package libzipperposition
Library for Zipperposition
Install
Dune Dependency
Authors
Maintainers
Sources
1.6.tar.gz
md5=97cdb2f90468e9e27c7bbe3b4fb160bb
sha512=fee73369f673a91dfa9e265fc69be08b32235e10a495f3af6477d404fcd01e3452a0d012b150f3d7f97c00af2f6045019ad039164bf698f70d771231cc4efe5d
doc/src/libzipperposition.calculi/Arith_int.ml.html
Source file Arith_int.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279
(* This file is free software, part of Zipperposition. See file "license" for more details. *) (** {1 Cancellative Inferences} *) open Logtk open Libzipperposition module T = Term module Lit = Literal module Lits = Literals module S = Subst module M = Monome module MF = Monome.Focus module AL = Int_lit module ALF = AL.Focus module Stmt = Statement module US = Unif_subst let stat_arith_sup = Util.mk_stat "int.superposition" let stat_arith_cancellation = Util.mk_stat "int.arith_cancellation" let stat_arith_eq_factoring = Util.mk_stat "int.eq_factoring" let stat_arith_ineq_chaining = Util.mk_stat "int.ineq_chaining" let stat_arith_case_switch = Util.mk_stat "int.case_switch" let stat_arith_semantic_tautology = Util.mk_stat "int.semantic_tauto" let stat_arith_semantic_tautology_steps = Util.mk_stat "int.semantic_tauto.steps" let stat_arith_ineq_factoring = Util.mk_stat "int.ineq_factoring" let stat_arith_div_chaining = Util.mk_stat "int.div_chaining" let stat_arith_divisibility = Util.mk_stat "int.divisibility" let stat_arith_demod = Util.mk_stat "int.demod" let stat_arith_backward_demod = Util.mk_stat "int.backward_demod" let stat_arith_trivial_ineq = Util.mk_stat "int.redundant_by_ineq.calls" let stat_arith_trivial_ineq_steps = Util.mk_stat "int.redundant_by_ineq.steps" let stat_arith_demod_ineq = Util.mk_stat "int.demod_ineq.calls" let stat_arith_demod_ineq_steps = Util.mk_stat "int.demod_ineq.steps" (* let stat_arith_reflexivity_resolution = Util.mk_stat "int.reflexivity_resolution" *) let prof_arith_sup = Util.mk_profiler "int.superposition" let prof_arith_cancellation = Util.mk_profiler "int.arith_cancellation" let prof_arith_eq_factoring = Util.mk_profiler "int.eq_factoring" let prof_arith_ineq_chaining = Util.mk_profiler "int.ineq_chaining" let prof_arith_demod = Util.mk_profiler "int.demod" let prof_arith_backward_demod = Util.mk_profiler "int.backward_demod" let prof_arith_semantic_tautology = Util.mk_profiler "int.semantic_tauto" let prof_arith_ineq_factoring = Util.mk_profiler "int.ineq_factoring" let prof_arith_div_chaining = Util.mk_profiler "int.div_chaining" let prof_arith_divisibility = Util.mk_profiler "int.divisibility" let prof_arith_trivial_ineq = Util.mk_profiler "int.redundant_by_ineq" let prof_arith_demod_ineq = Util.mk_profiler "int.demod_ineq" (* let prof_arith_reflexivity_resolution = Util.mk_profiler "int.reflexivity_resolution" *) let section = Util.Section.make ~parent:Const.section "int-arith" module type S = sig module Env : Env.S module C : module type of Env.C module PS : module type of Env.ProofState (** {3 Equations and Inequations} *) val canc_sup_active: Env.binary_inf_rule (** cancellative superposition where given clause is active *) val canc_sup_passive: Env.binary_inf_rule (** cancellative superposition where given clause is passive *) val cancellation: Env.unary_inf_rule (** cancellation (unifies some terms on both sides of a comparison operator) *) val canc_equality_factoring: Env.unary_inf_rule (** cancellative equality factoring *) val canc_ineq_chaining : Env.binary_inf_rule (** cancellative inequality chaining. Also does case switch if conditions are present: C1 or a < b C2 or b < c ------------------------------------- C1 or C2 or or_{i=a+1....c-1} (b = i) if a and c are integer linear expressions whose difference is a constant. If a > c, then the range a...c is empty and the literal is just removed. *) val canc_ineq_factoring : Env.unary_inf_rule (** Factoring between two inequation literals *) val canc_less_to_lesseq : Env.lit_rewrite_rule (** Simplification: a <= b ----> a < b+1 *) (** {3 Divisibility} *) val canc_div_chaining : Env.binary_inf_rule (** Chain together two divisibility literals, assuming they share the same prime *) val canc_div_case_switch : Env.unary_inf_rule (** Eliminate negative divisibility literals within a power-of-prime quotient of Z: not (d^i | m) -----> *) val canc_div_prime_decomposition : Env.multi_simpl_rule (** Eliminate divisibility literals with a non-power-of-prime quotient of Z (for instance [6 | a ---> { 2 | a, 3 | a }]) *) val canc_divisibility : Env.unary_inf_rule (** Infer divisibility constraints from integer equations, for instance C or 2a=b ----> C or 2 | b if a is maximal *) (** {3 Other} *) val is_tautology : C.t -> bool (** is the clause a tautology w.r.t linear expressions? *) val eliminate_unshielded : Env.multi_simpl_rule (** Eliminate unshielded variables using an adaptation of Cooper's algorithm *) (** {2 Contributions to Env} *) val register : unit -> unit end let enable_arith_ = ref true let enable_ac_ = ref false let enable_semantic_tauto_ = ref true let enable_trivial_ineq_ = ref true let enable_demod_ineq_ = ref true let dot_unit_ = ref None let diff_to_lesseq_ = ref `Simplify let case_switch_limit = ref 30 let div_case_switch_limit = ref 100 let flag_tauto = SClause.new_flag () let flag_computed_tauto = SClause.new_flag () module Make(E : Env.S) : S with module Env = E = struct module Env = E module Ctx = Env.Ctx module C = Env.C module PS = Env.ProofState let _idx_eq = ref (PS.TermIndex.empty ()) let _idx_ineq_left = ref (PS.TermIndex.empty ()) let _idx_ineq_right = ref (PS.TermIndex.empty ()) let _idx_div = ref (PS.TermIndex.empty ()) let _idx_all = ref (PS.TermIndex.empty ()) (* unit clauses *) let _idx_unit_eq = ref (PS.TermIndex.empty ()) let _idx_unit_div = ref (PS.TermIndex.empty ()) let _idx_unit_ineq = ref (PS.TermIndex.empty ()) (* apply [f] to some subterms of [c] *) let update f c = let ord = Ctx.ord () in _idx_eq := Lits.fold_terms ~vars:false ~ty_args:false ~which:`Max ~ord ~subterms:false ~eligible:C.Eligible.(filter Lit.is_arith_eqn ** max c) (C.lits c) |> Iter.fold (fun acc (t,pos) -> let with_pos = C.WithPos.( {term=t; pos; clause=c} ) in f acc t with_pos) !_idx_eq; let left, right = Lits.fold_terms ~vars:false ~ty_args:false ~which:`Max ~ord ~subterms:false ~eligible:C.Eligible.(filter Lit.is_arith_ineq** max c) (C.lits c) |> Iter.fold (fun (left,right) (t,pos) -> let with_pos = C.WithPos.( {term=t; pos; clause=c} ) in match pos with | Position.Arg (_, Position.Left _) -> f left t with_pos, right | Position.Arg (_, Position.Right _) -> left, f right t with_pos | _ -> assert false) (!_idx_ineq_left, !_idx_ineq_right) in _idx_ineq_left := left; _idx_ineq_right := right; _idx_div := Lits.fold_terms ~vars:false ~ty_args:false ~which:`Max ~ord ~subterms:false ~eligible:C.Eligible.(filter Lit.is_arith_divides ** max c) (C.lits c) |> Iter.fold (fun acc (t,pos) -> let with_pos = C.WithPos.( {term=t; pos; clause=c} ) in f acc t with_pos) !_idx_div; _idx_all := Lits.fold_terms ~vars:false ~ty_args:false ~which:`Max ~ord ~subterms:false ~eligible:C.Eligible.(filter Lit.is_arith ** max c) (C.lits c) |> Iter.fold (fun acc (t,pos) -> let with_pos = C.WithPos.( {term=t; pos; clause=c} ) in f acc t with_pos) !_idx_all; () (* simplification set *) let update_simpl f c = let ord = Ctx.ord () in begin match C.lits c with | [| Lit.Int ((AL.Binary (AL.Equal, _, _)) as alit) |] -> let pos = Position.(arg 0 stop) in _idx_unit_eq := AL.fold_terms ~subterms:false ~vars:false ~pos ~which:`Max ~ord alit |> Iter.fold (fun acc (t,pos) -> assert (not (T.is_var t)); let with_pos = C.WithPos.( {term=t; pos; clause=c;} ) in f acc t with_pos) !_idx_unit_eq | [| Lit.Int ((AL.Binary (AL.Lesseq, _, _)) as alit) |] -> let pos = Position.(arg 0 stop) in _idx_unit_ineq := if !enable_trivial_ineq_ || !enable_demod_ineq_ then AL.fold_terms ~subterms:false ~vars:false ~pos ~which:`Max ~ord alit |> Iter.fold (fun acc (t,pos) -> assert (not (T.is_var t)); let with_pos = C.WithPos.( {term=t; pos; clause=c;} ) in f acc t with_pos) !_idx_unit_ineq else !_idx_unit_ineq | [| Lit.Int (AL.Divides d as alit) |] when d.AL.sign -> let pos = Position.(arg 0 stop) in _idx_unit_div := AL.fold_terms ~subterms:false ~vars:false ~pos ~which:`Max ~ord alit |> Iter.fold (fun acc (t,pos) -> assert (not (T.is_var t)); let with_pos = C.WithPos.( {term=t; pos; clause=c;} ) in f acc t with_pos) !