package linksem
A formalisation of the core ELF and DWARF file formats written in Lem
Install
Dune Dependency
Authors
Maintainers
Sources
0.8.tar.gz
md5=2075c56715539b3b8f54ae65cc808b8c
sha512=f7c16e4036a1440a6a8d13707a43f0f9f9db0c68489215f948cc300b6a164dba5bf852e58f89503e9d9f38180ee658d9478156ca1a1ef64d6861eec5f9cf43d2
doc/src/linksem_zarith/abi_aarch64_le.ml.html
Source file abi_aarch64_le.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
(*Generated by Lem from abis/aarch64/abi_aarch64_le.lem.*) (** [abi_aarch64_le] contains top-level definition for the AArch64 ABI (little-endian case). *) open Lem_basic_classes open Lem_bool open Lem_list open Lem_num open Lem_maybe open Lem_assert_extra open Error open Missing_pervasives open Elf_header open Elf_types_native_uint open Elf_file open Elf_interpreted_segment open Elf_interpreted_section open Endianness (* open import Elf_memory_image *) open Abi_classes open Memory_image open Abi_aarch64_relocation open Abi_aarch64_le_elf_header (** [abi_aarch64_le_compute_program_entry_point segs entry] computes the program * entry point using ABI-specific conventions. On AArch64 the entry point in * the ELF header ([entry] here) is the real entry point. On other ABIs, e.g. * PowerPC64, the entry point [entry] is a pointer into one of the segments * constituting the process image (passed in as [segs] here for a uniform * interface). *) (*val abi_aarch64_le_compute_program_entry_point : list elf64_interpreted_segments -> elf64_addr -> error natural*) let abi_aarch64_le_compute_program_entry_point segs entry:(Nat_big_num.num)error= (return (Ml_bindings.nat_big_num_of_uint64 entry)) (*val header_is_aarch64_le : elf64_header -> bool*) let header_is_aarch64_le h:bool= (is_valid_elf64_header h && ((Lem.option_equal (=) (Lem_list.list_index h.elf64_ident (Nat_big_num.to_int elf_ii_data)) (Some (Uint32_wrapper.of_bigint elf_data_2lsb))) && (is_valid_abi_aarch64_le_machine_architecture (Uint32_wrapper.to_bigint h.elf64_machine) && is_valid_abi_aarch64_le_magic_number h.elf64_ident))) type aarch64_le_abi_feature = GOT | PLT (* placeholder / FIXME *) (*val abiFeatureCompare : aarch64_le_abi_feature -> aarch64_le_abi_feature -> Basic_classes.ordering*) let abiFeatureCompare f1 f2:int= ((match (f1, f2) with (GOT, GOT) -> 0 | (GOT, PLT) -> (-1) | (PLT, PLT) -> 0 | (PLT, GOT) -> 1 )) (*val abiFeatureTagEq : aarch64_le_abi_feature -> aarch64_le_abi_feature -> bool*) let abiFeatureTagEq f1 f2:bool= ((match (f1, f2) with (GOT, GOT) -> true | (PLT, PLT) -> true | (_, _) -> false )) let instance_Basic_classes_Ord_Abi_aarch64_le_aarch64_le_abi_feature_dict:(aarch64_le_abi_feature)ord_class= ({ compare_method = abiFeatureCompare; isLess_method = (fun f1 -> (fun f2 -> ( Lem.orderingEqual(abiFeatureCompare f1 f2) (-1)))); isLessEqual_method = (fun f1 -> (fun f2 -> Pset.mem (abiFeatureCompare f1 f2)(Pset.from_list compare [(-1); 0]))); isGreater_method = (fun f1 -> (fun f2 -> ( Lem.orderingEqual(abiFeatureCompare f1 f2) 1))); isGreaterEqual_method = (fun f1 -> (fun f2 -> Pset.mem (abiFeatureCompare f1 f2)(Pset.from_list compare [1; 0])))}) let instance_Abi_classes_AbiFeatureTagEquiv_Abi_aarch64_le_aarch64_le_abi_feature_dict:(aarch64_le_abi_feature)abiFeatureTagEquiv_class= ({ abiFeatureTagEquiv_method = abiFeatureTagEq}) (*val section_is_special : forall 'abifeature. elf64_interpreted_section -> annotated_memory_image 'abifeature -> bool*) let section_is_special0 s f:bool= (elf_section_is_special s f || (* FIXME *) false)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>