package libzipperposition
Library for Zipperposition
Install
Dune Dependency
Authors
Maintainers
Sources
1.6.tar.gz
md5=97cdb2f90468e9e27c7bbe3b4fb160bb
sha512=fee73369f673a91dfa9e265fc69be08b32235e10a495f3af6477d404fcd01e3452a0d012b150f3d7f97c00af2f6045019ad039164bf698f70d771231cc4efe5d
doc/src/libzipperposition.calculi/Rewriting.ml.html
Source file Rewriting.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
(* This file is free software, part of Zipperposition. See file "license" for more details. *) (** {1 Rewriting} *) open Logtk open Libzipperposition module T = Term module RW = Rewrite module P = Position let section = RW.section let stat_narrowing_lit = Util.mk_stat "narrow.lit_steps" let stat_narrowing_term = Util.mk_stat "narrow.term_steps" let stat_ctx_narrowing = Util.mk_stat "narrow.ctx_narrow_steps" let prof_narrowing_term = Util.mk_profiler "narrow.term" let prof_narrowing_lit = Util.mk_profiler "narrow.lit" let prof_ctx_narrowing = Util.mk_profiler "narrow.ctx_narrow" let max_steps = 500 let rewrite_before_cnf = ref false module Key = struct let has_rw = Flex_state.create_key() let ctx_narrow = Flex_state.create_key() end let simpl_term t = let t', rules = RW.Term.normalize_term ~max_steps t in if T.equal t t' then ( assert (RW.Term.Rule_inst_set.is_empty rules); None ) else ( let proof = RW.Rule.set_as_proof_parents rules in Util.debugf ~section 2 "@[<2>@{<green> simpl rewrite@} `@[%a@]`@ :into `@[%a@]`@ :using %a@]" (fun k->k T.pp t T.pp t' RW.Term.Rule_inst_set.pp rules); Some (t',proof) ) module Make(E : Env_intf.S) = struct module Env = E module C = E.C (* simplification rule *) (* perform term narrowing in [c] *) let narrow_term_passive_ c: C.t list = let eligible = C.Eligible.(res c) in let sc_rule = 1 in let sc_c = 0 in Literals.fold_terms ~vars:false ~subterms:true ~ty_args:false ~ord:(C.Ctx.ord()) ~which:`All ~eligible (C.lits c) |> Iter.flat_map (fun (u_p, passive_pos) -> RW.Term.narrow_term ~scope_rules:sc_rule (u_p,sc_c) |> Iter.map (fun (rule,us) -> let i, _ = Literals.Pos.cut passive_pos in let renaming = Subst.Renaming.create() in let subst = Unif_subst.subst us in let c_guard = Literal.of_unif_subst renaming us in (* side literals *) let lits_passive = C.lits c in let lits_passive = Literals.apply_subst renaming subst (lits_passive,sc_c) in let lits' = CCArray.except_idx lits_passive i in (* substitute in rule *) let rhs = Subst.FO.apply renaming subst (RW.Term.Rule.rhs rule, sc_rule) and lhs = Subst.FO.apply renaming subst (RW.Term.Rule.lhs rule, sc_rule) in (* literal in which narrowing took place: replace lhs by rhs *) let new_lit = Literal.replace lits_passive.(i) ~old:lhs ~by:rhs in (* make new clause *) Util.incr_stat stat_narrowing_term; let proof = Proof.Step.inference [C.proof_parent_subst renaming (c,sc_c) subst; Proof.Parent.from_subst renaming (RW.Rule.as_proof (RW.T_rule rule),sc_rule) subst] ~rule:(Proof.Rule.mk "narrow") in let c' = C.create ~trail:(C.trail c) ~penalty:(C.penalty c) (new_lit :: c_guard @ lits') proof in Util.debugf ~section 3 "@[<2>term narrowing:@ from `@[%a@]`@ to `@[%a@]`@ \ using rule `%a`@ and subst @[%a@]@]" (fun k->k C.pp c C.pp c' RW.Term.Rule.pp rule Unif_subst.pp us); c' ) ) |> Iter.to_rev_list let narrow_term_passive = Util.with_prof prof_narrowing_term