_idx_unit_div | _ -> () end; () let () = Signal.on PS.ActiveSet.on_add_clause (fun c -> if !enable_arith_ then update PS.TermIndex.add c; Signal.ContinueListening); Signal.on PS.SimplSet.on_add_clause (fun c -> if !enable_arith_ then update_simpl PS.TermIndex.add c; Signal.ContinueListening); Signal.on PS.ActiveSet.on_remove_clause (fun c -> if !enable_arith_ then update PS.TermIndex.remove c; Signal.ContinueListening); Signal.on PS.SimplSet.on_remove_clause (fun c -> if !enable_arith_ then update_simpl PS.TermIndex.remove c; Signal.ContinueListening); () (** {2 Utils} *) (* data required for superposition *) module SupInfo = struct type t = { active : C.t; active_pos : Position.t; active_lit : AL.Focus.t; active_scope : int; passive : C.t; passive_pos : Position.t; passive_lit : AL.Focus.t; passive_scope : int; subst : US.t; } end let rule_canc = Proof.Rule.mk "canc_sup" (* do cancellative superposition *) let _do_canc info acc = let open SupInfo in let ord = Ctx.ord () in let renaming = Subst.Renaming.create () in let us = info.subst in let subst = US.subst us in let idx_a, _ = Lits.Pos.cut info.active_pos in let idx_p, _ = Lits.Pos.cut info.passive_pos in let s_a = info.active_scope and s_p = info.passive_scope in let lit_a = ALF.apply_subst renaming subst (info.active_lit,s_a) in let lit_p = ALF.apply_subst renaming subst (info.passive_lit,s_p) in Util.debugf ~section 5 "@[<2>arith superposition@ between @[%a[%d]@]@ and @[%a[%d]@]@ (subst @[%a@])...@]" (fun k->k C.pp info.active s_a C.pp info.passive s_p Subst.pp subst); (* check ordering conditions *) if C.is_maxlit (info.active,s_a) subst ~idx:idx_a && C.is_maxlit (info.passive,s_p) subst ~idx:idx_p && ALF.is_max ~ord lit_a (* && ALF.is_max ~ord lit_p *) then ( (* the active literals *) let lit_a, lit_p = ALF.scale lit_a lit_p in (* other literals *) let lits_a = CCArray.except_idx (C.lits info.active) idx_a in let lits_a = Lit.apply_subst_list renaming subst (lits_a,s_a) in let lits_p = CCArray.except_idx (C.lits info.passive) idx_p in let lits_p = Lit.apply_subst_list renaming subst (lits_p,s_p) in let c_guard = Lit.of_unif_subst renaming us in (* new literal: lit_a=[t+m1=m2], lit_p=[t'+m1' R m2'] for some relation R. Now let's replace t' by [m2-m1] in lit', ie, build m = [m1'-m2'+(m2-m1) R 0]. *) let mf_a, m_a = match lit_a with | ALF.Left (AL.Equal, mf, m) | ALF.Right (AL.Equal, m, mf) -> mf, m | _ -> assert false in let new_lit = match lit_p with | ALF.Left (op, mf_p, m_p) -> Lit.mk_arith_op op (M.sum (MF.rest mf_p) m_a) (M.sum m_p (MF.rest mf_a)) | ALF.Right (op, m_p, mf_p) -> Lit.mk_arith_op op (M.sum m_p (MF.rest mf_a)) (M.sum (MF.rest mf_p) m_a) | ALF.Div _ -> Lit.mk_arith (ALF.replace lit_p (M.difference m_a (MF.rest mf_a))) in let all_lits = new_lit :: c_guard @ lits_a @ lits_p in (* build clause *) let proof = Proof.Step.inference ~tags:[Proof.Tag.T_lia] ~rule:rule_canc [C.proof_parent_subst renaming (info.active,s_a) subst; C.proof_parent_subst renaming (info.passive,s_p) subst] in let trail = C.trail_l [info.active;info.passive] in let penalty = max (C.penalty info.active) (C.penalty info.passive) in let new_c = C.create ~penalty ~trail all_lits proof in Util.debugf ~section 5 "@[<2>... gives@ @[%a@]@]" (fun k->k C.pp new_c); Util.incr_stat stat_arith_sup; new_c :: acc ) else ( Util.debug ~section 5 "... has bad ordering conditions"; acc ) let canc_sup_active c = Util.enter_prof prof_arith_sup; let ord = Ctx.ord () in let eligible = C.Eligible.(pos ** max c ** filter Lit.is_arith_eq) in let sc_a = 0 and sc_p = 1 in let res = Lits.fold_arith_terms ~eligible ~which:`Max ~ord (C.lits c) |> Iter.fold (fun acc (t,active_lit,active_pos) -> assert (ALF.op active_lit = `Binary AL.Equal); Util.debugf ~section 5 "@[<2>active canc. sup.@ with @[%a@]@ in @[%a@]@]" (fun k->k ALF.pp active_lit C.pp c); PS.TermIndex.retrieve_unifiables (!_idx_all,sc_p) (t,sc_a) |> Iter.fold (fun acc (t',with_pos,subst) -> let passive = with_pos.C.WithPos.clause in let passive_pos = with_pos.C.WithPos.pos in let passive_lit = Lits.View.get_arith_exn (C.lits passive) passive_pos in Util.debugf ~section 5 "@[<4> possible match:@ @[%a@]@ in @[%a@]@]" (fun k->k ALF.pp passive_lit C.pp passive); (* now to unify active_lit and passive_lit further *) if T.is_var t || T.is_var t' then acc else ALF.unify ~subst (active_lit,sc_a) (passive_lit,sc_p) |> Iter.fold (fun acc (active_lit, passive_lit, subst) -> let info = SupInfo.({ active=c; active_pos; active_lit; active_scope=sc_a; passive; passive_pos; passive_lit; passive_scope=sc_p; subst; }) in _do_canc info acc) acc) acc) [] in Util.exit_prof prof_arith_sup; res let canc_sup_passive c = Util.enter_prof prof_arith_sup; let ord = Ctx.ord () in let eligible = C.Eligible.(max c ** arith) in let sc_a = 0 and sc_p = 1 in let res = Lits.fold_arith_terms ~eligible ~which:`All ~ord (C.lits c) |> Iter.fold (fun acc (t,passive_lit,passive_pos) -> Util.debugf ~section 5 "@[<2>passive canc. sup.@ with @[%a@]@ in @[%a@]@]" (fun k->k ALF.pp passive_lit C.pp c); PS.TermIndex.retrieve_unifiables (!_idx_eq,sc_a) (t,sc_p) |> Iter.fold (fun acc (t',with_pos,subst) -> let active = with_pos.C.WithPos.clause in let active_pos = with_pos.C.WithPos.pos in let active_lit = Lits.View.get_arith_exn (C.lits active) active_pos in (* must have an equation as active lit *) match ALF.op active_lit with | `Binary AL.Equal when not (T.is_var t) && not (T.is_var t') -> Util.debugf ~section 5 "@[<4> possible match:@ @[%a@]@ in @[%a@]@]" (fun k->k ALF.pp passive_lit C.pp c); (* unify literals further *) ALF.unify ~subst (active_lit,sc_a) (passive_lit,sc_p) |> Iter.fold (fun acc (active_lit, passive_lit, subst) -> let info = SupInfo.({ active; active_pos; active_lit; active_scope=sc_a; passive=c; passive_pos; passive_lit; passive_scope=sc_p; subst; }) in _do_canc info acc ) acc | _ -> acc) acc) [] in Util.exit_prof prof_arith_sup; res exception SimplifyInto of AL.t * C.t * S.t (* how to simplify the passive lit with the active lit, in one step *) let _try_demod_step ~subst passive_lit _s_p c pos active_lit s_a c' _pos' = let ord = Ctx.ord () in let i = Lits.Pos.idx pos in let renaming = S.Renaming.create () in let active_lit' = ALF.apply_subst renaming subst (active_lit,s_a) in (* restrictions: - the rewriting term must be bigger than other terms (in other words, the inference is strictly decreasing) - all variables of active clause must be bound by subst - must not rewrite itself (c != c') - trail(active) must subsume trail(passive) *) if ALF.is_strictly_max ~ord active_lit' && (C.Seq.vars c' |> Iter.for_all (fun v -> S.mem subst ((v:Type.t HVar.t:>InnerTerm.t HVar.t),s_a))) && ( (C.lits c |> Array.length) > 1 || not(Lit.equal (C.lits c).(i) (C.lits c').(0)) || not(ALF.is_max ~ord passive_lit && C.is_maxlit (c,0) S.empty ~idx:i) ) && (C.trail_subsumes c' c) then ( (* we know all variables of [active_lit] are bound, no need for a renaming *) let active_lit = ALF.apply_subst Subst.Renaming.none subst (active_lit,s_a) in let active_lit, passive_lit = ALF.scale active_lit passive_lit in match active_lit, passive_lit with | ALF.Left (AL.Equal, mf1, m1), _ | ALF.Right (AL.Equal, m1, mf1), _ -> let new_lit = ALF.replace passive_lit (M.difference m1 (MF.rest mf1)) in raise (SimplifyInto (new_lit, c',subst)) | ALF.Div d1, ALF.Div d2 when d1.AL.sign -> let n1 = Z.pow d1.AL.num d1.AL.power and n2 = Z.pow d2.AL.num d2.AL.power in let gcd = Z.gcd (MF.coeff d1.AL.monome) (MF.coeff d2.AL.monome) in (* simplification: we only do the rewriting if both literals have exactly the same num and power... TODO: generalize *) if Z.equal n1 n2 && Z.lt gcd Z.(pow d2.AL.num d2.AL.power) then let new_lit = ALF.replace passive_lit (M.uminus (MF.rest d1.AL.monome)) in raise (SimplifyInto (new_lit, c',subst)) | _ -> () ) else () (* reduce an arithmetic literal to its current normal form *) let rec _demod_lit_nf ~add_lit ~add_premise ~i c a_lit = let ord = Ctx.ord () in let s_a = 1 and s_p = 0 in (* scopes *) (* which term indexes can be used *) let indexes = match a_lit with | AL.Divides _ -> [!_idx_unit_div; !_idx_unit_eq] | AL.Binary _ -> [!_idx_unit_eq] in begin try AL.fold_terms ~pos:Position.stop ~vars:false ~which:`Max ~ord ~subterms:false a_lit |> Iter.iter (fun (t,lit_pos) -> assert (not (T.is_var t)); let passive_lit = ALF.get_exn a_lit lit_pos in (* search for generalizations of [t] *) List.iter (fun index -> PS.TermIndex.retrieve_generalizations (index,s_a) (t,s_p) |> Iter.iter (fun (_t',with_pos,subst) -> let c' = with_pos.C.WithPos.clause in let pos' = with_pos.C.WithPos.pos in assert (C.is_unit_clause c'); assert (Lits.Pos.idx pos' = 0); let active_lit = Lits.View.get_arith_exn (C.lits c') pos' in let pos = Position.