package linksem
A formalisation of the core ELF and DWARF file formats written in Lem
Install
Dune Dependency
Authors
Maintainers
Sources
0.8.tar.gz
md5=2075c56715539b3b8f54ae65cc808b8c
sha512=f7c16e4036a1440a6a8d13707a43f0f9f9db0c68489215f948cc300b6a164dba5bf852e58f89503e9d9f38180ee658d9478156ca1a1ef64d6861eec5f9cf43d2
doc/src/linksem_zarith/elf_program_header_table.ml.html
Source file elf_program_header_table.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
(*Generated by Lem from elf_program_header_table.lem.*) (** [elf_program_header_table] contains type, functions and other definitions * for working with program header tables and their entries and ELF segments. * Related files are [elf_interpreted_segments] which extracts information * derived from PHTs presented in this file and converts it into a more usable * format for processing. * * FIXME: * Bug in Lem as Lem codebase uses [int] type throughout where [BigInt.t] * is really needed, hence chokes on huge constants below, which is why they are * written in the way that they are. *) open Lem_assert_extra open Lem_basic_classes open Lem_bool open Lem_function open Lem_list open Lem_maybe open Lem_num open Lem_string (*import Set*) open Elf_types_native_uint open Endianness open Byte_sequence open Error open Missing_pervasives open Show (** Segment types *) (** Unused array element. All other members of the structure are undefined. *) let elf_pt_null : Nat_big_num.num= ( (Nat_big_num.of_int 0)) (** A loadable segment. *) let elf_pt_load : Nat_big_num.num= ( (Nat_big_num.of_int 1)) (** Dynamic linking information. *) let elf_pt_dynamic : Nat_big_num.num= ( (Nat_big_num.of_int 2)) (** Specifies the location and size of a null-terminated path name to be used to * invoke an interpreter. *) let elf_pt_interp : Nat_big_num.num= ( (Nat_big_num.of_int 3)) (** Specifies location and size of auxiliary information. *) let elf_pt_note : Nat_big_num.num= ( (Nat_big_num.of_int 4)) (** Reserved but with unspecified semantics. If the file contains a segment of * this type then it is to be regarded as non-conformant with the ABI. *) let elf_pt_shlib : Nat_big_num.num= ( (Nat_big_num.of_int 5)) (** Specifies the location and size of the program header table. *) let elf_pt_phdr : Nat_big_num.num= ( (Nat_big_num.of_int 6)) (** Specifies the thread local storage (TLS) template. Need not be supported. *) let elf_pt_tls : Nat_big_num.num= ( (Nat_big_num.of_int 7)) (** Start of reserved indices for operating system specific semantics. *) let elf_pt_loos : Nat_big_num.num= (Nat_big_num.mul (Nat_big_num.mul (Nat_big_num.mul (Nat_big_num.mul( (Nat_big_num.of_int 128))( (Nat_big_num.of_int 128)))( (Nat_big_num.of_int 128)))( (Nat_big_num.of_int 256)))( (Nat_big_num.of_int 3))) (* 1610612736 (* 0x60000000 *) *) (** End of reserved indices for operating system specific semantics. *) let elf_pt_hios : Nat_big_num.num= (Nat_big_num.add ( Nat_big_num.mul( (Nat_big_num.of_int 469762047))( (Nat_big_num.of_int 4)))( (Nat_big_num.of_int 3))) (* 1879048191 (* 0x6fffffff *) *) (** Start of reserved indices for processor specific semantics. *) let elf_pt_loproc : Nat_big_num.num= ( Nat_big_num.mul( (Nat_big_num.of_int 469762048))( (Nat_big_num.of_int 4))) (* 1879048192 (* 0x70000000 *) *) (** End of reserved indices for processor specific semantics. *) let elf_pt_hiproc : Nat_big_num.num= (Nat_big_num.add ( Nat_big_num.mul( (Nat_big_num.of_int 536870911))( (Nat_big_num.of_int 4)))( (Nat_big_num.of_int 3))) (* 2147483647 (* 0x7fffffff *) *) (** [string_of_elf_segment_type os proc st] produces a string representation of * the coding of an ELF segment type [st] using [os] and [proc] to render OS- * and processor-specific codings. *) (* XXX: is GNU stuff supposed to be hardcoded here? *) (*val string_of_segment_type : (natural -> string) -> (natural -> string) -> natural -> string*) let string_of_segment_type os proc pt:string= (if Nat_big_num.equal pt elf_pt_null then "NULL" else