narrow_term_passive_ (* XXX: for now, we only do one step, and let Env.multi_simplify manage the fixpoint *) let simpl_clause c = let lits = C.lits c in match RW.Lit.normalize_clause lits with | None -> None | Some (clauses,r,subst,sc_r,renaming,) -> let proof = Proof.Step.simp ~rule:(Proof.Rule.mk "rw_clause") ~tags [C.proof_parent_subst renaming (c,0) subst; RW.Rule.lit_as_proof_parent_subst renaming subst (r,sc_r)] in let clauses = List.map (fun c' -> C.create_a ~trail:(C.trail c) ~penalty:(C.penalty c) c' proof) clauses in Util.debugf ~section 2 "@[<2>@{<green>rewrite@} `@[%a@]`@ into `@[<v>%a@]`@]" (fun k->k C.pp c (Util.pp_list C.pp) clauses); Some clauses (* narrowing on literals of given clause, using lits rewrite rules *) let narrow_lits_ c = let eligible = C.Eligible.res c in let lits = C.lits c in Literals.fold_lits ~eligible lits |> Iter.fold (fun acc (lit,i) -> RW.Lit.narrow_lit ~scope_rules:1 (lit,0) |> Iter.fold (fun acc (rule,us,) -> let subst = Unif_subst.subst us in let renaming = Subst.Renaming.create () in let c_guard = Literal.of_unif_subst renaming us in let proof = Proof.Step.inference [C.proof_parent_subst renaming (c,0) subst; Proof.Parent.from_subst renaming (RW.Rule.as_proof (RW.L_rule rule),1) subst] ~rule:(Proof.Rule.mk "narrow_clause") ~tags in let lits' = CCArray.except_idx lits i in (* create new clauses that correspond to replacing [lit] by [rule.rhs] *) let clauses = List.map (fun c' -> let new_lits = c_guard @ Literal.apply_subst_list renaming subst (lits',0) @ Literal.apply_subst_list renaming subst (c',1) in C.create ~trail:(C.trail c) ~penalty:(C.penalty c) new_lits proof) (RW.Lit.Rule.rhs rule) in Util.debugf ~section 3 "@[<2>narrowing of `@[%a@]`@ using `@[%a@]`@ with @[%a@]@ yields @[%a@]@]" (fun k->k C.pp c RW.Lit.Rule.pp rule Unif_subst.pp us CCFormat.(list (hovbox C.pp)) clauses); Util.incr_stat stat_narrowing_lit; List.rev_append clauses acc) acc) [] let narrow_lits lits = Util.with_prof prof_narrowing_lit narrow_lits_ lits (* find positions in rules' LHS *) let ctx_narrow_find (s,sc_a) sc_p : (RW.Rule.t * Position.t * Unif_subst.t) Iter.t = let find_term (r:RW.Term.rule) = let t = RW.Term.Rule.lhs r in T.all_positions ~vars:false ~pos:P.stop ~ty_args:false t |> Iter.filter (fun (_,p) -> not (P.equal p P.stop)) (* not root *) |> Iter.filter (fun (t,_) -> match T.Classic.view t with | T.Classic.App (id,_) -> not (Ind_ty.is_constructor id) | T.Classic.Var _ | T.Classic.DB _ | T.Classic.AppBuiltin (_,_) | T.Classic.NonFO -> false) |> Iter.filter_map (fun (t,p) -> try let subst = Unif.FO.unify_full (s,sc_a) (t,sc_p) in Some (RW.T_rule r, p, subst) with Unif.Fail -> None) and find_lit (r:RW.Lit.rule) = let lit = RW.Lit.Rule.lhs r in Literal.fold_terms lit ~position:P.stop ~vars:false ~ty_args:false ~which:`All ~ord:(E.Ctx.ord()) ~subterms:true |> Iter.filter_map (fun (t,p) -> match p with | P.Left P.Stop -> None (* not root *) | _ -> try let subst = Unif.FO.unify_full (s,sc_a) (t,sc_p) in Some (RW.L_rule r, p, subst) with Unif.Fail -> None) in Rewrite.all_rules |> Iter.flat_map (function | RW.T_rule r -> find_term r | RW.L_rule r -> find_lit r) (* do narrowing with [s=t], a literal in [c], and add results to [acc] *) let ctx_narrow_with ~ord s t s_pos c acc : C.t list = let