(arg i lit_pos) in _try_demod_step ~subst passive_lit s_p c pos active_lit s_a c' pos')) indexes ); (* could not simplify, keep the literal *) add_lit (Lit.mk_arith a_lit) with SimplifyInto (a_lit',c',subst) -> (* lit ----> lit' *) add_premise c' subst; (* recurse until the literal isn't reducible *) Util.debugf ~section 4 "@[<2>rewrite arith lit (@[%a@])@ into (@[%a@])@ using clause @[%a@]@ and subst @[%a@]@]" (fun k->k AL.pp a_lit AL.pp a_lit' C.pp c' S.pp subst); _demod_lit_nf ~add_premise ~add_lit ~i c a_lit' end let eq_c_subst (c1,s1)(c2,s2) = C.equal c1 c2 && Subst.equal s1 s2 (* demodulation (simplification) *) let _demodulation c = Util.enter_prof prof_arith_demod; let did_simplify = ref false in let lits = ref [] in (* simplified literals *) let add_lit l = lits := l :: !lits in let clauses = ref [] in (* simplifying clauses *) (* add a rewriting clause *) let add_premise c' subst = did_simplify := true; clauses := (c',subst) :: !clauses in (* simplify each and every literal *) Lits.fold_lits ~eligible:C.Eligible.always (C.lits c) |> Iter.iter (fun (lit,i) -> match lit with | Lit.Int a_lit -> _demod_lit_nf ~add_lit ~add_premise ~i c a_lit | _ -> add_lit lit (* keep non-arith literals *) ); (* build result clause (if it was simplified) *) let res = if !did_simplify then ( clauses := CCList.uniq ~eq:eq_c_subst !clauses; let proof = Proof.Step.inference ~tags:[Proof.Tag.T_lia] ~rule:(Proof.Rule.mk "canc_demod") (C.proof_parent c :: List.rev_map (fun (c,subst) -> C.proof_parent_subst Subst.Renaming.none (c,1) subst) !clauses) in let trail = C.trail c in let new_c = C.create ~penalty:(C.penalty c) ~trail (List.rev !lits) proof in Util.incr_stat stat_arith_demod; Util.debugf ~section 5 "@[<2>arith demodulation@ of @[%a@]@ with [@[%a@]]@ gives @[%a@]@]" (fun k-> let pp_c_s out (c,s) = Format.fprintf out "(@[%a@ :subst %a@])" C.pp c Subst.pp s in k C.pp c (Util.pp_list pp_c_s) !clauses C.pp new_c); SimplM.return_new new_c ) else SimplM.return_same c in Util.exit_prof prof_arith_demod; res let canc_demodulation c = _demodulation c (* find clauses in which some literal could be rewritten by [c], iff [c] is a positive unit arith clause *) let canc_backward_demodulation c = Util.enter_prof prof_arith_backward_demod; let ord = Ctx.ord () in let res = C.ClauseSet.empty in let res = match C.lits c with | [| Lit.Int (AL.Binary (AL.Equal, _, _) as alit) |] -> AL.fold_terms ~vars:false ~which:`Max ~subterms:false ~ord alit |> Iter.fold (fun acc (t,pos) -> PS.TermIndex.retrieve_specializations (!_idx_all,0) (t,1) |> Iter.fold (fun acc (_t',with_pos,subst) -> let c' = with_pos.C.WithPos.clause in (* check whether the term [t] is indeed maximal in its literal (and clause) after substitution *) let alit' = ALF.get_exn alit pos in let alit' = ALF.apply_subst Subst.Renaming.none subst (alit',1) in if C.trail_subsumes c' c && ALF.is_max ~ord alit' then ( Util.incr_stat stat_arith_backward_demod; C.ClauseSet.add c' acc ) else acc) acc) C.ClauseSet.empty | [| Lit.Int (AL.Binary (AL.Lesseq, _m1, _m2)) |] -> res (* TODO *) | [| Lit.Int (AL.Divides d) |] when d.AL.sign -> res (* TODO *) | _ -> res (* no demod *) in Util.exit_prof prof_arith_backward_demod; res let cancellation c = Util.enter_prof prof_arith_cancellation; let ord = Ctx.ord () in let eligible = C.Eligible.(max c ** arith) in let res = Lits.fold_arith ~eligible (C.lits c) |> Iter.fold (fun acc (a_lit,pos) -> let idx = Lits.Pos.idx pos in (* cancellation depends on what the literal looks like *) match a_lit with | AL.Binary (op, m1, m2) -> Util.debugf ~section 5 "@[<2>try cancellation@ in @[%a@]@]" (fun k->k AL.pp a_lit); (* try to unify terms in [m1] and [m2] *) MF.unify_mm (m1,0) (m2,0) |> Iter.fold (fun acc (mf1, mf2, us) -> let renaming = Subst.Renaming.create () in let subst = US.subst us in let mf1' = MF.apply_subst renaming subst (mf1,0) in let mf2' = MF.apply_subst renaming subst (mf2,0) in let is_max_lit = C.is_maxlit (c,0) subst ~idx in Util.debugf ~section 5 "@[<4>... candidate:@ @[%a@] (max lit ? %B)@ :mf1 %a@ :mf2 %a@]" (fun k->k S.pp subst is_max_lit MF.pp mf1' MF.pp mf2'); if is_max_lit && MF.is_max ~ord mf1' && MF.is_max ~ord mf2' then ( (* do the inference *) let lits' = CCArray.except_idx (C.lits c) idx in let lits' = Lit.apply_subst_list renaming subst (lits',0) in let new_lit = Lit.mk_arith_op op (MF.rest mf1') (MF.rest mf2') in let c_guard = Literal.of_unif_subst renaming us in let all_lits = new_lit :: c_guard @ lits' in let proof = Proof.Step.inference ~tags:[Proof.Tag.T_lia] ~rule:(Proof.Rule.mk "cancellation") [C.proof_parent_subst renaming (c,0) subst] in let trail = C.trail c in let penalty = C.penalty c in let new_c = C.create ~trail ~penalty all_lits proof in Util.debugf ~section 3 "@[<2>cancellation@ of @[%a@]@ (with %a)@ into @[%a@]@]" (fun k->k C.pp c Subst.pp subst C.pp new_c); Util.incr_stat stat_arith_cancellation; new_c :: acc ) else acc ) acc | AL.Divides d -> Util.debugf ~section 5 "@[try cancellation@ in @[%a@]@]" (fun k->k AL.pp a_lit); MF.unify_self_monome (d.AL.monome,0) |> Iter.fold (fun acc (mf, us) -> let renaming = Subst.Renaming.create () in let subst = US.subst us in let mf' = MF.apply_subst renaming subst (mf,0) in if C.is_maxlit (c,0) subst ~idx && MF.is_max ~ord mf then ( let lits' = CCArray.except_idx (C.lits c) idx in let lits' = Lit.apply_subst_list renaming subst (lits',0) in let new_lit = Lit.mk_divides ~sign:d.AL.sign d.AL.num ~power:d.AL.power (MF.to_monome mf') in let c_guard = Literal.of_unif_subst renaming us in let all_lits = new_lit :: c_guard @ lits' in let proof = Proof.Step.inference ~tags:[Proof.Tag.T_lia] ~rule:(Proof.Rule.mk "cancellation") [C.proof_parent_subst renaming (c,0) subst] in let trail = C.trail c and penalty = C.penalty c in let new_c = C.create ~trail ~penalty all_lits proof in Util.debugf ~section 3 "@[<2>cancellation@ of @[%a@]@ (with %a)@ into @[%a@]@]" (fun k->k C.pp c Subst.pp subst C.pp new_c); Util.incr_stat stat_arith_cancellation; new_c :: acc ) else acc) acc) [] in Util.exit_prof prof_arith_cancellation; res let rule_canc_eq_fact = Proof.Rule.mk "arith_eq_factoring" let canc_equality_factoring c = Util.enter_prof prof_arith_eq_factoring; let ord = Ctx.ord () in let eligible = C.Eligible.(max c ** filter Lit.is_arith_eq) in let res = Lits.fold_arith_terms ~which:`Max ~eligible ~ord (C.lits c) |> Iter.fold (fun acc (t1,lit1,pos1) -> assert(ALF.op lit1 = `Binary AL.Equal); let idx1 = Lits.Pos.idx pos1 in (* lit1 is the factored literal *) Lits.fold_arith_terms ~which:`Max ~ord ~eligible:C.Eligible.(filter Lit.is_arith_eq) (C.lits c) |> Iter.fold (fun acc (t2,lit2,pos2) -> assert(ALF.op lit2 = `Binary AL.Equal); let idx2 = Lits.Pos.idx pos2 in let mf1 = ALF.focused_monome lit1 and mf2 = ALF.focused_monome lit2 in try if idx1 = idx2 then raise Unif.Fail; (* exit *) let subst = Unif.FO.unify_full (t1,0) (t2,0) in Util.debugf ~section 5 "@[<2>arith canc. eq. factoring:@ possible match in @[%a@]@ (at %d, %d)@]" (fun k->k C.pp c idx1 idx2); MF.unify_ff ~subst (mf1,0) (mf2,0) |> Iter.fold (fun acc (_, _, us) -> let renaming = Subst.Renaming.create () in let subst = US.subst us in let lit1' = ALF.apply_subst renaming subst (lit1,0) in let lit2' = ALF.apply_subst renaming subst (lit2,0) in if C.is_maxlit (c,0) subst ~idx:idx1 && ALF.is_max ~ord lit1' && ALF.is_max ~ord lit2' then ( (* lit1 is a.t + l1 = l2, lit2 is a'.t + l1' = l2', so we scale them, and replace lit1 with a'.l1 + a.l2' != a'.l2 + a.l1' *) let lit1', lit2' = ALF.scale lit1' lit2' in let m1 = ALF.opposite_monome_exn lit1' and mf1 = ALF.focused_monome lit1' and m2 = ALF.opposite_monome_exn lit2' and mf2 = ALF.focused_monome lit2' in let new_lit = Lit.mk_arith_neq (M.sum m1 (MF.rest mf2)) (M.sum m2 (MF.rest mf1)) in let other_lits = CCArray.except_idx (C.lits c) idx1 in let other_lits = Lit.apply_subst_list renaming subst (other_lits,0) in let c_guard = Literal.of_unif_subst renaming us in (* apply subst and build clause *) let all_lits = new_lit :: c_guard @ other_lits in let proof = Proof.Step.inference ~tags:[Proof.Tag.T_lia] ~rule:rule_canc_eq_fact [C.proof_parent_subst renaming (c,0) subst] in let penalty = C.penalty c and trail = C.trail c in let new_c = C.create ~trail ~penalty all_lits proof in Util.debugf ~section 5 "@[<2>arith_eq_factoring:@ @[%a@]@ gives @[%a@]@]" (fun k->k C.pp c C.pp new_c); Util.incr_stat stat_arith_eq_factoring; new_c :: acc ) else acc) acc with Unif.Fail -> acc) acc) [] in Util.exit_prof prof_arith_eq_factoring; res (** Data necessary to fully describe a chaining inference. [left] is basically the clause/literal in which the chained term is on the left of <, [right] is the other one. *) module ChainingInfo = struct type t = { left : C.t; left_scope : int; left_pos : Position.t; left_lit : AL.Focus.t; right : C.t; right_scope : int; right_pos : Position.t; right_lit : AL.Focus.t; subst : US.t; } end (* range from low to low+len *) let _range low len = let rec make acc i len = if Z.sign len < 0 then acc else make (i::acc) (Z.succ i) (Z.pred len) in make [] low len (* cancellative chaining *) let _do_chaining info acc = let open ChainingInfo in let ord = Ctx.ord () in let renaming = S.Renaming.create () in let us = info.subst in let subst = US.subst us in let idx_l, _ = Lits.Pos.cut info.left_pos in let idx_r, _ = Lits.Pos.cut info.right_pos in let s_l = info.left_scope and s_r = info.right_scope in let lit_l = ALF.apply_subst renaming subst (info.left_lit,s_l) in let lit_r = ALF.apply_subst renaming subst (info.right_lit,s_r) in Util.debugf ~section 5 "@[<2>arith chaining@ between @[%a[%d]@]@ and @[%a[%d]@]@ (subst @[%a@])...