package libzipperposition
Library for Zipperposition
Install
Dune Dependency
Authors
Maintainers
Sources
1.6.tar.gz
md5=97cdb2f90468e9e27c7bbe3b4fb160bb
sha512=fee73369f673a91dfa9e265fc69be08b32235e10a495f3af6477d404fcd01e3452a0d012b150f3d7f97c00af2f6045019ad039164bf698f70d771231cc4efe5d
doc/src/libzipperposition.calculi/enumTypes.ml.html
Source file enumTypes.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
(* This file is free software, part of Zipperposition. See file "license" for more details. *) (** {1 Inference and simplification rules for Algebraic types} *) open Logtk open Libzipperposition module T = Term module S = Subst module Lit = Literal module Lits = Literals module Stmt = Statement type term = T.t let prof_detect = Util.mk_profiler "enum_types.detect" let prof_instantiate = Util.mk_profiler "enum_types.instantiate_vars" let stat_declare = Util.mk_stat "enum_types.declare" let stat_simplify = Util.mk_stat "enum_types.simplify" let stat_instantiate = Util.mk_stat "enum_types.instantiate_axiom" let section = Util.Section.make ~parent:Const.section "enum_ty" (* flag for clauses that are declarations of enumerated types *) let flag_enumeration_clause = SClause.new_flag () exception Error of string let () = Printexc.register_printer (function Error s -> Some ("error in enum_types: " ^s) | _ -> None) let error_ s = raise (Error s) let errorf_ msg = CCFormat.ksprintf msg ~f:error_ type id_or_ty_builtin = | I of ID.t | B of Type.builtin let pp_id_or_builtin out = function | I id -> ID.pp out id | B b -> Type.pp_builtin out b (** {2 Inference rules} *) module type S = sig module Env : Env.S module C : module type of Env.C type decl val pp_decl : decl CCFormat.printer type declare_result = | New of decl | AlreadyDeclared of decl val declare_ty : proof:Proof.t -> ty_id:ID.t -> ty_vars:Type.t HVar.t list -> var:Type.t HVar.t -> term list -> declare_result (** Declare that the domain of the type [ty_id] is restricted to given list of [cases], in the form [forall var. Or_{c in cases} var = c]. The type of [var] must be [ty_id ty_vars]. Will be ignored if the type already has a enum declaration, and the old declaration will be returned instead. @return either the new declaration, or the already existing one for this type if any @raise Error if some of the preconditions is not filled *) val instantiate_vars : Env.multi_simpl_rule (** Instantiate variables whose type is a known enumerated type, with all cases of this type. *) (** {6 Registration} *) val setup : unit -> unit (** Register rules in the environment *) end let _enable = ref false let _instantiate_shielded = ref false let _accept_unary_types = ref true let _instantiate_projector_axiom = ref false let is_projector_ id ~of_ = match Ind_ty.as_projector id with | Some p -> ID.equal (Ind_ty.projector_id p) of_ | None -> false module Make(E : Env.S) : S with module Env = E = struct module Env = E module C = Env.C module PS = Env.ProofState module Ctx = Env.Ctx (* one particular enum type. The return type has the shape [id(vars)], such as [list(a)] or [map(a,b)] *) type decl = { decl_ty_id : id_or_ty_builtin; decl_ty_vars : Type.t HVar.t list; decl_ty : Type.t; (* id applied to ty_vars (shortcut) *) decl_var : Type.t HVar.t; (* x = ... *) decl_cases : term list; (* ... t1 | t2 | ... | tn *) decl_proof : [ `Data of Proof.t * Type.t Statement.data | `Clause of Proof.t ]; (* justification for the enumeration axiom *) mutable decl_symbols : ID.Set.t; (* set of declared symbols for t1,...,tn *) } let pp_decl out d = Format.fprintf out "@[<1>{enum_ty=@[%a@],@ cases=@[%a@]}@]" Type.pp d.decl_ty (Util.pp_list T.pp) d.decl_cases (* set of enumerated types (indexed by [decl_ty_id]) *) let decls_by_id = ID.Tbl.create 16 let decls_builtin = ref [] let find_decl_ = function | I i -> ID.Tbl.find decls_by_id i | B b -> List.assoc b !decls_builtin let add_decl_ id decl = match id with | I id -> ID.Tbl.add decls_by_id id decl | B b -> decls_builtin := (b,decl) :: !decls_builtin (* triggered whenever a new EnumType is added *) let on_new_decl = Signal.create () (* check that [var] is the only free (term) variable in all cases *) let check_uniq_var_is_ ~var cases = cases |> Iter.of_list |> Iter.flat_map T.Seq.vars |> Iter.filter (fun v -> not (Type.equal Type.tType (HVar.ty v))) |> Iter.for_all (HVar.equal Type.equal var) (* check that all vars in [l] are pairwise distinct *) let rec check_all_distinct_ acc l = match l with | [] -> true | v :: l' -> not (CCList.mem ~eq:(HVar.equal Type.equal) v acc) && check_all_distinct_ (v :: acc) l' type declare_result = | New of decl | AlreadyDeclared of decl let declare_ ~proof ~ty_id:id ~ty_vars ~var cases = if not (check_all_distinct_ [] ty_vars) then errorf_ "invalid declaration %a: duplicate type variable" pp_id_or_builtin id; if not (check_uniq_var_is_ ~var cases) then errorf_ "invalid declaration %a: %a is not the only variable in @[%a@]" pp_id_or_builtin id (Util.pp_list T.pp) cases HVar.pp var; try let decl = find_decl_ id in Util.debugf ~section 3 "@[an enum is already declared for type %a@]" (fun k->k pp_id_or_builtin id); AlreadyDeclared decl with Not_found -> let ty = match id with | I id -> Type.app id (List.map Type.var ty_vars) | B b -> assert (ty_vars=[]); Type.builtin b in Util.debugf ~section 1 "@[<2>declare new enum type `@[%a@]`@ (@[cases %a ∈ {@[<hv>%a@]}@])@]" (fun k->k Type.pp ty HVar.pp var (Util.pp_list ~sep:", " T.pp) cases); Util.incr_stat stat_declare; (* set of already declared symbols *) let decl_symbols = List.fold_left (fun set t -> match T.head t with | None -> errorf_ "non-symbolic case @[%a@]" T.pp t | Some s -> ID.Set.add s set) ID.Set.empty cases in let decl = { decl_ty_id=id; decl_ty_vars=ty_vars; decl_ty=ty; decl_var=var; decl_cases=cases; decl_symbols; decl_proof=proof; } in add_decl_ id decl; Signal.send on_new_decl decl; New decl (* declare an enumerated type *) let declare_ty ~proof ~ty_id ~ty_vars ~var cases = declare_ ~proof:(`Clause proof) ~var ~ty_id:(I ty_id) ~ty_vars cases let as_simple_ty ty = match Type.view ty with | Type.App (id, []) -> Some (I id) | Type.Builtin b -> Some (B b) | _ -> None let is_simple_ty ty = as_simple_ty ty <> None (* detect whether the clause [c] is a declaration of a simply-typed EnumType with only constants as cases (in other words, a monomorphic finite type) *) let detect_decl_ c = let eq_var_ ~var t = match T.view t with | T.Var v' -> HVar.equal Type.equal var v' | _ -> false and get_var_ t = match T.view t with | T.Var v -> v | _ -> assert false and is_const t = match T.view t with | T.Const _ -> true | _ -> false in (* loop over literals checking whether they are all of the form [var = t] for some constant [t] *) let rec _check_all_vars ~ty ~var acc lits = match lits with | [] -> (* now also check that no case has free variables other than [var], and that there are at least 2 cases *) if check_uniq_var_is_ ~var acc && (!