sc_a = 1 and sc_p = 0 in (* do narrowing inside this rule? *) let do_narrowing rule rule_pos (us:Unif_subst.t) = let rule_clauses = match rule with | RW.T_rule r -> [ [| RW.Term.Rule.as_lit r |] ] | RW.L_rule r -> RW.Lit.Rule.as_clauses r in let renaming = Subst.Renaming.create() in let subst = Unif_subst.subst us in let c_guard = Literal.of_unif_subst renaming us in let s' = Subst.FO.apply renaming subst (s,sc_a) in let t' = Subst.FO.apply renaming subst (t,sc_a) in if Ordering.compare ord s' t' <> Comparison.Lt then ( Util.incr_stat stat_ctx_narrowing; rule_clauses |> List.map (fun rule_clause -> (* instantiate rule and replace [s'] by [t'] now *) let new_lits = Literals.apply_subst renaming subst (rule_clause,sc_p) |> Literals.map (T.replace ~old:s' ~by:t') |> Array.to_list in (* also instantiate context literals in [c] *) let idx_active = match s_pos with | P.Arg (n,_) -> n | _ -> assert false in let ctx = Literal.apply_subst_list renaming subst (CCArray.except_idx (C.lits c) idx_active, sc_a) in (* build new clause *) let proof = Proof.Step.inference ~rule:(Proof.Rule.mk "contextual_narrowing") [C.proof_parent_subst renaming (c,sc_a) subst; Proof.Parent.from_subst renaming (RW.Rule.as_proof rule,sc_p) subst] in (* add some penalty on every inference *) let penalty = Array.length (C.lits c) + C.penalty c in let new_c = C.create (c_guard @ new_lits @ ctx) proof ~trail:(C.trail c) ~penalty in Util.debugf ~section 4 "(@[<2>ctx_narrow@ :rule %a[%d]@ :clause %a[%d]@ :pos %a@ :subst %a@ :yield %a@])" (fun k->k RW.Rule.pp rule sc_p C.pp c sc_a P.pp rule_pos Subst.pp subst C.pp new_c); new_c) |> CCOpt.return ) else None in ctx_narrow_find (s,sc_a) sc_p |> Iter.fold (fun acc (rule,rule_pos,subst) -> match do_narrowing rule rule_pos subst with | None -> acc | Some cs -> cs @ acc) acc let contextual_narrowing_ c : C.t list = (* no literal can be eligible for paramodulation if some are selected. This checks if inferences with i-th literal are needed? *) let eligible = C.Eligible.param c in let ord = E.Ctx.ord() in (* do the inferences where clause is active; for this, we try to rewrite conditionally other clauses using non-minimal sides of every positive literal *) let new_clauses = Literals.fold_eqn ~sign:true ~ord ~both:true ~eligible (C.lits c) |> Iter.fold (fun acc (s, t, _, s_pos) -> (* rewrite clauses using s *) ctx_narrow_with ~ord s t s_pos c acc) [] in new_clauses let contextual_narrowing c = Util.with_prof prof_ctx_narrowing contextual_narrowing_ c let setup ?(ctx_narrow=true) ~has_rw () = Util.debug ~section 1 "register Rewriting to Env..."; E.add_rewrite_rule "rewrite_defs" simpl_term; E.add_binary_inf "narrow_term_defs" narrow_term_passive; if ctx_narrow then ( E.add_binary_inf "ctx_narrow" contextual_narrowing; ); if has_rw then E.Ctx.lost_completeness (); E.add_multi_simpl_rule simpl_clause; E.add_unary_inf "narrow_lit_defs" narrow_lits; () end let ctx_narrow_ = ref true let post_cnf stmts st = CCVector.iter Statement.scan_stmt_for_defined_cst (if not !rewrite_before_cnf then stmts else ( CCVector.filter (fun st -> match Statement.view st with | Statement.Rewrite _ -> false | _ -> false) stmts)); (* check if there are rewrite rules *) let has_rw = CCVector.to_seq stmts |> Iter.exists (fun st -> match Statement.view st