@]" (fun k->k C.pp info.left s_l C.pp info.right s_r Subst.pp subst); (* check ordering conditions *) if C.is_maxlit (info.left,s_l) subst ~idx:idx_l && C.is_maxlit (info.right,s_r) subst ~idx:idx_r && ALF.is_max ~ord lit_l && ALF.is_max ~ord lit_r then ( (* scale literals *) let lit_l, lit_r = ALF.scale lit_l lit_r in match lit_l, lit_r with | ALF.Left (AL.Lesseq, mf_1, m1), ALF.Right (AL.Lesseq, m2, mf_2) -> (* m2 ≤ mf_2 and mf_1 ≤ m1, with mf_1 and mf_2 sharing the same focused term. We deduce m2 + mf_1 ≤ m1 + mf_2 and cancel the term out (after scaling) *) assert (Z.equal (MF.coeff mf_1) (MF.coeff mf_2)); let new_lit = Lit.mk_arith_lesseq (M.sum m2 (MF.rest mf_1)) (M.sum m1 (MF.rest mf_2)) in let lits_l = CCArray.except_idx (C.lits info.left) idx_l in let lits_l = Lit.apply_subst_list renaming subst (lits_l,s_l) in let lits_r = CCArray.except_idx (C.lits info.right) idx_r in let lits_r = Lit.apply_subst_list renaming subst (lits_r,s_r) in let c_guard = Literal.of_unif_subst renaming us in let all_lits = new_lit :: c_guard @ lits_l @ lits_r in let proof = Proof.Step.inference ~tags:[Proof.Tag.T_lia] ~rule:(Proof.Rule.mk "canc_ineq_chaining") [C.proof_parent_subst renaming (info.left,s_l) subst; C.proof_parent_subst renaming (info.right,s_r) subst] in let trail = C.trail_l [info.left; info.right] in (* penalty for some chaining *) let penalty = max (C.penalty info.left) (C.penalty info.right) + 3 (* nested chainings are dangerous *) + (if MF.term mf_1 |> T.is_var then 10 else 0) + (if MF.term mf_2 |> T.is_var then 10 else 0) in let new_c = C.create ~penalty ~trail all_lits proof in Util.debugf ~section 5 "@[<2>ineq chaining@ of @[%a@]@ and @[%a@]@ gives @[%a@]@]" (fun k->k C.pp info.left C.pp info.right C.pp new_c); Util.incr_stat stat_arith_ineq_chaining; let acc = new_c :: acc in (* now, maybe we can also perform case switch! We can if mf_1 - m1 = k + (m2 - mf_2). In this case necessarily Or_{i=0...k} mf_2 = m2 + i *) let diff = M.difference (M.sum m1 (MF.rest mf_2)) (M.sum m2 (MF.rest mf_1)) in if M.is_const diff && Z.leq (M.const diff) Z.(of_int !case_switch_limit) then ( (* re-use lits_l and lits_r, but build an enumeration *) let new_lits = List.map (fun i -> (* mf_2 = m2 + i *) Lit.mk_arith_eq (MF.to_monome mf_2) (M.add_const m2 i)) (_range Z.zero (M.const diff)) in let all_lits = CCList.flatten [new_lits; c_guard; lits_l; lits_r] in let proof = Proof.Step.inference ~tags:[Proof.Tag.T_lia] ~rule:(Proof.Rule.mk "canc_case_switch") [C.proof_parent_subst renaming (info.left,s_l) subst; C.proof_parent_subst renaming (info.right,s_r) subst] in let trail = C.trail_l [info.left; info.right] in (* small penalty for case switch *) let penalty = max (C.penalty info.left) (C.penalty info.right) + 3 in let new_c = C.create ~trail ~penalty all_lits proof in Util.debugf ~section 5 "@[<2>case switch@ of @[%a@]@ and @[%a@]@ gives @[%a@]@]" (fun k->k C.pp info.left C.pp info.right C.pp new_c); Util.incr_stat stat_arith_case_switch; new_c :: acc ) else acc | _ -> assert false ) else acc let canc_ineq_chaining c = Util.enter_prof prof_arith_ineq_chaining; let ord = Ctx.ord () in let eligible = C.Eligible.(max c ** filter Lit.is_arith_lesseq) in let sc_l = 0 and sc_r = 1 in let res = Lits.fold_arith_terms ~eligible ~ord ~which:`Max (C.lits c) |> Iter.fold (fun acc (t,lit,pos) -> match lit with | _ when T.is_var t -> acc (* ignore variables *) | ALF.Left (AL.Lesseq, mf_l, _) -> (* find a right-chaining literal in some other clause *) PS.TermIndex.retrieve_unifiables (!_idx_ineq_right,sc_r) (t,sc_l) |> Iter.fold (fun acc (_t',with_pos,subst) -> let right = with_pos.C.WithPos.clause in let right_pos = with_pos.C.WithPos.pos in let lit_r = Lits.View.get_arith_exn (C.lits right) right_pos in match lit_r with | ALF.Right (AL.Lesseq, _, mf_r) -> MF.unify_ff ~subst (mf_l,sc_l) (mf_r,sc_r) |> Iter.fold (fun acc (_, _, subst) -> let info = ChainingInfo.({ left=c; left_scope=sc_l; left_lit=lit; left_pos=pos; right; right_scope=sc_r; right_lit=lit_r; right_pos; subst; }) in _do_chaining info acc) acc | _ -> acc) acc | ALF.Right (AL.Lesseq, _, mf_r) -> (* find a right-chaining literal in some other clause *) PS.TermIndex.retrieve_unifiables (!_idx_ineq_left,sc_l) (t,sc_r) |> Iter.fold (fun acc (_t',with_pos,subst) -> let left = with_pos.C.WithPos.clause in let left_pos = with_pos.C.WithPos.pos in let lit_l = Lits.View.get_arith_exn (C.lits left) left_pos in match lit_l with | ALF.Left (AL.Lesseq, mf_l, _) -> MF.unify_ff ~subst (mf_l,sc_l) (mf_r,sc_r) |> Iter.fold (fun acc (_, _, subst) -> let info = ChainingInfo.({ left; left_scope=sc_l; left_lit=lit_l; left_pos; subst; right=c; right_scope=sc_r; right_lit=lit; right_pos=pos; }) in _do_chaining info acc) acc | _ -> acc) acc | _ -> assert false) [] in Util.exit_prof prof_arith_ineq_chaining; res (* TODO: update with equality case, check that signs correct *) let canc_ineq_factoring c = Util.enter_prof prof_arith_ineq_factoring; let ord = Ctx.ord () in let acc = ref [] in (* do the factoring if ordering conditions are ok *) let _do_factoring ~subst:us lit1 lit2 i j = let renaming = S.Renaming.create () in let subst = US.subst us in let lit1 = ALF.apply_subst renaming subst (lit1,0) in let lit2 = ALF.apply_subst renaming subst (lit2,0) in (* same coefficient for the focused term *) let lit1, lit2 = ALF.scale lit1 lit2 in match lit1, lit2 with | ALF.Left (AL.Lesseq, mf1, m1), ALF.Left (AL.Lesseq, mf2, m2) | ALF.Right (AL.Lesseq, m1, mf1), ALF.Right (AL.Lesseq, m2, mf2) -> (* mf1 ≤ m1 or mf2 ≤ m2 (symmetry with > if needed) so we deduce that if m1-mf1.rest ≤ m2 - mf2.rest then the first literal implies the second, so we only keep the second one *) assert (Z.equal (MF.coeff mf1) (MF.coeff mf2)); if (C.is_maxlit (c,0) subst ~idx:i || C.is_maxlit (c,0) subst ~idx:j) && (ALF.is_max ~ord lit1 || ALF.is_max ~ord lit2) then ( let left = match lit1 with ALF.Left _ -> true | _ -> false in (* remove lit1, add the guard *) let other_lits = CCArray.except_idx (C.lits c) i in let other_lits = Lit.apply_subst_list renaming subst (other_lits,0) in (* build new literal *) let new_lit = if left then Lit.mk_arith_lesseq (M.difference m1 (MF.rest mf1)) (M.difference m2 (MF.rest mf2)) else Lit.mk_arith_lesseq (M.difference m2 (MF.rest mf2)) (M.difference m1 (MF.rest mf1)) in (* negate the literal to obtain a guard *) let new_lit = Lit.negate new_lit in let c_guard = Literal.of_unif_subst renaming us in let lits = new_lit :: c_guard @ other_lits in (* build clauses *) let proof = Proof.Step.inference ~tags:[Proof.Tag.T_lia] ~rule:(Proof.Rule.mk "canc_ineq_factoring") [C.proof_parent_subst renaming (c,0) subst] in let trail = C.trail c and penalty = C.penalty c in let new_c = C.create ~trail ~penalty lits proof in Util.debugf ~section 5 "@[<2>ineq factoring@ of @[%a@]@ gives @[%a@]@" (fun k->k C.pp c C.pp new_c); Util.incr_stat stat_arith_ineq_factoring; acc := new_c :: !acc ) | _ -> () in (* traverse the clause to find matching pairs *) let eligible = C.Eligible.(max c ** filter Lit.is_arith_lesseq) in Lits.fold_arith ~eligible (C.lits c) |> Iter.iter (fun (lit1,pos1) -> let i = Lits.Pos.idx pos1 in let eligible' = C.Eligible.(filter Lit.is_arith_lesseq) in Lits.fold_arith ~eligible:eligible' (C.lits c) |> Iter.iter (fun (lit2,pos2) -> let j = Lits.Pos.idx pos2 in match lit1, lit2 with | _ when i=j -> () (* need distinct lits *) | AL.Binary (AL.Lesseq, l1, r1), AL.Binary (AL.Lesseq, l2, r2) -> (* see whether we have l1 < a.x + mf1 and l2 < a.x + mf2 *) MF.unify_mm (r1,0) (r2,0) (fun (mf1,mf2,subst) -> let lit1 = ALF.mk_right AL.Lesseq l1 mf1 in let lit2 = ALF.mk_right AL.Lesseq l2 mf2 in _do_factoring ~subst lit1 lit2 i j ); (* see whether we have a.x + mf1 < r1 and a.x + mf2 < r2 *) MF.unify_mm (l1,0) (l2,0) (fun (mf1,mf2,subst) -> let lit1 = ALF.mk_left AL.Lesseq mf1 r1 in let lit2 = ALF.mk_left AL.Lesseq mf2 r2 in _do_factoring ~subst lit1 lit2 i j ); () | _ -> assert false ) ); Util.exit_prof prof_arith_ineq_factoring; !acc (** One-shot literal/clause removal. We use unit clauses to try to prove a literal absurd/tautological, possibly using {b several} instances of unit clauses. For instance, 0 ≤ f(x) makes 0 ≤ f(a) + f(b) redundant, but subsumption is not able to detect it. *) (* allow traces of depth at most 3 *) let max_ineq_trivial_steps = 3 (* rewrite a literal [l] into a smaller literal [l'], such that [l'] and the current set of unit clauses imply [l]; then compute the transitive closure of this relation. If we obtain a trivial literal, then [l] is redundant (we keep a trace of literals used). We use continuations to deal with the multiple choices. *) let rec _ineq_find_sufficient ~ord ~trace c lit k = match lit with | _ when AL.is_trivial lit -> k (trace,lit) | _ when List.length trace >= max_ineq_trivial_steps -> () (* need another step, but it would exceed the limit *) | AL.Binary _ when Iter.exists T.is_var (AL.Seq.terms lit) -> () (* no way we rewrite this into a tautology *) | AL.Binary (AL.Lesseq, _, _) -> Util.incr_stat stat_arith_trivial_ineq; Util.debugf ~section 5 "(@[try_ineq_find_sufficient@ :lit `%a`@ :trace (@[%a@])@])" (fun k->k AL.pp lit (Util.pp_list C.pp) trace); AL.fold_terms ~vars:false ~which:`Max ~ord ~subterms:false lit |> Iter.iter (fun (t,pos) -> let plit = ALF.get_exn lit pos in let is_left = match pos with | Position.Left _ -> true | Position.Right _ -> false | _ -> assert false in (* try to eliminate [t] in passive lit [plit]*) PS.TermIndex.retrieve_generalizations (!