if Nat_big_num.equal pt elf_pt_load then "LOAD" else if Nat_big_num.equal pt elf_pt_dynamic then "DYNAMIC" else if Nat_big_num.equal pt elf_pt_interp then "INTERP" else if Nat_big_num.equal pt elf_pt_note then "NOTE" else if Nat_big_num.equal pt elf_pt_shlib then "SHLIB" else if Nat_big_num.equal pt elf_pt_phdr then "PHDR" else if Nat_big_num.equal pt elf_pt_tls then "TLS" else if Nat_big_num.greater_equal pt elf_pt_loos && Nat_big_num.less_equal pt elf_pt_hios then os pt else if Nat_big_num.greater_equal pt elf_pt_loproc && Nat_big_num.less_equal pt elf_pt_hiproc then proc pt else "Undefined or invalid segment type") (** Segments permission flags *) (** Execute bit *) let elf_pf_x : Nat_big_num.num= ( (Nat_big_num.of_int 1)) (** Write bit *) let elf_pf_w : Nat_big_num.num= ( (Nat_big_num.of_int 2)) (** Read bit *) let elf_pf_r : Nat_big_num.num= ( (Nat_big_num.of_int 4)) (** The following two bit ranges are reserved for OS- and processor-specific * flags respectively. *) let elf_pf_maskos : Nat_big_num.num= ( (Nat_big_num.of_int 267386880)) (* 0x0ff00000 *) let elf_pf_maskproc : Nat_big_num.num= (Nat_big_num.mul( (Nat_big_num.of_int 4))( (Nat_big_num.of_int 1006632960))) (* 0xf0000000 *) (** [exact_permission_of_permission m]: ELF has two interpretations of a RWX-style * permission bit [m], an exact permission and an allowable permission. These * permissions allow us to interpret a flag as an upper bound for behaviour and * an ABI-compliant implementation can choose to interpret the flag [m] as either. * * In the exact interpretation, the upper bound is exactly the natural interpretation * of the flag. This is encoded in [exact_permission_of_permission], which is * a glorified identity function, though included for completeness. *) (*val exact_permissions_of_permission : natural -> error natural*) let exact_permissions_of_permission m:(Nat_big_num.num)error= (if Nat_big_num.equal m( (Nat_big_num.of_int 0)) then return( (Nat_big_num.of_int 0)) else if Nat_big_num.equal m elf_pf_x then return( (Nat_big_num.of_int 1)) else if Nat_big_num.equal m elf_pf_w then return( (Nat_big_num.of_int 2)) else if Nat_big_num.equal m elf_pf_r then return( (Nat_big_num.of_int 4)) else if Nat_big_num.equal m (Nat_big_num.add elf_pf_x elf_pf_w) then return( (Nat_big_num.of_int 3)) else if Nat_big_num.equal m (Nat_big_num.add elf_pf_x elf_pf_r) then return( (Nat_big_num.of_int 5)) else if Nat_big_num.equal m (Nat_big_num.add elf_pf_w elf_pf_r) then return( (Nat_big_num.of_int 6)) else if Nat_big_num.equal m (Nat_big_num.add (Nat_big_num.add elf_pf_x elf_pf_r) elf_pf_w) then return( (Nat_big_num.of_int 7)) else fail "exact_permission_of_permission: invalid permission flag") (** [allowable_permission_of_permission m]: ELF has two interpretations of a RWX-style * permission bit [m], an exact permission and an allowable permission. These * permissions allow us to interpret a flag as an upper bound for behaviour and * an ABI-compliant implementation can choose to interpret the flag [m] as either. * * In the allowable interpretation, the upper bound is more lax than the natural * interpretation of the flag. *) (*val allowable_permissions_of_permission : natural -> error natural*) let allowable_permissions_of_permission m:(Nat_big_num.num)error= (if Nat_big_num.equal m( (Nat_big_num.of_int 0)) then return( (Nat_big_num.of_int 0)) else if Nat_big_num.equal m elf_pf_x then return( (Nat_big_num.of_int 5)) else if Nat_big_num.equal m elf_pf_w then return( (Nat_big_num.of_int 7)) else if Nat_big_num.equal m elf_pf_r then return( (Nat_big_num.of_int 5)) else if Nat_big_num.equal m (Nat_big_num.add elf_pf_x elf_pf_w) then return( (Nat_big_num.of_int 7)) else if Nat_big_num.equal m (Nat_big_num.add elf_pf_x elf_pf_r) then return( (Nat_big_num.of_int 5)) else if Nat_big_num.equal m (Nat_big_num.add elf_pf_w elf_pf_r) then return( (Nat_big_num.of_int 7)) else if Nat_big_num.equal m (Nat_big_num.add (Nat_big_num.add elf_pf_x elf_pf_r) elf_pf_w) then