_accept_unary_types || List.length acc >= 2) then Some (var, acc) else None | Lit.Equation (l, r, true) :: lits' when eq_var_ ~var l && is_const r -> _check_all_vars ~ty ~var (r::acc) lits' | Lit.Equation (l, r, true) :: lits' when eq_var_ ~var r && is_const l -> _check_all_vars ~ty ~var (l::acc) lits' | _ -> None in let lits = C.lits c in if CCArray.exists (fun l -> not (Lit.is_eq l)) lits then None else match Array.to_list lits with | Lit.Equation (l,r,true) :: lits when T.is_var l && is_simple_ty (T.ty l) && is_const r -> let var = get_var_ l in _check_all_vars ~ty:(T.ty l) ~var [r] lits | Lit.Equation (l,r,true) :: lits when T.is_var r && is_simple_ty (T.ty r) && is_const l -> let var = get_var_ r in _check_all_vars ~ty:(T.ty r) ~var [l] lits | _ -> None let detect_declaration c = Util.with_prof prof_detect detect_decl_ c (* retrieve variables that are directly under a positive equation *) let vars_under_eq_ lits = Iter.of_array lits |> Iter.filter Lit.is_eq |> Iter.flat_map Lit.Seq.terms |> Iter.filter T.is_var (* variables occurring under some function symbol (at non-0 depth) *) let _shielded_vars lits = Iter.of_array lits |> Iter.flat_map Lit.Seq.terms |> Iter.flat_map T.Seq.subterms_depth |> Iter.filter_map (fun (v,depth) -> if depth>0 && T.is_var v then Some v else None) |> T.Seq.add_set T.Set.empty let naked_vars_ lits = let v = vars_under_eq_ lits |> T.Seq.add_set T.Set.empty in T.Set.diff v (_shielded_vars lits) |> T.Set.elements (* assuming [length decl.decl_ty_vars = length args], bind them pairwise in a substitution *) let bind_vars_ (d,sc_decl) (args,sc_args) = List.fold_left2 (fun subst v arg -> let v = (v : Type.t HVar.t :> InnerTerm.t HVar.t) in Subst.Ty.bind subst (v,sc_decl) (arg,sc_args)) Subst.empty d.decl_ty_vars args (* given a type [ty], find whether it's an enum type, and if it is the case return [Some (decl, subst)] *) let find_ty_ sc_decl ty sc_ty = let find_aux i l = try let d = find_decl_ i in if List.length l = List.length d.decl_ty_vars then let subst = bind_vars_ (d,sc_decl) (l,sc_ty) in Some (d, subst) else None with Not_found -> None in match Type.view ty with | Type.Builtin b -> find_aux (B b) [] | Type.App (id, l) -> find_aux (I id) l | _ -> None (* TODO: maybe relax the restriction that is must not be naked, but only up to a given depth (if CLI arg?) *) (* TODO: only instantiate naked variables that are in positive equations; those in negative equations may come from purification and must be found be E-unification *) (* instantiate variables that belong to an enum case *) let instantiate_vars_ c = (* which variables are candidate? depends on a CLI flag *) let vars = if !_instantiate_shielded then vars_under_eq_ (C.lits c) |> Iter.to_rev_list else naked_vars_ (C.lits c) in let s_c = 0 and s_decl = 1 in CCList.find_map (fun v -> match find_ty_ s_decl (T.ty v) s_c with | None -> None | Some (decl, subst) -> (* we found an enum type declaration for [v], replace it with each case for the enum type *) Util.incr_stat stat_simplify; let subst = Unif_subst.of_subst subst in let l = List.map (fun case -> (* replace [v] with [case] now *) let subst = Unif.FO.unify_full ~subst (v,s_c) (case,s_decl) in let renaming = Subst.Renaming.create () in let c_guard = Literals.of_unif_subst renaming subst and subst = Unif_subst.subst subst in let lits' = Lits.apply_subst renaming subst (C.lits c,s_c) in let proof = Proof.Step.inference [Proof.Parent.from @@ C.proof c] ~rule:(Proof.Rule.mk"enum_type_case_switch") in let trail = C.trail c and penalty = C.penalty c in let c' = C.create_a ~trail ~penalty (CCArray.append c_guard lits') proof in Util.debugf ~section 3 "@[<2>deduce @[%a@]@ from @[%a@]@ @[(enum_type switch on %a)@]@]" (fun k->k C.pp c' C.pp c Type.pp decl.decl_ty); c') decl.decl_cases in Some l) vars let instantiate_vars c = Util.with_prof prof_instantiate instantiate_vars_ c let instantiate_axiom_ ~ty_s s poly_args decl = if ID.Set.mem s decl.decl_symbols then None (* already declared *) else ( let ty_args, _ = Type.open_fun ty_s in (* need to add an axiom instance for this symbol and declaration *) decl.decl_symbols <- ID.Set.add s decl.decl_symbols; (* create the axiom. - build [subst = decl.x->s(u1,...,u_m)] where the the [u_i] are variables of the types required by [ty_s] - evaluate [decl.x = decl.t1 | decl.t2 .... | decl.t_m] in subst *) let vars = List.mapi (fun i ty -> HVar.make ~ty i |> T.var) ty_args in let t = T.app (T.const ~ty:ty_s s) vars in Util.debugf ~section 5 "@[<2>instantiate enum type `%a`@ on `@[%a@]`@]" (fun k->k pp_id_or_builtin decl.decl_ty_id T.pp t); let us = bind_vars_ (decl,0) (poly_args,1) |> Unif_subst.of_subst in let us = Unif.FO.unify_full ~subst:us (T.var decl.decl_var,0) (t,1) in let renaming = Subst.Renaming.create () in let subst = Unif_subst.subst us and c_guard = Literal.of_unif_subst renaming us in let lits = List.map (fun case -> Lit.mk_eq (S.FO.apply renaming subst (t,1)) (S.FO.apply renaming subst (case,0))) decl.decl_cases in let proof = let parent = match decl.decl_proof with | `Data (src,_) -> src | `Clause src -> src in Proof.Step.inference ~rule:(Proof.Rule.mk "axiom_enum_types") [Proof.Parent.from parent] in let trail = Trail.empty in (* start with initial penalty *) let penalty = 4 in let c' = C.create ~trail ~penalty (c_guard@lits) proof in Util.debugf ~section 3 "@[<2>instantiate axiom of enum type `%a` \ on @[%a@]:@ clause @[%a@]@]" (fun k->k pp_id_or_builtin decl.decl_ty_id ID.pp s C.pp c'); Util.incr_stat stat_instantiate; Some c' ) (* assume [s : ty_s] where [ty_s = _ -> ... -> decl.decl_ty_id poly_args] This builds the axiom [forall x1...xn. let t = s x1...xn in exists y11...y1m. t = c1 y11...y1mn or exists ..... t = c2 .... or ....] where [c1, ..., ck] are the constructors of [decl]. It uses the projectors instead of just skolemizing the "exists" *) let instantiate_axiom ~ty_s s poly_args decl = if !_instantiate_projector_axiom then instantiate_axiom_ ~ty_s s poly_args decl else None (* [check_decl_ id ~ty decl] checks whether [ty] is compatible with [decl.decl_ty]. If it is the case, let [c a1...an = ty], we add the axiom [forall x1:a1...xn:an, id(x1...xn) = t_1[x := id(x1..xn)] or ... or t_m[...]] where the [t_i] are the cases of [decl] *) let check_decl_ ~ty s decl = let _, ty_ret = Type.open_fun ty in match Type.view ty_ret, decl.decl_ty_id with | Type.Builtin b, B b' when b=b' -> instantiate_axiom ~ty_s:ty s [] decl | Type.App (c, args), I i when ID.equal c i && not (is_projector_ s ~of_:i) && List.length args = List.length decl.decl_ty_vars-> instantiate_axiom ~ty_s:ty s args decl | _ -> None (* add axioms for new symbol [s] with type [ty], if needed *) let _on_new_symbol s ~ty = let aux i = try let decl = find_decl_ i in check_decl_ ~ty s decl |> CCOpt.to_list with Not_found -> [] in let clauses = let _, ty_ret = Type.open_fun ty in match Type.view ty_ret with | Type.Builtin b -> aux (B b) | Type.App (id, _) -> aux (I id) | _ -> [] in (* set of support *) PS.ActiveSet.add (Iter.of_list clauses) let _on_new_decl decl = let clauses = Signature.fold (Ctx.signature ()) [] (fun acc s (ty,_) -> match check_decl_ s ~ty decl with | None -> acc | Some c -> c::acc) in PS.PassiveSet.add (Iter.of_list clauses) let is_trivial c = C.get_flag flag_enumeration_clause c (* detect whether the clause is a declaration of enum type, and if it is, declare the type! *) let _detect_and_declare c = Util.debugf ~section 5 "@[<2>examine clause@ `@[%a@]`@]" (fun k->k C.pp c); match detect_declaration c with | None -> () | Some (var,cases) -> let ty_id = CCOpt.get_exn (as_simple_ty (HVar.ty var)) in let is_new = declare_ ~ty_id ~ty_vars:[] ~var ~proof:(`Clause (C.proof c)) cases in (* clause becomes redundant if it's a new declaration *) match is_new with | New _ -> C.set_flag