_idx_unit_ineq,1) (t,0) |> Iter.iter (fun (_t',with_pos,subst) -> let active_clause = with_pos.C.WithPos.clause in let active_pos = with_pos.C.WithPos.pos in match Lits.View.get_arith (C.lits active_clause) active_pos with | None -> assert false | Some (ALF.Left (AL.Lesseq, _, _) as alit') when is_left -> let alit' = ALF.apply_subst Subst.Renaming.none subst (alit',1) in if C.trail_subsumes active_clause c && ALF.is_strictly_max ~ord alit' then ( (* scale *) let plit, _alit' = ALF.scale plit alit' in let mf1', m2' = match Lits.View.get_arith (C.lits active_clause) active_pos with | Some (ALF.Left (_, mf1', m2')) -> mf1', m2' | _ -> assert false in let mf1' = MF.apply_subst Subst.Renaming.none subst (mf1',1) in let m2' = M.apply_subst Subst.Renaming.none subst (m2',1) in (* from t+mf1 ≤ m2 and t+mf1' ≤ m2', we deduce that if m2'-mf1' ≤ m2-mf1 then [lit] is redundant. That is, the sufficient literal is mf1 + m2' ≤ m2 + mf1' (we replace [t] with [m2'-mf1']) *) let new_plit = ALF.replace plit (M.difference m2' (MF.rest mf1')) in (* transitive closure *) let trace = active_clause::trace in _ineq_find_sufficient ~ord ~trace c new_plit k ) | Some (ALF.Right (AL.Lesseq, _, _) as alit') when not is_left -> (* symmetric case *) let alit' = ALF.apply_subst Subst.Renaming.none subst (alit',1) in if C.trail_subsumes active_clause c && ALF.is_strictly_max ~ord alit' then ( (* scale *) let plit, _alit' = ALF.scale plit alit' in let m1', mf2' = match Lits.View.get_arith (C.lits active_clause) active_pos with | Some (ALF.Right (_, m1', mf2')) -> m1', mf2' | _ -> assert false in let mf2' = MF.apply_subst Subst.Renaming.none subst (mf2',1) in let m1' = M.apply_subst Subst.Renaming.none subst (m1',1) in let new_plit = ALF.replace plit (M.difference m1' (MF.rest mf2')) in (* transitive closure *) let trace = active_clause::trace in _ineq_find_sufficient ~ord ~trace c new_plit k ) | Some _ -> () (* cannot make a sufficient literal *) ) ) | _ -> () (* is a literal redundant w.r.t the current set of unit clauses *) let _ineq_is_redundant_by_unit c lit = match lit with | _ when Lit.is_trivial lit || Lit.is_absurd lit -> None (* something more efficient will take care of it *) | Lit.Int (AL.Binary (AL.Lesseq, _m1, _m2) as alit) -> let ord = Ctx.ord () in let traces = _ineq_find_sufficient ~ord ~trace:[] c alit |> Iter.head (* one is enough *) in begin match traces with | Some (trace, _lit') -> assert (AL.is_trivial _lit'); let trace = CCList.uniq ~eq:C.equal trace in Some trace | None -> None end | _ -> None let is_redundant_by_ineq c = Util.enter_prof prof_arith_trivial_ineq; let res = CCArray.exists (fun lit -> match _ineq_is_redundant_by_unit c lit with | None -> false | Some trace -> Util.debugf ~section 3 "@[<2>clause @[%a@]@ trivial by inequations @[%a@]@]" (fun k->k C.pp c (CCFormat.list C.pp) trace); Util.incr_stat stat_arith_trivial_ineq_steps; true) (C.lits c) in Util.exit_prof prof_arith_trivial_ineq; res (* allow traces of depth at most 3 *) let max_ineq_demod_steps = 3 (* rewrite a literal [l] into a smaller literal [l'], such that [l] and the current set of unit clauses imply [l']; then compute the transitive closure of this relation. If we obtain an absurd literal, then [l] is absurd (we keep a trace of literals used). We use continuations to deal with the multiple choices. Each step looks like: from [l == (t <= u) && l' == (l <= t)] we deduce [l <= u]. If at some point we deduce [⊥], we win. *) let rec ineq_find_necessary_ ~ord ~trace c lit k = match lit with | _ when AL.is_absurd lit -> k (trace,lit) | _ when List.length trace >= max_ineq_demod_steps -> () (* need another step, but it would exceed the limit *) | AL.Binary _ when Iter.exists T.is_var (AL.Seq.terms lit) -> () (* too costly (will match too many things) *) | AL.Binary (AL.Lesseq, _, _) -> Util.incr_stat stat_arith_demod_ineq; Util.debugf ~section 5 "(@[try_ineq_find_necessary@ :lit `%a`@ :trace (@[%a@])@])" (fun k->k AL.pp lit (Util.pp_list C.pp) trace); AL.fold_terms ~vars:false ~which:`Max ~ord ~subterms:false lit |> Iter.iter (fun (t,pos) -> let plit = ALF.get_exn lit pos in let is_left = match pos with | Position.Left _ -> true | Position.Right _ -> false | _ -> assert false in (* try to eliminate [t] in passive lit [plit]*) PS.TermIndex.retrieve_generalizations (!_idx_unit_ineq,1) (t,0) |> Iter.iter (fun (_t',with_pos,subst) -> let active_clause = with_pos.C.WithPos.clause in let active_pos = with_pos.C.WithPos.pos in match Lits.View.get_arith (C.lits active_clause) active_pos with | None -> assert false | Some (ALF.Left (AL.Lesseq, _, _) as alit') when not is_left -> let alit' = ALF.apply_subst Subst.Renaming.none subst (alit',1) in if C.trail_subsumes active_clause c && ALF.is_strictly_max ~ord alit' then ( (* scale *) let plit, _alit' = ALF.scale plit alit' in let mf1', m2' = match Lits.View.get_arith (C.lits active_clause) active_pos with | Some (ALF.Left (_, mf1', m2')) -> mf1', m2' | _ -> assert false in let mf1' = MF.apply_subst Subst.Renaming.none subst (mf1',1) in let m2' = M.apply_subst Subst.Renaming.none subst (m2',1) in (* from m1 ≤ t+mf2 and t+mf1' ≤ m2', we deduce m1 + mf1' ≤ mf2 + m2'. If this literal is absurd then so is [m1 ≤ t+mf2]. We replace [t] with [m2'-mf1'] *) let new_plit = ALF.replace plit (M.difference m2' (MF.rest mf1')) in (* transitive closure *) let trace = active_clause::trace in ineq_find_necessary_ ~ord ~trace c new_plit k ) | Some (ALF.Right (AL.Lesseq, _, _) as alit') when is_left -> (* symmetric case *) let alit' = ALF.apply_subst Subst.Renaming.none subst (alit',1) in if C.trail_subsumes active_clause c && ALF.is_strictly_max ~ord alit' then ( (* scale *) let plit, _alit' = ALF.scale plit alit' in let m1', mf2' = match Lits.View.get_arith (C.lits active_clause) active_pos with | Some (ALF.Right (_, m1', mf2')) -> m1', mf2' | _ -> assert false in let mf2' = MF.apply_subst Subst.Renaming.none subst (mf2',1) in let m1' = M.apply_subst Subst.Renaming.none subst (m1',1) in let new_plit = ALF.replace plit (M.difference m1' (MF.rest mf2')) in (* transitive closure *) let trace = active_clause::trace in ineq_find_necessary_ ~ord ~trace c new_plit k ) | Some _ -> () (* cannot make a sufficient literal *) ) ) | _ -> () (* is a literal absurd w.r.t the current set of unit clauses *) let _ineq_is_absurd_by_unit c lit = match lit with | _ when Lit.is_trivial lit || Lit.is_absurd lit -> None (* something more efficient will take care of it *) | Lit.Int (AL.Binary (AL.Lesseq, _m1, _m2) as alit) -> let ord = Ctx.ord () in let traces = ineq_find_necessary_ ~ord ~trace:[] c alit |> Iter.head (* one is enough *) in begin match traces with | Some (trace, _lit') -> assert (AL.is_absurd _lit'); let trace = CCList.uniq ~eq:C.equal trace in Some trace | None -> None end | _ -> None (* demodulate using inequalities *) let demod_ineq c : C.t SimplM.t = Util.enter_prof prof_arith_demod_ineq; let res = CCArray.findi (fun i lit -> match _ineq_is_absurd_by_unit c lit with | None -> None | Some trace -> Util.debugf ~section 3 "@[<2>clause @[%a@]@ rewritten by inequations @[%a@]@]" (fun k->k C.pp c (CCFormat.list C.pp) trace); Util.incr_stat stat_arith_demod_ineq_steps; Some (i,trace)) (C.lits c) in let res = match res with | None -> SimplM.return_same c | Some (i,cs) -> let lits = CCArray.except_idx (C.lits c) i in let proof = Proof.Step.simp ~tags:[Proof.Tag.T_lia] ~rule:(Proof.Rule.mk "int.demod_ineq") (C.proof_parent c :: List.map C.proof_parent cs) in let c' = C.create lits proof ~penalty:(C.penalty c) ~trail:(C.trail c) in SimplM.return_new c' in Util.exit_prof prof_arith_demod_ineq; res (** {3 Divisibility} *) let canc_div_chaining c = let ord = Ctx.ord () in Util.enter_prof prof_arith_div_chaining; let eligible = C.Eligible.(max c ** filter Lit.is_arith_divides) in let sc1 = 0 and sc2 = 1 in (* do the inference (if ordering conditions are ok) *) let _do_chaining ~sign n power c1 lit1 pos1 c2 lit2 pos2 us acc = let renaming = Subst.Renaming.create () in let subst = US.subst us in let idx1 = Lits.Pos.idx pos1 and idx2 = Lits.Pos.idx pos2 in let lit1' = ALF.apply_subst renaming subst (lit1,sc1) in let lit2' = ALF.apply_subst renaming subst (lit2,sc2) in let lit1', lit2' = ALF.scale lit1' lit2' in let mf1' = ALF.focused_monome lit1' and mf2' = ALF.focused_monome lit2' in (* now we have two literals with the same power and coeff *) let gcd = Z.gcd (MF.coeff mf1') (MF.coeff mf2') in (* check that we didn't "overflow", and that ordering conditions are good *) Util.debugf ~section 5 "@[<2>div. chaining@ with @[%a@]@ between @[%a@] (at %a)@ and@ @[%a@] (at %a)@]" (fun k->k Subst.pp subst C.pp c1 Position.pp pos1 C.pp c2 Position.pp pos2); if Z.lt gcd Z.