return( (Nat_big_num.of_int 7)) else fail "exact_permission_of_permission: invalid permission flag") (** [elf64_interpreted_program_header_flags w] extracts a boolean triple of flags * from the flags field of an interpreted segment. *) (*val parse_elf_segment_permissions : natural -> (bool * bool * bool)*) let parse_elf_segment_permissions m:bool*bool*bool= (if Nat_big_num.equal m( (Nat_big_num.of_int 0)) then (false, false, false) else if Nat_big_num.equal m elf_pf_x then (false, false, true) else if Nat_big_num.equal m elf_pf_w then (false, true, false) else if Nat_big_num.equal m elf_pf_r then (true, false, false) else if Nat_big_num.equal m (Nat_big_num.add elf_pf_x elf_pf_w) then (false, true, true) else if Nat_big_num.equal m (Nat_big_num.add elf_pf_x elf_pf_r) then (true, false, true) else if Nat_big_num.equal m (Nat_big_num.add elf_pf_w elf_pf_r) then (true, true, false) else if Nat_big_num.equal m (Nat_big_num.add (Nat_big_num.add elf_pf_x elf_pf_r) elf_pf_w) then (true, true, true) else failwith "Invalid permisssion flag") (** [string_of_elf_segment_permissions m] produces a string-based representation * of an ELF segment's permission field. * TODO: expand this as is needed by the validation tests. *) (*val string_of_elf_segment_permissions : natural -> string*) let string_of_elf_segment_permissions m:string= (let (r, w, x) = (parse_elf_segment_permissions m) in (if r then "R" else " ") ^ ((if w then "W" else " ") ^ (if x then "X" else " "))) (** Program header table entry type *) (** Type [elf32_program_header_table_entry] encodes a program header table entry * for 32-bit platforms. Each entry describes a segment in an executable or * shared object file. *) type elf32_program_header_table_entry = { elf32_p_type : Uint32_wrapper.uint32 (** Type of the segment *) ; elf32_p_offset : Uint32_wrapper.uint32 (** Offset from beginning of file for segment *) ; elf32_p_vaddr : Uint32_wrapper.uint32 (** Virtual address for segment in memory *) ; elf32_p_paddr : Uint32_wrapper.uint32 (** Physical address for segment *) ; elf32_p_filesz : Uint32_wrapper.uint32 (** Size of segment in file, in bytes *) ; elf32_p_memsz : Uint32_wrapper.uint32 (** Size of segment in memory image, in bytes *) ; elf32_p_flags : Uint32_wrapper.uint32 (** Segment flags *) ; elf32_p_align : Uint32_wrapper.uint32 (** Segment alignment memory for memory and file *) } (** [compare_elf32_program_header_table_entry ent1 ent2] is an ordering-comparison * function on program header table entries suitable for constructing sets, * finite maps, and other ordered data types with. *) (*val compare_elf32_program_header_table_entry : elf32_program_header_table_entry -> elf32_program_header_table_entry -> ordering*) let compare_elf32_program_header_table_entry h1 h2:int= (lexicographic_compare Nat_big_num.compare [Uint32_wrapper.to_bigint h1.elf32_p_type; Uint32_wrapper.to_bigint h1.elf32_p_offset; Uint32_wrapper.to_bigint h1.elf32_p_vaddr; Uint32_wrapper.to_bigint h1.elf32_p_paddr; Uint32_wrapper.to_bigint h1.elf32_p_filesz; Uint32_wrapper.to_bigint h1.elf32_p_memsz; Uint32_wrapper.to_bigint h1.elf32_p_flags; Uint32_wrapper.to_bigint h1.elf32_p_align] [Uint32_wrapper.to_bigint h2.elf32_p_type; Uint32_wrapper.to_bigint h2.elf32_p_offset; Uint32_wrapper.to_bigint h2.elf32_p_vaddr; Uint32_wrapper.to_bigint h2.elf32_p_paddr; Uint32_wrapper.to_bigint h2.elf32_p_filesz; Uint32_wrapper.to_bigint h2.elf32_p_memsz; Uint32_wrapper.to_bigint h2.elf32_p_flags; Uint32_wrapper.to_bigint h2.elf32_p_align]) let instance_Basic_classes_Ord_Elf_program_header_table_elf32_program_header_table_entry_dict:(elf32_program_header_table_entry)ord_class= ({ compare_method = compare_elf32_program_header_table_entry; isLess_method = (fun f1 -> (fun f2 -> ( Lem.orderingEqual(compare_elf32_program_header_table_entry f1 f2) (-1)))); isLessEqual_method = (fun f1 -> (fun f2 -> Pset.mem (compare_elf32_program_header_table_entry f1 f2)(Pset.from_list compare [(-1); 