (nxt, bs0) -> return ({ gnu_ext_elf32_vna_hash = hsh; gnu_ext_elf32_vna_flags = flg; gnu_ext_elf32_vna_other = otr; gnu_ext_elf32_vna_name = nme; gnu_ext_elf32_vna_next = nxt }, bs0))))))) (*val read_gnu_ext_elf64_vernaux : endianness -> byte_sequence -> error (gnu_ext_elf64_vernaux * byte_sequence)*) let read_gnu_ext_elf64_vernaux endian bs0:(gnu_ext_elf64_vernaux*Byte_sequence_wrapper.byte_sequence)error= (bind (read_elf64_word endian bs0) (fun (hsh, bs0) -> bind (read_elf64_half endian bs0) (fun (flg, bs0) -> bind (read_elf64_half endian bs0) (fun (otr, bs0) -> bind (read_elf64_word endian bs0) (fun (nme, bs0) -> bind (read_elf64_word endian bs0) (fun (nxt, bs0) -> return ({ gnu_ext_elf64_vna_hash = hsh; gnu_ext_elf64_vna_flags = flg; gnu_ext_elf64_vna_other = otr; gnu_ext_elf64_vna_name = nme; gnu_ext_elf64_vna_next = nxt }, bs0))))))) (*val read_gnu_ext_elf64_vernaux_table : endianness -> natural -> byte_sequence -> error (list gnu_ext_elf64_vernaux * byte_sequence)*) let rec read_gnu_ext_elf64_vernaux_table endian vn_cnt bs:((gnu_ext_elf64_vernaux)list*Byte_sequence_wrapper.byte_sequence)error= (if Nat_big_num.equal vn_cnt( (Nat_big_num.of_int 0)) then return ([], bs) else bind (read_gnu_ext_elf64_vernaux endian bs) (fun (vernaux, _) -> let vna_next = (Uint32_wrapper.to_bigint vernaux.gnu_ext_elf64_vna_next) in bind (Byte_sequence.dropbytes vna_next bs) (fun bs -> bind (read_gnu_ext_elf64_vernaux_table endian ( Nat_big_num.sub_nat vn_cnt( (Nat_big_num.of_int 1))) bs) (fun (vernaux_table, bs) -> return ((vernaux :: vernaux_table), bs))))) (*val read_gnu_ext_elf64_verneed_table : endianness -> natural -> byte_sequence -> error (list (gnu_ext_elf64_verneed * list gnu_ext_elf64_vernaux) * byte_sequence)*) let rec read_gnu_ext_elf64_verneed_table endian verneednum bs:((gnu_ext_elf64_verneed*(gnu_ext_elf64_vernaux)list)list*Byte_sequence_wrapper.byte_sequence)error= (if Nat_big_num.equal verneednum( (Nat_big_num.of_int 0)) then return ([], bs) else bind (read_gnu_ext_elf64_verneed endian bs) (fun (verneed, _) -> let vn_version = (Uint32_wrapper.to_bigint verneed.gnu_ext_elf64_vn_version) in let vn_aux = (Uint32_wrapper.to_bigint verneed.gnu_ext_elf64_vn_aux) in let vn_cnt = (Uint32_wrapper.to_bigint verneed.gnu_ext_elf64_vn_cnt) in let vn_next = (Uint32_wrapper.to_bigint verneed.gnu_ext_elf64_vn_next) in if not (Nat_big_num.equal vn_version( (Nat_big_num.of_int 1))) then Error.fail ("read_gnu_ext_elf64_verneed_table: unsupported version " ^ (Nat_big_num.to_string vn_version)) else bind (Byte_sequence.dropbytes vn_aux bs) (fun aux_bs -> bind (read_gnu_ext_elf64_vernaux_table endian vn_cnt aux_bs) (fun (vernaux_table, _) -> bind (Byte_sequence.dropbytes vn_next bs) (fun bs -> bind (read_gnu_ext_elf64_verneed_table endian ( Nat_big_num.sub_nat verneednum( (Nat_big_num.of_int 1))) bs) (fun (verneed_table, bs) -> return (((verneed, vernaux_table) :: verneed_table), bs))))))) type gnu_ext_interpreted_verdef = { gnu_ext_interpreted_verdef_version : Nat_big_num.num; gnu_ext_interpreted_verdef_flags : Nat_big_num.num; gnu_ext_interpreted_verdef_ndx : Nat_big_num.num; gnu_ext_interpreted_verdef_hash : Nat_big_num.num; gnu_ext_interpreted_verdef_name : string; gnu_ext_interpreted_verdef_parents : string list } type gnu_ext_interpreted_verneed = { gnu_ext_interpreted_verneed_version : Nat_big_num.num; gnu_ext_interpreted_verneed_file : string } type gnu_ext_interpreted_vernaux = { gnu_ext_interpreted_vernaux_hash : Nat_big_num.num; gnu_ext_interpreted_vernaux_flags : Nat_big_num.num; gnu_ext_interpreted_vernaux_other : Nat_big_num.num; gnu_ext_interpreted_vernaux_name : string; gnu_ext_interpreted_vernaux_verneed : gnu_ext_interpreted_verneed } type gnu_ext_interpreted_versym_entry = { gnu_ext_interpreted_versym_entry_value : Nat_big_num.num; gnu_ext_interpreted_versym_entry_hidden : bool } type gnu_ext_interpreted_versym_table = { gnu_ext_interpreted_versym_table_entries : gnu_ext_interpreted_versym_entry list; gnu_ext_interpreted_versym_table_verdef : gnu_ext_interpreted_verdef list; gnu_ext_interpreted_versym_table_verneed : gnu_ext_interpreted_vernaux list } (** The unspecified name for the base definition. *) let gnu_ext_verdef_base_unspecified : Nat_big_num.num= ( (Nat_big_num.of_int 1)) (** The name given later to the baseline of symbols once the library started using symbol versioning. *) let gnu_ext_verdef_base_versioned : Nat_big_num.num= ( (Nat_big_num.of_int 2)) (* TODO: borrowed from Dwarf, this should probbaly go somewhere else *) (*val natural_nat_shift_right : natural -> nat -> natural*) (*val obtain_gnu_ext_elf64_interpreted_versym_table_symbols : endianness -> elf64_file -> list (natural * elf64_dyn_value) -> error (maybe (list gnu_ext_interpreted_versym_entry))*) let obtain_gnu_ext_elf64_interpreted_versym_table_symbols endian f dyns:(((gnu_ext_interpreted_versym_entry)list)option)error= (let maybe_dt_versym = (Lem_list.list_find_opt (fun (tag, _) -> Nat_big_num.equal tag Gnu_ext_dynamic.elf_dt_gnu_versym) dyns) in (match maybe_dt_versym with | Some (_, Address dt_versym) -> let dt_versym = (Ml_bindings.nat_big_num_of_uint64 dt_versym) in let maybe_versym_scn = (Lem_list.list_find_opt (fun scn -> Nat_big_num.equal scn.elf64_section_addr dt_versym ) f.elf64_file_interpreted_sections) in bind (match maybe_versym_scn with | Some scn -> return scn | None -> fail ("obtain_gnu_ext_elf64_interpreted_versym_table: no versym section at 0x" ^ (hex_string_of_natural dt_versym)) ) (fun versym_scn -> bind (read_gnu_ext_elf64_versym_table endian versym_scn.elf64_section_body) (fun versyms -> let mask = (natural_of_hex "0x7FFF") in let versyms = (Lem_list.map (fun v -> let v = (Uint32_wrapper.to_bigint v) in let = (Nat_big_num.shift_right v 15) in let v = (Nat_big_num.bitwise_and v mask) in { gnu_ext_interpreted_versym_entry_value = v; gnu_ext_interpreted_versym_entry_hidden = (not (Nat_big_num.equal hidden( (Nat_big_num.of_int 0)))) } ) versyms) in return (Some versyms))) | None -> return None )) (*val obtain_gnu_ext_elf64_interpreted_verdef_table : endianness -> elf64_file -> list (natural * elf64_dyn_value) -> error (maybe (list gnu_ext_interpreted_verdef))*) let obtain_gnu_ext_elf64_interpreted_verdef_table endian f dyns:(((gnu_ext_interpreted_verdef)list)option)error= (let maybe_dt_verdef = (Lem_list.list_find_opt (fun (tag, _) -> Nat_big_num.equal tag Gnu_ext_dynamic.elf_dt_gnu_verdef) dyns) in (match maybe_dt_verdef with | Some (_, Address dt_verdef) -> let dt_verdef = (Ml_bindings.nat_big_num_of_uint64 dt_verdef) in let maybe_dt_verdefnum = (Lem_list.list_find_opt (fun (tag, _) -> Nat_big_num.equal tag Gnu_ext_dynamic.elf_dt_gnu_verdefnum) dyns) in bind (match maybe_dt_verdefnum with | Some (_, Numeric dt_verdefnum) -> return dt_verdefnum | None -> Error.fail "obtain_gnu_ext_elf64_interpreted_verdef_table: DT_VERDEF is defined, but DT_VERDEFNUM isn't" ) (fun dt_verdefnum -> let maybe_verdef_scn = (Lem_list.list_find_opt (fun scn -> Nat_big_num.equal scn.elf64_section_addr dt_verdef ) f.elf64_file_interpreted_sections) in bind (match maybe_verdef_scn with | Some scn -> return scn | None -> fail ("obtain_gnu_ext_elf64_interpreted_verdef_table: no verdef section at 0x" ^ (hex_string_of_natural dt_verdef)) ) (fun verdef_scn -> bind (match Lem_list.list_index f.elf64_file_interpreted_sections (Nat_big_num.to_int verdef_scn.elf64_section_link) with | Some strs -> return strs | None -> fail "obtain_gnu_ext_elf64_gnu_ext_interpreted_verdef_table: no associated strtab" ) (fun strs -> let strings = (Byte_sequence.string_of_byte_sequence strs.elf64_section_body) in let strtab = (String_table.mk_string_table strings null_char) in bind (read_gnu_ext_elf64_verdef_table endian dt_verdefnum verdef_scn.elf64_section_body) (fun (verdef_table, _) -> bind (Error.mapM (fun (verdef, veraux_table) -> bind (Error.mapM (fun veraux -> let vda_name = (Uint32_wrapper.to_bigint veraux.gnu_ext_elf64_vda_name) in String_table.get_string_at vda_name strtab ) veraux_table) (fun veraux_table -> bind (match veraux_table with | [] -> Error.fail "obtain_gnu_ext_elf64_gnu_ext_interpreted_verdef_table: verdef is missing a name" | name1 :: parents -> return (name1, parents) ) (fun (name1, parents) -> return { gnu_ext_interpreted_verdef_version = (Uint32_wrapper.to_bigint verdef.gnu_ext_elf64_vd_version); gnu_ext_interpreted_verdef_flags = (Uint32_wrapper.to_bigint verdef.gnu_ext_elf64_vd_flags); gnu_ext_interpreted_verdef_ndx = (Uint32_wrapper.to_bigint verdef.gnu_ext_elf64_vd_ndx); gnu_ext_interpreted_verdef_hash = (Uint32_wrapper.to_bigint verdef.gnu_ext_elf64_vd_hash); gnu_ext_interpreted_verdef_name = name1; gnu_ext_interpreted_verdef_parents = parents })) ) verdef_table) (fun verdef_table -> return (Some verdef_table)))))) | None -> return None )) (*val obtain_gnu_ext_elf64_interpreted_verneed_table : endianness -> elf64_file -> list (natural * elf64_dyn_value) -> error (maybe (list gnu_ext_interpreted_vernaux))*) let obtain_gnu_ext_elf64_interpreted_verneed_table endian f dyns:(((gnu_ext_interpreted_vernaux)list)option)error= (let maybe_dt_verneed = (Lem_list.list_find_opt (fun (tag, _) -> Nat_big_num.equal tag Gnu_ext_dynamic.elf_dt_gnu_verneed) dyns) in (match maybe_dt_verneed with | Some (_, Address dt_verneed) -> let dt_verneed = (Ml_bindings.nat_big_num_of_uint64 dt_verneed) in let maybe_dt_verneednum = (Lem_list.list_find_opt (fun (tag, _) -> Nat_big_num.equal tag Gnu_ext_dynamic.elf_dt_gnu_verneednum) dyns) in bind (match maybe_dt_verneednum with | Some (_, Numeric dt_verneednum) -> return dt_verneednum | None -> Error.fail "obtain_gnu_ext_elf64_interpreted_verneed_table: DT_VERNEED is defined, but DT_VERNEEDNUM isn't" ) (fun dt_verneednum -> let maybe_verneed_scn = (Lem_list.list_find_opt (fun scn -> Nat_big_num.equal scn.elf64_section_addr dt_verneed ) f.elf64_file_interpreted_sections) in bind (match maybe_verneed_scn with | Some scn -> return scn | None -> fail ("obtain_gnu_ext_elf64_gnu_ext_interpreted_verneed_table: no verneed section at 0x" ^ (hex_string_of_natural dt_verneed)) ) (fun verneed_scn -> bind (match Lem_list.list_index f.elf64_file_interpreted_sections (Nat_big_num.to_int verneed_scn.elf64_section_link) with | Some strs -> return strs | None -> fail "obtain_gnu_ext_elf64_gnu_ext_interpreted_verneed_table: no associated strtab" ) (fun strs -> let strings = (Byte_sequence.string_of_byte_sequence strs.elf64_section_body) in let strtab = (String_table.mk_string_table strings null_char) in bind (read_gnu_ext_elf64_verneed_table endian dt_verneednum verneed_scn.elf64_section_body) (fun (verneed_table, _) -> bind (Error.foldM (fun acc (verneed, vernaux_table) -> bind (String_table.get_string_at (Uint32_wrapper.to_bigint verneed.gnu_ext_elf64_vn_file) strtab) (fun file -> let interp_verneed = ({ gnu_ext_interpreted_verneed_version = (Uint32_wrapper.to_bigint verneed.gnu_ext_elf64_vn_version); gnu_ext_interpreted_verneed_file = file }) in bind (Error.mapM (fun vernaux -> bind (String_table.get_string_at (Uint32_wrapper.to_bigint vernaux.gnu_ext_elf64_vna_name) strtab) (fun name1 -> return { gnu_ext_interpreted_vernaux_hash = (Uint32_wrapper.to_bigint vernaux.gnu_ext_elf64_vna_hash); gnu_ext_interpreted_vernaux_flags = (Uint32_wrapper.to_bigint vernaux.gnu_ext_elf64_vna_flags); gnu_ext_interpreted_vernaux_other = (Uint32_wrapper.to_bigint vernaux.gnu_ext_elf64_vna_other); gnu_ext_interpreted_vernaux_name = name1; gnu_ext_interpreted_vernaux_verneed = interp_verneed }) ) vernaux_table) (fun vernaux_entries -> return ( List.rev_append (List.rev vernaux_entries) acc))) ) [] verneed_table) (fun vernaux_table -> return (Some vernaux_table)))))) | None -> return None )) (*val obtain_gnu_ext_elf64_interpreted_versym_table : elf64_file -> list (natural * elf64_dyn_value) -> error (maybe gnu_ext_interpreted_versym_table)*) let obtain_gnu_ext_elf64_interpreted_versym_table f dyns:((gnu_ext_interpreted_versym_table)option)error= (let endian = (get_elf64_header_endianness f.elf64_file_header) in bind (obtain_gnu_ext_elf64_interpreted_versym_table_symbols endian f dyns) (fun maybe_versyms -> (match maybe_versyms with | Some versyms -> bind (obtain_gnu_ext_elf64_interpreted_verdef_table endian f dyns) (fun maybe_verdefs -> let verdefs = ((match maybe_verdefs with | Some verdefs -> verdefs | None -> [] )) in bind (obtain_gnu_ext_elf64_interpreted_verneed_table endian f dyns) (fun maybe_verneeds -> let verneeds = ((match maybe_verneeds with | Some verneeds -> verneeds | None -> [] )) in let table = ({ gnu_ext_interpreted_versym_table_entries = versyms; gnu_ext_interpreted_versym_table_verdef = verdefs; gnu_ext_interpreted_versym_table_verneed = verneeds }) in return (Some table))) | None -> return None ))) type gnu_ext_interpreted_verdef_lookup = | GnuExtInterpretedVerdefLocal | GnuExtInterpretedVerdefGlobal | GnuExtInterpretedVerdefVersion of gnu_ext_interpreted_verdef | GnuExtInterpretedVerdefHidden of gnu_ext_interpreted_verdef (*val get_gnu_ext_interpreted_verdef : gnu_ext_interpreted_versym_table -> natural -> error gnu_ext_interpreted_verdef_lookup*) let get_gnu_ext_interpreted_verdef tbl symidx:(gnu_ext_interpreted_verdef_lookup)error= (bind (match Lem_list.list_index tbl.gnu_ext_interpreted_versym_table_entries (Nat_big_num.to_int symidx) with | Some entry -> return entry | None -> Error.fail ("get_gnu_ext_interpreted_verdef: cannot find symbol " ^ (Nat_big_num.to_string symidx)) ) (fun entry -> if(Nat_big_num.equal entry.gnu_ext_interpreted_versym_entry_value ( (Nat_big_num.of_int 0))) then (return GnuExtInterpretedVerdefLocal) else ( if(Nat_big_num.equal entry.gnu_ext_interpreted_versym_entry_value ( (Nat_big_num.of_int 1))) then (return GnuExtInterpretedVerdefGlobal) else (let ndx = (entry.gnu_ext_interpreted_versym_entry_value) in let maybe_verdef = (Lem_list.list_find_opt (fun verdef -> Nat_big_num.equal verdef.gnu_ext_interpreted_verdef_ndx ndx ) tbl.gnu_ext_interpreted_versym_table_verdef) in (match maybe_verdef with | Some verdef -> if entry.gnu_ext_interpreted_versym_entry_hidden then return (GnuExtInterpretedVerdefHidden verdef) else return (GnuExtInterpretedVerdefVersion verdef) | None -> Error.fail ("get_gnu_ext_interpreted_verdef: cannot find verdef " ^ (Nat_big_num.to_string ndx)) ))))) (*val get_gnu_ext_interpreted_verneed : gnu_ext_interpreted_versym_table -> natural -> error (maybe gnu_ext_interpreted_vernaux)*) let get_gnu_ext_interpreted_verneed tbl symidx:((gnu_ext_interpreted_vernaux)option)error= (bind (match Lem_list.list_index tbl.gnu_ext_interpreted_versym_table_entries (Nat_big_num.to_int symidx) with | Some entry -> return entry | None -> Error.fail ("get_gnu_ext_interpreted_verneed: cannot find symbol " ^ (Nat_big_num.to_string symidx)) ) (fun entry -> let ndx = (entry.gnu_ext_interpreted_versym_entry_value) in let maybe_vernaux = (Lem_list.list_find_opt (fun vernaux -> Nat_big_num.equal vernaux.gnu_ext_interpreted_vernaux_other ndx ) tbl.gnu_ext_interpreted_versym_table_verneed) in (match maybe_vernaux with | Some vernaux -> return (Some vernaux) | None -> Error.fail ("get_gnu_ext_interpreted_verneed: cannot find vernaux " ^ (Nat_big_num.to_string ndx)) )))
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>