(pow n power) && C.is_maxlit (c1,sc1) subst ~idx:idx1 && C.is_maxlit (c2,sc2) subst ~idx:idx2 && ALF.is_max ~ord lit1' && ALF.is_max ~ord lit2' then ( let new_lit = Lit.mk_divides ~sign n ~power (M.difference (MF.rest mf1') (MF.rest mf2')) in let lits1 = CCArray.except_idx (C.lits c1) idx1 and lits2 = CCArray.except_idx (C.lits c2) idx2 in let lits1 = Lit.apply_subst_list renaming subst (lits1,sc1) and lits2 = Lit.apply_subst_list renaming subst (lits2,sc2) in let c_guard = Literal.of_unif_subst renaming us in let all_lits = new_lit :: c_guard @ lits1 @ lits2 in let proof = Proof.Step.inference ~tags:[Proof.Tag.T_lia] ~rule:(Proof.Rule.mk "div_chaining") [C.proof_parent_subst renaming (c1,sc1) subst; C.proof_parent_subst renaming (c2,sc2) subst] in let trail = C.trail_l [c1; c2] in (* penalize chaining into variables *) let penalty = max (C.penalty c1) (C.penalty c2) + (if MF.term mf1' |> T.is_var then 10 else 0) + (if MF.term mf2' |> T.is_var then 10 else 0) in let new_c = C.create ~trail ~penalty all_lits proof in Util.debugf ~section 5 "@[<4>... gives@ @[%a@]@]" (fun k->k C.pp new_c); Util.incr_stat stat_arith_div_chaining; new_c :: acc ) else ( Util.debug ~section 5 "... has bad ordering conditions"; acc ) in let res = Lits.fold_arith_terms ~eligible ~which:`Max ~ord (C.lits c) |> Iter.fold (fun acc (t,lit1,pos1) -> match lit1 with | ALF.Div d1 when AL.Util.is_prime d1.AL.num -> (* inferences only possible when lit1 is a power-of-prime *) let n = d1.AL.num in PS.TermIndex.retrieve_unifiables (!_idx_div,sc2) (t,sc1) |> Iter.fold (fun acc (_t',with_pos,subst) -> (* [subst t = subst t'], see whether they belong to the same group *) let c2 = with_pos.C.WithPos.clause in let pos2 = with_pos.C.WithPos.pos in let lit2 = Lits.View.get_arith_exn (C.lits c2) pos2 in match lit2 with | ALF.Div d2 when (d1.AL.sign || d2.AL.sign) && Z.equal n d2.AL.num -> (* inference seems possible (at least one lit is positive). start with scaling the literals to the same power *) let sign = d1.AL.sign && d2.AL.sign in let power = max d1.AL.power d2.AL.power in let lit1 = ALF.scale_power lit1 power and lit2 = ALF.scale_power lit2 power in let mf1 = ALF.focused_monome lit1 and mf2 = ALF.focused_monome lit2 in (* unify mf1 and mf2 as possible *) MF.unify_ff ~subst (mf1,sc1) (mf2,sc2) |> Iter.fold (fun acc (_, _, subst) -> _do_chaining ~sign n power c lit1 pos1 c2 lit2 pos2 subst acc) acc | _ -> acc) acc | _ -> acc) [] in Util.exit_prof prof_arith_div_chaining; res exception ReplaceLitByLitsInSameClause of int * Lit.t list exception ReplaceLitByLitsInManyClauses of int * Lit.t list let canc_div_case_switch c = let eligible = C.Eligible.(max c ** neg ** filter Lit.is_arith_divides) in try Lits.fold_arith ~eligible (C.lits c) |> Iter.iter (fun (lit,pos) -> match lit with | AL.Divides d -> assert (not (d.AL.sign)); let n = d.AL.num and power = d.AL.power in (* check that [n] is a not-too-big prime *) if Z.gt n Z.one && AL.Util.is_prime n then if Z.leq n (Z.of_int !div_case_switch_limit) then ( let idx = Lits.Pos.idx pos in (* build the list of alternatives *) let lits = ref [] in for e = 0 to power-1 do for i=1 to Z.to_int n - 1 do (* new lit: n^{e+1} | m + i·n^e *) let m' = M.add_const d.AL.monome Z.((n ** e) * of_int i) in let new_lit = Lit.mk_divides n ~power:(e+1) m' in lits := new_lit :: !lits done done; raise (ReplaceLitByLitsInSameClause (idx, !lits)) ) else Ctx.lost_completeness () else () | _ -> assert false ); [] with ReplaceLitByLitsInSameClause (i, lits) -> (* replace lit number [i] with [lits] *) let lits' = CCArray.except_idx (C.lits c) i in let all_lits = List.rev_append lits lits' in let proof = Proof.Step.inference ~tags:[Proof.Tag.T_lia] ~rule:(Proof.Rule.mk "div_case_switch") [C.proof_parent c] in let new_c = C.create ~trail:(C.trail c) ~penalty:(C.penalty c) all_lits proof in Util.debugf ~section 5 "@[<2>div_case_switch@ of @[%a@]@ into @[%a@]@]" (fun k->k C.pp c C.pp new_c); [new_c] let _pp_z out z = Z.pp_print out z let _pp_div out d = Format.fprintf out "%a^%d" _pp_z d.AL.Util.prime d.AL.Util.power let canc_div_prime_decomposition c = let eligible = C.Eligible.(max c ** filter Lit.is_arith_divides) in try Lits.fold_arith ~eligible (C.lits c) |> Iter.iter (fun (lit,pos) -> match lit with | AL.Divides d when d.AL.sign -> (* positive "divides" predicate *) let n = d.AL.num in (* check that [n] is a composite number *) if Z.gt n Z.one && not (AL.Util.is_prime n) then ( let n' = Z.pow n d.AL.power in let idx = Lits.Pos.idx pos in let divisors = AL.Util.prime_decomposition n' in Util.debugf ~section 5 "@[<2>composite num:@ @[%a = %a@]@]" (fun k->k _pp_z n' (Util.pp_list _pp_div) divisors); let lits = List.map (fun div -> Lit.mk_divides ~sign:true div.AL.Util.prime ~power:div.AL.Util.power d.AL.monome) divisors in raise (ReplaceLitByLitsInManyClauses (idx, lits)) ) | AL.Divides d -> (* negative "divides" predicate *) let n = d.AL.num in (* check that [n] is a composite number *) if Z.gt n Z.one && not (AL.Util.is_prime n) then ( let n' = Z.pow n d.AL.power in let idx = Lits.Pos.idx pos in let divisors = AL.Util.prime_decomposition n' in Util.debugf ~section 5 "@[<2>composite num:@ @[%a = %a@]@]" (fun k->k _pp_z n' (Util.pp_list _pp_div) divisors); assert (List.length divisors >= 2); let lits = List.map (fun div -> Lit.mk_divides ~sign:false div.AL.Util.prime ~power:div.AL.Util.power d.AL.monome) divisors in raise (ReplaceLitByLitsInSameClause (idx, lits)) ) | _ -> assert false ); None with | ReplaceLitByLitsInSameClause (i, lits) -> (* replace lit number [i] with [lits] *) let lits' = CCArray.except_idx (C.lits c) i in let all_lits = List.rev_append lits lits' in let proof = Proof.Step.inference ~tags:[Proof.Tag.T_lia] ~rule:(Proof.Rule.mk "div_prime_decomposition") [C.proof_parent c] in let new_c = C.create ~trail:(C.trail c) ~penalty:(C.penalty c) all_lits proof in Util.debugf ~section 5 "@[<2>prime_decomposition- of@ @[%a@]@ into @[%a@]@]" (fun k->k C.pp c C.pp new_c); Some [new_c] | ReplaceLitByLitsInManyClauses (i, lits) -> let clauses = List.map (fun lit -> let all_lits = Array.copy (C.lits c) in all_lits.(i) <- lit; let proof = Proof.Step.inference ~tags:[Proof.Tag.T_lia] [C.proof_parent c] ~rule:(Proof.Rule.mk "div_prime_decomposition") in let new_c = C.create_a ~trail:(C.trail c) ~penalty:(C.penalty c) all_lits proof in new_c) lits in Util.debugf ~section 5 "@[<2>prime_decomposition+@ of @[%a@]@ into set {@[%a@]}@]" (fun k->k C.pp c (Util.pp_list C.pp) clauses); Some clauses let canc_divisibility c = Util.enter_prof prof_arith_divisibility; (* inference on 1/ positive eq 2/ positive divisibility *) let eligible = C.Eligible.(max c ** (filter Lit.is_arith_eq ++ (pos ** filter Lit.is_arith_divides))) in let ord = Ctx.ord () in let res = Lits.fold_arith_terms ~eligible ~which:`Max ~ord (C.lits c) |> Iter.fold (fun acc (_t,lit,pos) -> let mf = ALF.focused_monome lit in let idx = Lits.Pos.idx pos in MF.unify_self (mf,0) |> Iter.fold (fun acc (_, us) -> let renaming = Subst.Renaming.create () in let subst = US.subst us in let lit' = ALF.apply_subst renaming subst (lit,0) in let mf' = ALF.focused_monome lit' in (* does the maximal term have a coeff bigger-than-one? *) let n = MF.coeff mf' in if Z.gt n Z.one && C.is_maxlit (c,0) subst ~idx && ALF.is_max ~ord lit' && (* in case we have a divisibility, only infer if the coefficient of [t] divides [d^k]. In particular it means [n] is a power-of-prime *) begin match lit' with | ALF.Div d -> Z.sign (Z.rem (Z.pow d.AL.num d.AL.power) n) = 0 | _ -> true end then ( (* do the inference *) Util.debugf ~section 5 "@[<2>divisibility@ on @[%a@]@ at @[%a@]@ with @[%a@]...@]" (fun k->k C.pp c Position.pp pos Subst.pp subst); let new_lit = match lit' with | ALF.Left (AL.Equal, mf, m) | ALF.Right (AL.Equal, m, mf) -> (* remove the max term from [mf], and inject into the Z/nZ group *) Lit.mk_divides n ~power:1 (M.difference m (MF.rest mf)) | ALF.Div d -> assert d.AL.sign; let n', power' = match AL.Util.prime_decomposition n with | [{AL.Util.prime=n'; AL.Util.power=p}] -> assert (Z.equal n' d.AL.num); assert (p <= d.AL.power); n', p | _ -> assert false in Lit.mk_divides n' ~power:power' (MF.rest d.AL.monome) | _ -> assert false in let lits' = CCArray.except_idx (C.lits c) idx in let lits' = Lit.apply_subst_list renaming subst (lits',0) in let c_guard = Literal.of_unif_subst renaming us in let all_lits = new_lit :: c_guard @ lits' in let proof = Proof.Step.inference ~tags:[Proof.Tag.T_lia] ~rule:(Proof.Rule.mk "divisibility") [C.proof_parent_subst renaming (c,0) subst] in let new_c = C.create ~trail:(C.trail c) ~penalty:(C.penalty c) all_lits proof in Util.debugf ~section 5 "@[<4>... gives@ @[%a@]@]" (fun k->k C.pp new_c); Util.incr_stat stat_arith_divisibility; new_c :: acc ) else acc) acc) [] in Util.exit_prof prof_arith_divisibility; res (* regular literal ----> arith literal, sometimes *) let canc_lit_of_lit lit = match lit with | Lit.Equation (l, r, sign) when Type.equal Type.int (T.ty l) -> begin match T.view l, T.view r with | T.AppBuiltin (Builtin.Remainder_e, [l'; r']), opp | opp, T.AppBuiltin (Builtin.Remainder_e, [l'; r']) -> begin match Monome.Int.of_term l', T.view r', opp with | Some m, T.AppBuiltin (Builtin.Int n,[]), T.AppBuiltin (Builtin.Int opp', []) when Z.sign opp' >= 0 && Z.compare opp' n < 0 -> (* remainder(l1, n) = opp ----> n | l1-opp, assuming 0<=opp<n *) let m = M.add_const m Z.