0]))); isGreater_method = (fun f1 -> (fun f2 -> ( Lem.orderingEqual(compare_elf32_program_header_table_entry f1 f2) 1))); isGreaterEqual_method = (fun f1 -> (fun f2 -> Pset.mem (compare_elf32_program_header_table_entry f1 f2)(Pset.from_list compare [1; 0])))}) (** Type [elf64_program_header_table_entry] encodes a program header table entry * for 64-bit platforms. Each entry describes a segment in an executable or * shared object file. *) type elf64_program_header_table_entry = { elf64_p_type : Uint32_wrapper.uint32 (** Type of the segment *) ; elf64_p_flags : Uint32_wrapper.uint32 (** Segment flags *) ; elf64_p_offset : Uint64_wrapper.uint64 (** Offset from beginning of file for segment *) ; elf64_p_vaddr : Uint64_wrapper.uint64 (** Virtual address for segment in memory *) ; elf64_p_paddr : Uint64_wrapper.uint64 (** Physical address for segment *) ; elf64_p_filesz : Uint64_wrapper.uint64 (** Size of segment in file, in bytes *) ; elf64_p_memsz : Uint64_wrapper.uint64 (** Size of segment in memory image, in bytes *) ; elf64_p_align : Uint64_wrapper.uint64 (** Segment alignment memory for memory and file *) } (** [compare_elf64_program_header_table_entry ent1 ent2] is an ordering-comparison * function on program header table entries suitable for constructing sets, * finite maps, and other ordered data types with. *) (*val compare_elf64_program_header_table_entry : elf64_program_header_table_entry -> elf64_program_header_table_entry -> ordering*) let compare_elf64_program_header_table_entry h1 h2:int= (lexicographic_compare Nat_big_num.compare [Uint32_wrapper.to_bigint h1.elf64_p_type; Uint64_wrapper.to_bigint h1.elf64_p_offset; Ml_bindings.nat_big_num_of_uint64 h1.elf64_p_vaddr; Ml_bindings.nat_big_num_of_uint64 h1.elf64_p_paddr; Ml_bindings.nat_big_num_of_uint64 h1.elf64_p_filesz; Ml_bindings.nat_big_num_of_uint64 h1.elf64_p_memsz; Uint32_wrapper.to_bigint h1.elf64_p_flags; Ml_bindings.nat_big_num_of_uint64 h1.elf64_p_align] [Uint32_wrapper.to_bigint h2.elf64_p_type; Uint64_wrapper.to_bigint h2.elf64_p_offset; Ml_bindings.nat_big_num_of_uint64 h2.elf64_p_vaddr; Ml_bindings.nat_big_num_of_uint64 h2.elf64_p_paddr; Ml_bindings.nat_big_num_of_uint64 h2.elf64_p_filesz; Ml_bindings.nat_big_num_of_uint64 h2.elf64_p_memsz; Uint32_wrapper.to_bigint h2.elf64_p_flags; Ml_bindings.nat_big_num_of_uint64 h2.elf64_p_align]) let instance_Basic_classes_Ord_Elf_program_header_table_elf64_program_header_table_entry_dict:(elf64_program_header_table_entry)ord_class= ({ compare_method = compare_elf64_program_header_table_entry; isLess_method = (fun f1 -> (fun f2 -> ( Lem.orderingEqual(compare_elf64_program_header_table_entry f1 f2) (-1)))); isLessEqual_method = (fun f1 -> (fun f2 -> Pset.mem (compare_elf64_program_header_table_entry f1 f2)(Pset.from_list compare [(-1); 0]))); isGreater_method = (fun f1 -> (fun f2 -> ( Lem.orderingEqual(compare_elf64_program_header_table_entry f1 f2) 1))); isGreaterEqual_method = (fun f1 -> (fun f2 -> Pset.mem (compare_elf64_program_header_table_entry f1 f2)(Pset.from_list compare [1; 0])))}) (** [string_of_elf32_program_header_table_entry os proc et] produces a string * representation of a 32-bit program header table entry using [os] and [proc] * to render OS- and processor-specific entries. *) (*val string_of_elf32_program_header_table_entry : (natural -> string) -> (natural -> string) -> elf32_program_header_table_entry -> string*) let string_of_elf32_program_header_table_entry os proc entry:string= (unlines [ ("\t" ^ ("Segment type: " ^ string_of_segment_type os proc (Uint32_wrapper.to_bigint entry.elf32_p_type))) ; ("\t" ^ ("Offset: " ^ Uint32_wrapper.to_string entry.elf32_p_offset)) ; ("\t" ^ ("Virtual address: " ^ Uint32_wrapper.to_string entry.elf32_p_vaddr)) ; ("\t" ^ ("Physical address: " ^ Uint32_wrapper.to_string entry.elf32_p_paddr)) ; ("\t" ^ ("Segment size (bytes): " ^ Uint32_wrapper.to_string entry.elf32_p_filesz)) ; ("\t" ^ ("Segment size in memory image (bytes): " ^ Uint32_wrapper.to_string entry.elf32_p_memsz)) ; ("\t" ^ ("Flags: " ^ Uint32_wrapper.to_string entry.elf32_p_flags)) ; ("\t" ^ ("Alignment: " ^ Uint32_wrapper.to_string entry.elf32_p_align)) ]) (** [string_of_elf64_program_header_table_entry os proc et] produces a string * representation of a 64-bit program header table entry using [os] and [proc] * to render OS- and processor-specific entries. *) (*val string_of_elf64_program_header_table_entry : (natural -> string) -> (natural -> string) -> elf64_program_header_table_entry -> string*) let string_of_elf64_program_header_table_entry os proc entry:string= (unlines [ ("\t" ^ ("Segment type: " ^ string_of_segment_type os proc (Uint32_wrapper.to_bigint entry.elf64_p_type))) ; ("\t" ^ ("Offset: " ^ Uint64_wrapper.to_string entry.elf64_p_offset)) ; ("\t" ^ ("Virtual address: " ^ Uint64_wrapper.to_string entry.elf64_p_vaddr)) ; ("\t" ^ ("Physical address: " ^ Uint64_wrapper.to_string entry.elf64_p_paddr)) ; ("\t" ^ ("Segment size (bytes): " ^ Uint64_wrapper.to_string entry.elf64_p_filesz)) ; ("\t" ^ ("Segment size in memory image (bytes): " ^ Uint64_wrapper.to_string entry.elf64_p_memsz)) ; ("\t" ^ ("Flags: " ^ Uint32_wrapper.to_string entry.elf64_p_flags)) ; ("\t" ^ ("Alignment: " ^ Uint64_wrapper.to_string entry.elf64_p_align)) ]) (** [string_of_elf32_program_header_table_entry_default et] produces a string representation * of table entry [et] where OS- and processor-specific entries are replaced with * default strings. *) (*val string_of_elf32_program_header_table_entry_default : elf32_program_header_table_entry -> string*) let string_of_elf32_program_header_table_entry_default:elf32_program_header_table_entry ->string= (string_of_elf32_program_header_table_entry ((fun y->"*Default OS specific print*")) ((fun y->"*Default processor specific print*"))) (** [string_of_elf64_program_header_table_entry_default et] produces a string representation * of table entry [et] where OS- and processor-specific entries are replaced with * default strings. *) (*val string_of_elf64_program_header_table_entry_default : elf64_program_header_table_entry -> string*) let string_of_elf64_program_header_table_entry_default:elf64_program_header_table_entry ->string= (string_of_elf64_program_header_table_entry ((fun y->"*Default OS specific print*")) ((fun y->"*Default processor specific print*"))) let instance_Show_Show_Elf_program_header_table_elf32_program_header_table_entry_dict:(elf32_program_header_table_entry)show_class= ({ show_method = string_of_elf32_program_header_table_entry_default}) let instance_Show_Show_Elf_program_header_table_elf64_program_header_table_entry_dict:(elf64_program_header_table_entry)show_class= ({ show_method = string_of_elf64_program_header_table_entry_default}) (** Parsing and blitting *) (** [bytes_of_elf32_program_header_table_entry ed ent] blits a 32-bit program * header table entry [ent] into a byte sequence assuming endianness [ed]. *) (*val bytes_of_elf32_program_header_table_entry : endianness -> elf32_program_header_table_entry -> byte_sequence*) let bytes_of_elf32_program_header_table_entry endian entry:Byte_sequence_wrapper.byte_sequence= (Byte_sequence.from_byte_lists [ bytes_of_elf32_word endian entry.elf32_p_type ; bytes_of_elf32_off endian entry.elf32_p_offset ; bytes_of_elf32_addr endian entry.elf32_p_vaddr ; bytes_of_elf32_addr endian entry.elf32_p_paddr ; bytes_of_elf32_word endian entry.elf32_p_filesz ; bytes_of_elf32_word endian entry.elf32_p_memsz ; bytes_of_elf32_word endian entry.elf32_p_flags ; bytes_of_elf32_word endian entry.elf32_p_align ]) (** [bytes_of_elf64_program_header_table_entry ed ent] blits a 64-bit program * header table entry [ent] into a byte sequence assuming endianness [ed]. *) (*val bytes_of_elf64_program_header_table_entry : endianness -> elf64_program_header_table_entry -> byte_sequence*) let bytes_of_elf64_program_header_table_entry endian entry:Byte_sequence_wrapper.byte_sequence= (Byte_sequence.from_byte_lists [ bytes_of_elf64_word endian entry.elf64_p_type ; bytes_of_elf64_word endian entry.elf64_p_flags ; bytes_of_elf64_off endian entry.elf64_p_offset ; bytes_of_elf64_addr endian entry.elf64_p_vaddr ; bytes_of_elf64_addr endian entry.elf64_p_paddr ; bytes_of_elf64_xword endian entry.elf64_p_filesz ; bytes_of_elf64_xword endian entry.elf64_p_memsz ; bytes_of_elf64_xword endian entry.elf64_p_align ]) (** [read_elf32_program_header_table_entry endian bs0] reads an ELF32 program header table * entry from byte sequence [bs0] assuming endianness [endian]. If [bs0] is larger * than necessary, the excess is returned from the function, too. * Fails if the entry cannot be read. *) (*val read_elf32_program_header_table_entry : endianness -> byte_sequence -> error (elf32_program_header_table_entry * byte_sequence)*) let read_elf32_program_header_table_entry endian bs:(elf32_program_header_table_entry*Byte_sequence_wrapper.byte_sequence)error= (bind (read_elf32_word endian bs) (fun (typ, bs) -> bind (read_elf32_off endian bs) (fun (offset, bs) -> bind (read_elf32_addr endian bs) (fun (vaddr, bs) -> bind (read_elf32_addr endian bs) (fun (paddr, bs) -> bind (read_elf32_word endian bs) (fun (filesz, bs) -> bind (read_elf32_word endian bs) (fun (memsz, bs) -> bind (read_elf32_word endian bs) (fun (flags, bs) -> bind (read_elf32_word endian bs) (fun (align, bs) -> return ({ elf32_p_type = typ; elf32_p_offset = offset; elf32_p_vaddr = vaddr; elf32_p_paddr = paddr; elf32_p_filesz = filesz; elf32_p_memsz = memsz; elf32_p_flags = flags; elf32_p_align = align }, bs)))))))))) (** [read_elf64_program_header_table_entry endian bs0] reads an ELF64 program header table * entry from byte sequence [bs0] assuming endianness [endian]. If [bs0] is larger * than necessary, the excess is returned from the function, too. * Fails if the entry cannot be read. *) (*val read_elf64_program_header_table_entry : endianness -> byte_sequence -> error (elf64_program_header_table_entry * byte_sequence)*) let read_elf64_program_header_table_entry endian bs:(elf64_program_header_table_entry*Byte_sequence_wrapper.byte_sequence)error= (bind (read_elf64_word endian bs) (fun (typ, bs) -> bind (read_elf64_word endian bs) (fun (flags, bs) -> bind (read_elf64_off endian bs) (fun (offset, bs) -> bind (read_elf64_addr endian bs) (fun (vaddr, bs) -> bind (read_elf64_addr endian bs) (fun (paddr, bs) -> bind (read_elf64_xword endian bs) (fun (filesz, bs) -> bind (read_elf64_xword endian bs) (fun (memsz, bs) -> bind (read_elf64_xword endian bs) (fun (align, bs) -> return ({ elf64_p_type = typ; elf64_p_offset = offset; elf64_p_vaddr = vaddr; elf64_p_paddr = paddr; elf64_p_filesz = filesz; elf64_p_memsz = memsz; elf64_p_flags = flags; elf64_p_align = align }, bs)))))))))) (** Program header table type *) (** Type [elf32_program_header_table] represents a program header table for 32-bit * ELF files. A program header table is an array (implemented as a list, here) * of program header table entries. *) type elf32_program_header_table = elf32_program_header_table_entry list (** Type [elf64_program_header_table] represents a program header table for 64-bit * ELF files. A program header table is an array (implemented as a list, here) * of program header table entries. *) type elf64_program_header_table = elf64_program_header_table_entry list (** [bytes_of_elf32_program_header_table ed tbl] blits an ELF32 program header * table into a byte sequence assuming endianness [ed]. *) let bytes_of_elf32_program_header_table endian tbl:Byte_sequence_wrapper.byte_sequence= (Byte_sequence.concat (Lem_list.map (bytes_of_elf32_program_header_table_entry endian) tbl)) (** [bytes_of_elf64_program_header_table ed tbl] blits an ELF64 program header * table into a byte sequence assuming endianness [ed]. *) let bytes_of_elf64_program_header_table endian tbl:Byte_sequence_wrapper.byte_sequence= (Byte_sequence.concat (Lem_list.map (bytes_of_elf64_program_header_table_entry