with | Statement.Rewrite _ | Statement.Def _ -> true | _ -> false) in st |> Flex_state.add Key.has_rw has_rw (* let post_typing stmts state = *) let rewrite_tst_stmt stmt = let aux f = let ctx = Type.Conv.create () in let t = Term.Conv.of_simple_term_exn ctx f in let snf = Lambda.snf in CCOpt.map (fun (t',p) -> (Term.Conv.to_simple_term ctx (snf t'), p)) (simpl_term t) in let aux_l fs = let ts = List.map aux fs in if List.for_all CCOpt.is_none ts then None else ( let proof = ref [] in let combined = CCList.combine fs ts in let res = List.map (fun (f,res) -> let f', p_list = CCOpt.get_or ~default:(f,[]) res in proof := p_list @ !proof; f') combined in Some (res, !proof)) in let mk_proof ~stmt_parents f_opt orig = CCOpt.map (fun (f', parent_list) -> let rule = Proof.Rule.mk "definition expansion" in f', Proof.S.mk_f_simp ~rule orig (parent_list @ stmt_parents)) f_opt in let stmt_parents = [Proof.Parent.from @@ Statement.as_proof_i stmt] in match Statement.view stmt with | Assert f -> (match mk_proof ~stmt_parents (aux f) f with | Some (f', proof) -> Statement.assert_ ~proof:(Proof.S.step proof) f' | None -> stmt) | Lemma fs -> begin match aux_l fs with | Some (fs', parents) -> let rule = Proof.Rule.mk "definition expansion" in let fs_parents = (List.map (fun f -> Proof.Parent.from (Proof.S.mk_f_esa ~rule f stmt_parents)) fs) @ parents in let proof = Proof.Step.simp ~rule fs_parents in Statement.lemma ~proof fs' | None -> stmt end | Goal g -> (match mk_proof ~stmt_parents (aux g) g with | Some (g', proof) -> Statement.goal ~proof:(Proof.S.step proof) g' | None -> stmt) | NegatedGoal (skolems, ngs) -> begin match aux_l ngs with | Some (ng', parents) -> let rule = Proof.Rule.mk "definition expansion" in let ng_parents = (List.map (fun f -> Proof.Parent.from (Proof.S.mk_f_esa ~rule f stmt_parents)) ngs) @ parents in let proof = Proof.Step.simp ~rule ng_parents in Statement.neg_goal ~skolems ~proof ng' | None -> stmt end | _ -> stmt let unfold_def_before_cnf stmts = if !rewrite_before_cnf then ( CCVector.map (fun stmt -> let res = rewrite_tst_stmt stmt in (* CCFormat.printf "rewriting @[%a@] into @[%a@]@." Statement.pp_input stmt Statement.pp_input res; *) res ) stmts ) else stmts let post_tying stmts st = if !rewrite_before_cnf then ( CCVector.iter Statement.scan_tst_rewrite stmts; let has_rw = CCVector.to_seq stmts |> Iter.exists (fun st -> match Statement.view st with | Statement.Rewrite _ -> true | _ -> false) in Flex_state.add Key.has_rw has_rw st ) else st (* add a term simplification that normalizes terms w.r.t the set of rules *) let normalize_simpl (module E : Env_intf.S) = let module M = Make(E) in let has_rw = E.flex_get Key.has_rw in E.flex_add Key.ctx_narrow !ctx_narrow_; M.setup ~has_rw ~ctx_narrow:!ctx_narrow_ () let extension = let open Extensions in { default with name = "rewriting"; post_typing_actions=[post_tying]; post_cnf_actions=[post_cnf]; env_actions=[normalize_simpl]; } let () = Options.add_opts [ "--rw-ctx-narrow", Arg.Set ctx_narrow_, " enable contextual narrowing"; "--no-rw-ctx-narrow", Arg.Clear ctx_narrow_, " disable contextual narrowing"; "--rewrite-before-cnf", Arg.Bool (fun v -> rewrite_before_cnf := v), " enable/disable rewriting before CNF" ]
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>