(rem (~- opp') n) in let lit = Lit.mk_divides ~sign n ~power:1 m in Some (lit,[],[Proof.Tag.T_lia]) | Some _, T.AppBuiltin (Builtin.Int n,[]), T.AppBuiltin (Builtin.Int opp', []) when Z.sign opp' < 0 || Z.compare opp' n >= 0 -> (* remainder(l1, n) = opp --> false assuming opp ∉ [0.. n-1] *) let lit = if sign then Lit.mk_absurd else Lit.mk_tauto in Some (lit,[],[Proof.Tag.T_lia]) | _ -> None end | _ -> begin match Monome.Int.of_term l, Monome.Int.of_term r with | Some m1, Some m2 -> if sign then Some (Lit.mk_arith_eq m1 m2,[],[Proof.Tag.T_lia]) else Some (Lit.mk_arith_neq m1 m2,[],[Proof.Tag.T_lia]) | _, None | None, _-> None end end | _ -> None (** {3 Others} *) let _has_arith c = CCArray.exists Lit.is_arith (C.lits c) module Simp = Simplex.MakeHelp(T) (* tautology check: take the linear system that is the negation of all a≠b and a≤b, and check its (rational) satisfiability. If it's unsat in Q, it's unsat in Z, and its negation (a subset of c) is tautological *) let _is_tautology c = Util.enter_prof prof_arith_semantic_tautology; (* convert a monome into a rational monome + Q constant *) let to_rat m = let const = Q.of_bigint (M.const m) in List.map (fun (c,t) -> Q.of_bigint c, t) (M.coeffs m), const in (* create a list of constraints for some arith lits *) let constraints = Lits.fold_arith ~eligible:C.Eligible.arith (C.lits c) |> Iter.fold (fun acc (lit,_) -> (* negate the literal and make a constraint out of it *) match lit with | AL.Binary (AL.Lesseq, m1, m2) -> (* m1 ≤ m2 ----> m1-m2 > 0 ---> m1-m2 ≥ 1 *) let m, c = to_rat (M.difference m1 m2) in (Simp.GreaterEq, m, Q.add (Q.neg c) Q.one) :: acc | AL.Binary (AL.Different, m1, m2) -> (* m1 != m2 -----> (m1-m2) = 0 *) let m, c = to_rat (M.difference m1 m2) in (Simp.Eq, m, Q.neg c) :: acc | _ -> acc) [] in let simplex = Simp.add_constraints Simp.empty constraints in Util.exit_prof prof_arith_semantic_tautology; match Simp.ksolve simplex with | Simp.Unsatisfiable _ -> true (* negation unsatisfiable *) | Simp.Solution _ -> false (* cache the result because it's a bit expensive *) let is_tautology c = if C.get_flag flag_computed_tauto c then C.get_flag flag_tauto c else ( (* compute whether [c] is an arith tautology *) let res = _has_arith c && _is_tautology c in C.set_flag flag_tauto c res; C.set_flag flag_computed_tauto c true; if res then ( Util.incr_stat stat_arith_semantic_tautology_steps; Util.debugf ~section 4 "@[<2>clause@ @[%a@]@ is an arith tautology@]" (fun k->k C.pp c); ); Util.incr_stat stat_arith_semantic_tautology; res ) (* Simplification: a < b ----> a+1 ≤ b *) let canc_less_to_lesseq = function | Lit.Int (AL.Binary (AL.Less, m1, m2)) -> Some (Lit.mk_arith_lesseq (M.succ m1) m2, [], [Proof.Tag.T_lia]) | _ -> None exception VarElim of int * S.t (* X != Y or C -----> C[X/Y] *) let canc_eq_resolution c = (* check whether [m] is only one variable with coeff 1 *) let is_unary_var m = match M.coeffs m with | [c, t] -> begin match T.view t with | T.Var v when Z.(equal c one) && Z.(equal (M.const m) zero) -> Some v | _ -> None end | _ -> None in try Lits.fold_arith ~eligible:C.Eligible.(filter Lit.is_arith_neq) (C.lits c) |> Iter.iter (fun (lit,pos) -> match lit with | AL.Binary (AL.Different, m1, m2) -> begin match is_unary_var m1, is_unary_var m2 with | Some v1, Some v2 -> let subst = S.FO.bind S.empty ((v1:Type.t HVar.t :> InnerTerm.t HVar.t),0) (T.var v2,0) in let i = Lits.Pos.idx pos in raise (VarElim (i, subst)) | _ -> () end | _ -> () ); SimplM.return_same c (* could not simplify *) with VarElim (i, subst) -> let lits' = CCArray.except_idx (C.lits c) i in let renaming = Subst.Renaming.create () in let lits' = Lit.apply_subst_list renaming subst (lits',0) in let proof = Proof.Step.inference ~tags:[Proof.Tag.T_lia] ~rule:(Proof.Rule.mk "canc_eq_res") [C.proof_parent_subst renaming (c,0) subst] in let c' = C.create ~trail:(C.trail c) ~penalty:(C.penalty c) lits' proof in Util.debugf ~section 4 "@[<2>arith_eq_res:@ simplify @[%a@]@ into @[%a@]@]" (fun k->k C.pp c C.pp c'); SimplM.return_new c' exception DiffToLesseq of C.t let is_singleton_unshielded_var lits (m:_ M.t) : bool = Z.sign (M.const m) = 0 && begin match M.coeffs m with | [c,t] -> Z.equal Z.one c && T.is_var t && (not @@ Literals.is_shielded (T.as_var_exn t) lits) | _ -> false end (* a != b ------> a+1 ≤ b | a ≥ b+1 *) let canc_diff_to_lesseq c = let eligible = C.Eligible.(filter Lit.is_arith_neq ** max c) in try Lits.fold_lits ~eligible (C.lits c) |> Iter.iter (fun (lit,i) -> match lit with | Lit.Int (AL.Binary (AL.Different, m1, m2)) when not (is_singleton_unshielded_var (C.lits c) m1) && not (is_singleton_unshielded_var (C.lits c) m2) -> (* translate [m1 ≠ m2] into [m1 < m2 ∨ m1 > m2], do not do it on a variable that is going to be eliminated. *) assert (eligible i lit); (*Format.printf "@[<2>lit @[%a [%d]@]@ in @[%a@]@ :is-max %B@ :max_lits %a@]@." Lit.pp lit i C.pp c (Lits.is_max ~ord (C.lits c) i) CCBV.print (Lits.maxlits ~ord @@ C.lits c);*) (* FIXME: find why this sometimes fails assert (Lits.is_max ~ord (C.lits c) i); *) let lits = CCArray.except_idx (C.lits c) i in let new_lits = [ Lit.mk_arith_lesseq (M.succ m1) m2 ; Lit.mk_arith_lesseq (M.succ m2) m1 ] in let proof = Proof.Step.inference [C.proof_parent c] ~tags:[Proof.Tag.T_lia] ~rule:(Proof.Rule.mk "arith_diff_to_lesseq") in let c' = C.create ~trail:(C.trail c) ~penalty:(C.penalty c) (new_lits @ lits) proof in Util.debugf ~section 5 "@[<2>diff2less:@ @[%a@]@ into @[%a@]@]" (fun k->k C.pp c C.pp c'); raise (DiffToLesseq c') | Lit.Int (AL.Binary (AL.Different, _, _)) -> () | _ -> assert false ); SimplM.return_same c with DiffToLesseq c -> SimplM.return_new c (* inference rule corresponding to {!canc_diff_to_lesseq} *) let canc_diff_imply_lesseq c = let c, st = canc_diff_to_lesseq c in match st with | `New -> [c] | `Same -> [] (** {6 Variable Elimination Procedure} *) let naked_vars lits = Literals.unshielded_vars lits ~filter:(fun var -> Type.equal (HVar.ty var) Type.int) (** Description of a clause, focused around the elimination of some variable x *) module NakedVarElim = struct type t = { rest : Literal.t list; (* x doesn't occur in rest *) x : Type.t HVar.t; (* variable to eliminate *) a_lit : ALF.t list; (* c.x + m1 = m2 *) b_lit : ALF.t list; (* c.x + m1 != m2 *) c_lit : ALF.t list; (* n | m_c.x + m *) d_lit : ALF.t list; (* n not| m_c.x + m *) e_lit : ALF.t list; (* c.x + m1 ≤ m2 *) f_lit : ALF.t list; (* m1 ≤ c.x + m2 *) lcm : Z.t; (* scaling coefficient (divisibility guard) *) delta : Z.t; (* lcm of all divisibility constraints *) } let _empty x = { rest = []; x; a_lit = []; b_lit = []; c_lit = []; d_lit = []; e_lit = []; f_lit = []; lcm=Z.one; delta=Z.one; } let _lits c k = List.iter k c.a_lit; List.iter k c.b_lit; List.iter k c.c_lit; List.iter k c.d_lit; List.iter k c.e_lit; List.iter k c.f_lit; () let map f c = {c with a_lit = List.map f c.a_lit; b_lit = List.map f c.b_lit; c_lit = List.map f c.c_lit; d_lit = List.map f c.d_lit; e_lit = List.map f c.e_lit; f_lit = List.map f c.f_lit; } (* map literals to 'a option, and return a list of 'a *) let map_lits f c = List.concat [ List.map f c.a_lit ; List.map f c.b_lit ; List.map f c.c_lit ; List.map f c.d_lit ; List.map f c.e_lit ; List.map f c.f_lit ] (* reduce all occurrences of [x] to the same coefficient (their LCM). then, pretend we replace LCM.x with x, so all the coefficients become 1 (but the monomes keep their multiplicative factors!) *) let scale c = let lcm, delta = _lits c |> Iter.fold (fun (lcm,delta) lit -> let lcm = Z.lcm lcm (ALF.focused_monome lit |> MF.coeff) in let delta = match lit with | ALF.Div d -> Z.lcm delta (Z.pow d.AL.num d.AL.power) | _ -> delta in lcm, Z.lcm lcm delta ) (Z.one,Z.one) in assert (Z.geq delta lcm); if Z.equal lcm Z.one then delta, {c with delta; } else let c' = map (fun lit -> let n = Z.divexact lcm (ALF.focused_monome lit |> MF.coeff) in (* scale monome by n *) ALF.product lit n ) c in let c' = {c' with lcm; delta; } in delta, c' (* make from clause *) let of_lits lits x = Array.fold_left (fun acc lit -> match lit with | Lit.Int o when Lit.var_occurs x lit -> (* one of the literals [x] occurs in! classify it, but remember that we need to {b negate} it first. *) begin match AL.Focus.focus_term (AL.negate o) (T.var x) with | None -> assert false | Some (ALF.Left (AL.Equal, _, _) as lit) | Some (ALF.Right (AL.Equal, _, _) as lit) -> { acc with a_lit = lit::acc.a_lit; } | Some (ALF.Left (AL.Different, _, _) as lit) | Some (ALF.Right (AL.Different, _, _) as lit) -> { acc with b_lit = lit::acc.b_lit; } | Some (ALF.Div d as lit) when d.AL.sign -> { acc with c_lit = lit::acc.c_lit; } | Some (ALF.Div d as lit) -> assert (not(d.AL.sign)); { acc with d_lit = lit::acc.d_lit; } | Some (ALF.Left (AL.Lesseq, _, _) as lit) -> { acc with e_lit = lit::acc.e_lit; } | Some (ALF.Left (AL.Less, mf1, m2)) -> (* mf1 < m2 ------> mf1 ≤ m2-1 *) let lit = ALF.Left (AL.Lesseq, mf1, M.pred m2) in { acc with e_lit = lit::acc.e_lit; } | Some (ALF.Right (AL.Lesseq, _, _) as lit) -> { acc with f_lit = lit::acc.f_lit; } | Some (ALF.Right (AL.Less, m1, mf2)) -> (* m1 < mf2 -----> m1+1 ≤ mf2 *) let lit = ALF.Right (AL.Lesseq, M.succ m1, mf2) in { acc with f_lit = lit::acc.f_lit; } end | _ -> { acc with rest=lit::acc.rest; }) (_empty x) lits (* higher bounds *) let a_set c = List.concat [ List.map (function | ALF.Left (AL.Equal, mf, m) | ALF.Right (AL.Equal, m, mf) -> M.difference (M.succ m) (MF.rest mf) | _ -> assert false) c.a_lit ; List.map (function | ALF.Left (AL.Different, mf, m) | ALF.Right (AL.Different, m, mf) -> M.difference m (MF.rest mf) | _ -> assert false) c.b_lit ; List.map (function | ALF.Left (AL.Lesseq, mf, m) -> M.difference (M.succ m) (MF.rest mf) | _ -> assert false) c.e_lit ] let b_set c = List.concat [ List.map (function | ALF.Left (AL.Equal, mf, m) | ALF.Right (AL.Equal, m, mf) -> M.difference (M.pred m) (MF.rest mf) | _ -> assert false) c.a_lit ; List.map (function | ALF.Left (AL.Different, mf, m) | ALF.Right (AL.Different, m, mf) -> M.difference m (MF.rest mf) | _ -> assert false) c.b_lit ; List.map (function | ALF.Right (AL.Lesseq, m, mf) -> M.difference (M.pred m) (MF.rest mf) | _ -> assert false) c.f_lit ] (* evaluate when the variable is equal to x *) let eval_at c x = Lit.mk_divides ~power:1 c.lcm x :: map_lits (function | ALF.Left (op, mf, m) -> Lit.mk_arith_op op (M.sum (MF.rest mf) x) m | ALF.Right (op, m, mf) -> Lit.mk_arith_op op m (M.sum (MF.rest mf) x) | ALF.Div d -> Lit.mk_divides ~sign:d.AL.sign d.AL.num ~power:d.AL.power (M.sum (MF.rest d.AL.monome) x) ) c (* evaluate when the variable is equal to x, but as small as needed. Many literals will become true or false *) let eval_minus_infty c x = Lit.mk_divides ~power:1 c.lcm x :: map_lits (function | ALF.Left (AL.Different, _, _) | ALF.Right (AL.Different, _, _) | ALF.Left (AL.Lesseq, _, _) -> Lit.mk_tauto | ALF.Left (AL.Equal, _, _) | ALF.Right (AL.Equal, _, _) | ALF.Right (AL.Lesseq, _, _) -> Lit.mk_absurd | ALF.Div d -> Lit.mk_divides ~sign:d.AL.sign d.AL.num ~power:d.AL.power (M.sum (MF.rest d.AL.monome) x) | ALF.Left (AL.Less, _, _) | ALF.Right (AL.Less, _, _) -> assert false ) c (* evaluate when the variable is equal to x, but as big as needed. Many literals will become true or false *) let eval_plus_infty c x = Lit.mk_divides ~power:1 c.lcm x :: map_lits (function | ALF.Left (AL.Different, _, _) | ALF.Right (AL.Different, _, _) | ALF.Right (AL.Lesseq, _, _) -> Lit.mk_tauto | ALF.Left (AL.Equal, _, _) | ALF.Right (AL.Equal, _, _) | ALF.Left (AL.Lesseq, _, _) -> Lit.mk_absurd | ALF.Div d -> Lit.mk_divides ~sign:d.AL.sign d.AL.num ~power:d.AL.power (M.sum (MF.rest d.AL.monome) x) | ALF.Left (AL.Less, _, _) | ALF.Right (AL.Less, _, _) -> assert false ) c end let _negate_lits = List.map Lit.negate let eliminate_unshielded c = let module NVE = NakedVarElim in let nvars = naked_vars (C.lits c) in match nvars with | [] -> None | x::_ -> (* eliminate v *) Util.debugf ~section 3 "@[<2>eliminate naked variable %a@ from @[%a@]@]" (fun k->k HVar.pp x C.pp c); (* split C into C' (not containing v) and 6 kinds of literals *) let view = NVE.of_lits (C.lits c) x in let delta, view = NVE.scale view in if not (Z.fits_int delta) then None else begin let delta = Z.to_int delta in let a_set = NVE.a_set view and b_set = NVE.b_set view in (* prepare to build clauses *) let acc = ref [] in let add_clause ~by ~which lits = let infos = UntypedAST.A.([ app "var_elim" [quoted (Z.to_string view.NVE.lcm); quoted (HVar.to_string_tstp x); quoted (CCFormat.to_string M.pp by); quoted which] ]) in (* TODO: use substitution (for ∞ cases just take sth high enough) *) let rule = Proof.Rule.mkf "var_elim(%a)" T.pp_var x in let proof = Proof.Step.inference ~tags:[Proof.Tag.T_lia] ~infos ~rule [C.proof_parent c] in let new_c = C.create ~trail:(C.trail c) ~penalty:(C.penalty c) lits proof in Util.debugf ~section 5 "@[<2>elimination of %s×%a@ by %a (which:%s)@ in @[%a@]:@ gives @[%a@]@]" (fun k->k (Z.to_string view.NVE.lcm) HVar.pp x M.pp by which C.pp c C.pp new_c); acc := new_c :: !acc in (* choose which form to use *) if List.length a_set > List.length b_set then begin (* use B *) Util.debug ~section 5 "use the B elimination algorithm"; (* first, the -infty part *) for i = 1 to delta do let x' = M.Int.const (Z.of_int i) in let lits = view.NVE.rest @ _negate_lits (NVE.eval_minus_infty view x') in add_clause ~by:x' ~which:"-∝" lits done; (* then the enumeration *) for i = 1 to delta do List.iter (fun x' -> (* evaluate at x'+i *) let x'' = M.add_const x' Z.(of_int i) in let lits = view.NVE.rest @ _negate_lits (NVE.eval_at view x'') in add_clause ~by:x'' ~which:"middle" lits ) b_set done; end else begin (* use A *) Util.debug ~section 5 "use the A elimination algorithm"; (* first, the +infty part *) for i = 1 to delta do let x' = M.Int.const Z.(neg (of_int i)) in let lits = view.NVE.rest @ _negate_lits (NVE.eval_plus_infty view x') in add_clause ~by:x' ~which:"+∝" lits done; (* then the enumeration *) for i = 1 to delta do List.iter (fun x' -> (* evaluate at x'-i *) let x'' = M.add_const x' Z.(neg (of_int i)) in let lits = view.NVE.rest @ _negate_lits (NVE.eval_at view x'') in add_clause ~by:x'' ~which:"middle" lits ) a_set done; end; Some !acc end (** {2 Setup} *) (* print index into file *) let _print_idx file idx = CCIO.with_out file (fun oc -> let pp_leaf _ _ = () in let out = Format.formatter_of_out_channel oc in Format.fprintf out "@[<2>%a@]@." (PS.TermIndex.to_dot pp_leaf) idx; flush oc) let setup_dot_printers () = CCOpt.iter (fun f -> Signal.once Signals.on_dot_output (fun () -> _print_idx f !_idx_unit_eq)) !dot_unit_; () let register () = Util.debug ~section 2 "arith: setup env"; (* add inference rules *) Env.add_binary_inf "canc_sup_active" canc_sup_active; Env.add_binary_inf "canc_sup_passive" canc_sup_passive; Env.add_unary_inf "cancellation" cancellation; Env.add_unary_inf "canc_eq_factoring" canc_equality_factoring; Env.add_binary_inf "canc_ineq_chaining" canc_ineq_chaining; Env.add_unary_inf "canc_ineq_factoring" canc_ineq_factoring; Env.add_binary_inf "div_chaining" canc_div_chaining; Env.add_unary_inf "divisibility" canc_divisibility; Env.add_unary_inf "div_case_switch" canc_div_case_switch; Env.add_multi_simpl_rule canc_div_prime_decomposition; Env.add_multi_simpl_rule eliminate_unshielded; Env.add_lit_rule "canc_lit_of_lit" canc_lit_of_lit; Env.add_lit_rule "less_to_lesseq" canc_less_to_lesseq; (* transformation ≠ to ≤ *) begin match !diff_to_lesseq_ with | `Simplify -> Env.add_unary_simplify canc_diff_to_lesseq | `Inf -> Env.add_unary_inf "canc_diff_imply_lesseq" canc_diff_imply_lesseq end; Env.add_basic_simplify canc_eq_resolution; Env.add_unary_simplify canc_demodulation; Env.add_backward_simplify canc_backward_demodulation; Env.add_is_trivial is_tautology; if !enable_trivial_ineq_ then ( Env.add_redundant is_redundant_by_ineq; ); if !enable_demod_ineq_ then ( Env.add_active_simplify demod_ineq; ); Env.add_multi_simpl_rule eliminate_unshielded; (* completeness? I don't think so *) Ctx.lost_completeness (); (* enable AC-property of sum *) (* FIXME: currently AC doesn't handle builtins if !_enable_ac then begin let sum = ID.Arith.sum in let ty = Signature.find_exn Signature.TPTP.Arith.full sum in let module A = Env.flex_get AC.key_ac in A.add sum ty; end; *) setup_dot_printers (); () end let k_should_register = Flex_state.create_key () let k_has_arith = Flex_state.create_key () let extension = let env_action env = let module E = (val env : Env.S) in if E.flex_get k_should_register then ( let module I = Make(E) in I.register () ) else if E.flex_get k_has_arith then ( (* arith not enabled, so we cannot solve the problem, do not answer "sat" *) E.Ctx.lost_completeness (); ) and post_typing_action stmts state = let module PT = TypedSTerm in let has_int = CCVector.to_seq stmts |> Iter.flat_map Stmt.Seq.to_seq |> Iter.flat_map (function | `ID _ -> Iter.empty | `Ty ty -> Iter.return ty | `Form t | `Term t -> PT.Seq.subterms t |> Iter.filter_map PT.ty) |> Iter.exists (PT.Ty.equal PT.Ty.int) in let should_reg = !enable_arith_ && has_int in Util.debugf ~section 2 "decision to register arith: %B" (fun k->k should_reg); state |> Flex_state.add k_should_register should_reg |> Flex_state.add k_has_arith has_int in { Extensions.default with Extensions. name="arith_int"; post_typing_actions=[post_typing_action]; env_actions=[env_action]; } let () = Params.add_opts [ "--no-int-semantic-tauto" , Arg.Clear enable_semantic_tauto_ , " disable integer arithmetic semantic tautology check" ; "--int-trivial-ineq" , Arg.Set enable_trivial_ineq_ , " enable integer inequality triviality checking by rewriting" ; "--no-int-trivial-ineq" , Arg.Clear enable_trivial_ineq_ , " disable integer inequality triviality checking by rewriting" ; "--int-demod-ineq" , Arg.Set enable_demod_ineq_ , " enable integer demodulation of inequalities" ; "--no-int-demod-ineq" , Arg.Clear enable_demod_ineq_ , " disable integer demodulation of inequalities" ; "--int-arith" , Arg.Set enable_arith_ , " enable axiomatic integer arithmetic" ; "--no-int-arith" , Arg.Clear enable_arith_ , " disable axiomatic integer arithmetic" ; "--int-ac" , Arg.Set enable_ac_ , " enable AC axioms for integer arithmetic (sum)" ; "--dot-int-unit" , Arg.String (fun s -> dot_unit_ := Some s) , " print arith-int-unit index into file" ; "--int-inf-diff-to-lesseq" , Arg.Unit (fun () -> diff_to_lesseq_ := `Inf) , " ≠ → ≤ as inference" ; "--int-simp-diff-to-lesseq" , Arg.Unit (fun () -> diff_to_lesseq_ := `Simplify) , " ≠ → ≤ as simplification" ]; ()
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>