endian) tbl)) (** [read_elf32_program_header_table' endian bs0] reads an ELF32 program header table from * byte_sequence [bs0] assuming endianness [endian]. The byte_sequence [bs0] is assumed * to have exactly the correct size for the table. For internal use, only. Use * [read_elf32_program_header_table] below instead. *) let rec read_elf32_program_header_table' endian bs0:((elf32_program_header_table_entry)list)error= (if Nat_big_num.equal (Byte_sequence.length0 bs0)( (Nat_big_num.of_int 0)) then return [] else bind (read_elf32_program_header_table_entry endian bs0) (fun (entry, bs1) -> bind (read_elf32_program_header_table' endian bs1) (fun tail -> return (entry::tail)))) (** [read_elf64_program_header_table' endian bs0] reads an ELF64 program header table from * byte_sequence [bs0] assuming endianness [endian]. The byte_sequence [bs0] is assumed * to have exactly the correct size for the table. For internal use, only. Use * [read_elf32_program_header_table] below instead. *) let rec read_elf64_program_header_table' endian bs0:((elf64_program_header_table_entry)list)error= (if Nat_big_num.equal (Byte_sequence.length0 bs0)( (Nat_big_num.of_int 0)) then return [] else bind (read_elf64_program_header_table_entry endian bs0) (fun (entry, bs1) -> bind (read_elf64_program_header_table' endian bs1) (fun tail -> return (entry::tail)))) (** [read_elf32_program_header_table table_size endian bs0] reads an ELF32 program header * table from byte_sequence [bs0] assuming endianness [endian] based on the size (in bytes) passed in via [table_size]. * This [table_size] argument should be equal to the number of entries in the * table multiplied by the fixed entry size. Bitstring [bs0] may be larger than * necessary, in which case the excess is returned. *) (*val read_elf32_program_header_table : natural -> endianness -> byte_sequence -> error (elf32_program_header_table * byte_sequence)*) let read_elf32_program_header_table table_size endian bs0:((elf32_program_header_table_entry)list*Byte_sequence_wrapper.byte_sequence)error= (bind (partition0 table_size bs0) (fun (eat, rest) -> bind (read_elf32_program_header_table' endian eat) (fun table -> return (table, rest)))) (** [read_elf64_program_header_table table_size endian bs0] reads an ELF64 program header * table from byte_sequence [bs0] assuming endianness [endian] based on the size (in bytes) passed in via [table_size]. * This [table_size] argument should be equal to the number of entries in the * table multiplied by the fixed entry size. Bitstring [bs0] may be larger than * necessary, in which case the excess is returned. *) (*val read_elf64_program_header_table : natural -> endianness -> byte_sequence -> error (elf64_program_header_table * byte_sequence)*) let read_elf64_program_header_table table_size endian bs0:((elf64_program_header_table_entry)list*Byte_sequence_wrapper.byte_sequence)error= (bind (partition0 table_size bs0) (fun (eat, rest) -> bind (read_elf64_program_header_table' endian eat) (fun table -> return (table, rest)))) (** The [pht_print_bundle] type is used to tidy up other type signatures. Some of the * top-level string_of_ functions require six or more functions passed to them, * which quickly gets out of hand. This type is used to reduce that complexity. * The first component of the type is an OS specific print function, the second is * a processor specific print function. *) type pht_print_bundle = (Nat_big_num.num -> string) * (Nat_big_num.num -> string) (** [string_of_elf32_program_header_table os proc tbl] produces a string representation * of program header table [tbl] using [os] and [proc] to render OS- and processor- * specific entries. *) (*val string_of_elf32_program_header_table : pht_print_bundle -> elf32_program_header_table -> string*) let string_of_elf32_program_header_table (os, proc) tbl:string= (unlines (Lem_list.map (string_of_elf32_program_header_table_entry os proc) tbl)) (** [string_of_elf64_program_header_table os proc tbl] produces