flag_enumeration_clause c true | AlreadyDeclared _ -> () (* introduce projectors for each constructor's argument, in order to declare the inductive type as an EnumType. *) let _declare_inductive ~proof d = Util.debugf ~section 5 "@[<2>examine data `%a`@]" (fun k->k ID.pp d.Stmt.data_id); (* make HVars *) let ty_vars = List.mapi (fun i _ -> HVar.make ~ty:Type.tType i) d.Stmt.data_args in let ty_vars_t = List.map T.var ty_vars in let ty_of_var = Type.app d.Stmt.data_id (List.map Type.var ty_vars) in let v = HVar.make ~ty:ty_of_var (List.length d.Stmt.data_args+1) in let v_t = T.var v in let cases = List.map (fun (c_id, c_ty, c_args) -> (* declare projector functions for this constructor *) let num_ty_vars, _, _ty_ret = Type.open_poly_fun c_ty in assert (num_ty_vars = List.length ty_vars); let projs_of_v = List.map (fun (_ty_arg,(proj, ty_proj)) -> T.app (T.const ~ty:ty_proj proj) (ty_vars_t @ [v_t])) c_args in (* [c (proj1 v) (proj2 v) ... (proj_n v)] *) T.app (T.const ~ty:c_ty c_id) (ty_vars_t @ projs_of_v) ) d.Stmt.data_cstors in let _ = declare_ ~proof:(`Data (proof,d)) ~var:v ~ty_id:(I d.Stmt.data_id) ~ty_vars cases in () (* detect whether the input statement contains some EnumType declaration *) let _detect_stmt stmt = match Stmt.view stmt with | Stmt.Assert c -> let proof = Stmt.proof_step stmt in let c = C.of_forms ~trail:Trail.empty c proof in _detect_and_declare c | Stmt.Data l -> let proof = Stmt.as_proof_c stmt in List.iter (_declare_inductive ~proof) l | Stmt.TyDecl _ | Stmt.Def _ | Stmt.Rewrite _ | Stmt.Lemma _ | Stmt.NegatedGoal _ | Stmt.Goal _ -> () let setup () = if !_enable then ( Util.debug ~section 1 "register handling of enumerated types"; Env.add_multi_simpl_rule instantiate_vars; Env.add_is_trivial is_trivial; (* look in input statements for inductive types *) Signal.on_every Env.on_input_statement _detect_stmt; (* signals: instantiate axioms upon new symbols, or when new declarations are added *) Signal.on_every Ctx.on_new_symbol (fun (s, ty) -> _on_new_symbol s ~ty); Signal.on_every on_new_decl (fun decl -> _on_new_decl decl; (* need to simplify (instantiate) active clauses that have naked variables of the given type *) Env.simplify_active_with instantiate_vars); Signature.iter (Ctx.signature ()) (fun s (ty,_) -> _on_new_symbol s ~ty); ) end (** {2 As Extension} *) let extension = let register env = let module E = (val env : Env.S) in let module ET = Make(E) in ET.setup () in { Extensions.default with Extensions. name = "enum_types"; env_actions=[register]; } let () = Extensions.register extension; Params.add_opts [ "--enum-types" , Options.switch_set true _enable , " enable inferences for enumerated/inductive types" ; "--no-enum-types" , Options.switch_set false _enable , " disable inferences for enumerated/inductive types" ; "--projector-axioms" , Options.switch_set true _instantiate_projector_axiom , " enable exhaustiveness axioms for inductive types (with projectors)" ; "--no-projector-axioms" , Options.switch_set false _instantiate_projector_axiom , " disable exhaustiveness axioms for inductive types (with projectors)" ; "--enum-shielded" , Options.switch_set true _instantiate_shielded , " enable/disable instantiation of shielded variables of enum type" ; "--no-enum-shielded" , Options.switch_set false _instantiate_shielded , " enable/disable instantiation of shielded variables of enum type" ; "--enum-unary" , Options.switch_set true _accept_unary_types , " enable support for unary enum types (one case)" ; "--no-enum-unary" , Options.switch_set false _accept_unary_types , " disable support for unary enum types (one case)" ]
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>