a string representation * of program header table [tbl] using [os] and [proc] to render OS- and processor- * specific entries. *) (*val string_of_elf64_program_header_table : pht_print_bundle -> elf64_program_header_table -> string*) let string_of_elf64_program_header_table (os, proc) tbl:string= (unlines (Lem_list.map (string_of_elf64_program_header_table_entry os proc) tbl)) (** Static/dynamic linkage *) (** [get_elf32_dynamic_linked pht] tests whether an ELF32 file is a dynamically * linked object by traversing the program header table and attempting to find * a header describing a segment with the name of an associated interpreter. * Returns [true] if any such header is found, [false] --- indicating static * linkage --- otherwise. *) (*val get_elf32_dynamic_linked : elf32_program_header_table -> bool*) let get_elf32_dynamic_linked pht:bool= (List.exists (fun p -> Nat_big_num.equal (Uint32_wrapper.to_bigint p.elf32_p_type) elf_pt_interp) pht) (** [get_elf64_dynamic_linked pht] tests whether an ELF64 file is a dynamically * linked object by traversing the program header table and attempting to find * a header describing a segment with the name of an associated interpreter. * Returns [true] if any such header is found, [false] --- indicating static * linkage --- otherwise. *) (*val get_elf64_dynamic_linked : elf64_program_header_table -> bool*) let get_elf64_dynamic_linked pht:bool= (List.exists (fun p -> Nat_big_num.equal (Uint32_wrapper.to_bigint p.elf64_p_type) elf_pt_interp) pht) (** [get_elf32_static_linked] is a utility function defined as the inverse * of [get_elf32_dynamic_linked]. *) (*val get_elf32_static_linked : elf32_program_header_table -> bool*) let get_elf32_static_linked pht:bool= (not (get_elf32_dynamic_linked pht)) (** [get_elf64_static_linked] is a utility function defined as the inverse * of [get_elf64_dynamic_linked]. *) (*val get_elf64_static_linked : elf64_program_header_table -> bool*) let get_elf64_static_linked pht:bool= (not (get_elf64_dynamic_linked pht)) (** [get_elf32_requested_interpreter ent bs0] extracts the requested interpreter * of a dynamically linkable ELF file from that file's program header table * entry of type PT_INTERP, [ent]. Interpreter string is extracted from byte * sequence [bs0]. * Fails if [ent] is not of type PT_INTERP, or if transcription otherwise fails. *) (*val get_elf32_requested_interpreter : elf32_program_header_table_entry -> byte_sequence -> error string*) let get_elf32_requested_interpreter pent bs0:(string)error= (if Nat_big_num.equal (Uint32_wrapper.to_bigint pent.elf32_p_type) elf_pt_interp then let off = (Uint32_wrapper.to_bigint pent.elf32_p_offset) in let siz = (Uint32_wrapper.to_bigint pent.elf32_p_filesz) in bind (Byte_sequence.offset_and_cut off ( Nat_big_num.sub_nat siz( (Nat_big_num.of_int 1))) bs0) (fun cut -> return (Byte_sequence.string_of_byte_sequence cut)) else fail "get_elf32_requested_interpreter: not an INTERP segment header") (** [get_elf64_requested_interpreter ent bs0] extracts the requested interpreter * of a dynamically linkable ELF file from that file's program header table * entry of type PT_INTERP, [ent]. Interpreter string is extracted from byte * sequence [bs0]. * Fails if [ent] is not of type PT_INTERP, or if transcription otherwise fails. *) (*val get_elf64_requested_interpreter : elf64_program_header_table_entry -> byte_sequence -> error string*) let get_elf64_requested_interpreter pent bs0:(string)error= (if Nat_big_num.equal (Uint32_wrapper.to_bigint pent.elf64_p_type) elf_pt_interp then let off = (Uint64_wrapper.to_bigint pent.elf64_p_offset) in let siz = (Ml_bindings.nat_big_num_of_uint64 pent.elf64_p_filesz) in bind (Byte_sequence.offset_and_cut off ( Nat_big_num.sub_nat siz( (Nat_big_num.of_int 1))) bs0) (fun cut -> return (Byte_sequence.string_of_byte_sequence cut)) else fail "get_elf64_requested_interpreter: not an INTERP segment header")
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>