package libzipperposition
Library for Zipperposition
Install
Dune Dependency
Authors
Maintainers
Sources
1.5.1.tar.gz
md5=cc320f66f10555c54822da624419e003
sha512=f8d5f7a5ae790bf0388d74261673803cf375f91f92f7b413b70db1ce5841ef55343a208f98727c8551d66f1840ab892f1c0c943a34861d14d79ce469b235a2f2
doc/src/libzipperposition.calculi/superposition.ml.html
Source file superposition.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
(* This file is free software, part of Zipperposition. See file "license" for more details. *) open Logtk open Libzipperposition module BV = CCBV module T = Term module O = Ordering module S = Subst module Lit = Literal module Lits = Literals module Comp = Comparison module US = Unif_subst let section = Util.Section.make ~parent:Const.section "sup" (* flag meaning the clause has been simplified already *) let flag_simplified = SClause.new_flag() module type S = Superposition_intf.S (* statistics *) let stat_basic_simplify_calls = Util.mk_stat "sup.basic_simplify calls" let stat_basic_simplify = Util.mk_stat "sup.basic_simplify" let stat_superposition_call = Util.mk_stat "sup.superposition calls" let stat_equality_resolution_call = Util.mk_stat "sup.equality_resolution calls" let stat_equality_factoring_call = Util.mk_stat "sup.equality_factoring calls" let stat_subsumption_call = Util.mk_stat "sup.subsumption_calls" let stat_eq_subsumption_call = Util.mk_stat "sup.equality_subsumption calls" let stat_eq_subsumption_success = Util.mk_stat "sup.equality_subsumption success" let stat_subsumed_in_active_set_call = Util.mk_stat "sup.subsumed_in_active_set calls" let stat_subsumed_by_active_set_call = Util.mk_stat "sup.subsumed_by_active_set calls" let stat_clauses_subsumed = Util.mk_stat "sup.num_clauses_subsumed" let stat_demodulate_call = Util.mk_stat "sup.demodulate calls" let stat_demodulate_step = Util.mk_stat "sup.demodulate steps" let stat_semantic_tautology = Util.mk_stat "sup.semantic_tautologies" let stat_condensation = Util.mk_stat "sup.condensation" let stat_clc = Util.mk_stat "sup.clc" let prof_demodulate = Util.mk_profiler "sup.demodulate" let prof_back_demodulate = Util.mk_profiler "sup.backward_demodulate" let prof_pos_simplify_reflect = Util.mk_profiler "sup.simplify_reflect+" let prof_neg_simplify_reflect = Util.mk_profiler "sup.simplify_reflect-" let prof_clc = Util.mk_profiler "sup.contextual_literal_cutting" let prof_semantic_tautology = Util.mk_profiler "sup.semantic_tautology" let prof_condensation = Util.mk_profiler "sup.condensation" let prof_basic_simplify = Util.mk_profiler "sup.basic_simplify" let prof_subsumption = Util.mk_profiler "sup.subsumption" let prof_eq_subsumption = Util.mk_profiler "sup.equality_subsumption" let prof_subsumption_set = Util.mk_profiler "sup.forward_subsumption" let prof_subsumption_in_set = Util.mk_profiler "sup.backward_subsumption" let prof_infer_active = Util.mk_profiler "sup.infer_active" let prof_infer_passive = Util.mk_profiler "sup.infer_passive" let prof_infer_equality_resolution = Util.mk_profiler "sup.infer_equality_resolution" let prof_infer_equality_factoring = Util.mk_profiler "sup.infer_equality_factoring" let _use_semantic_tauto = ref true let _use_simultaneous_sup = ref true let _dot_sup_into = ref None let _dot_sup_from = ref None let _dot_simpl = ref None let _dont_simplify = ref false let _sup_at_vars = ref false let = ref false let _dot_demod_into = ref None module Make(Env : Env.S) : S with module Env = Env = struct module Env = Env module Ctx = Env.Ctx module C = Env.C module PS = Env.ProofState module I = PS.TermIndex module TermIndex = PS.TermIndex module SubsumIdx = PS.SubsumptionIndex module UnitIdx = PS.UnitIndex (** {6 Index Management} *) let _idx_sup_into = ref (TermIndex.empty ()) let _idx_sup_from = ref (TermIndex.empty ()) let _idx_back_demod = ref (TermIndex.empty ()) let _idx_fv = ref (SubsumIdx.empty ()) let _idx_simpl = ref (UnitIdx.empty ()) let idx_sup_into () = !_idx_sup_into let idx_sup_from () = !_idx_sup_from let idx_fv () = !_idx_fv (* apply operation [f] to some parts of the clause [c] just added/removed from the active set *) let _update_active f c = let ord = Ctx.ord () in (* index subterms that can be rewritten by superposition *) _idx_sup_into := Lits.fold_terms ~vars:!_sup_at_vars ~ty_args:false ~ord ~which:`Max ~subterms:true ~eligible:(C.Eligible.res c) (C.lits c) |> Iter.filter (fun (t, _) -> not (T.is_var t) || T.is_ho_var t) (* TODO: could exclude more variables from the index: they are not needed if they occur with the same args everywhere in the clause *) |> Iter.fold (fun tree (t, pos) -> let with_pos = C.WithPos.({term=t; pos; clause=c;}) in f tree t with_pos) !_idx_sup_into; (* index terms that can rewrite into other clauses *) _idx_sup_from := Lits.fold_eqn ~ord ~both:true ~sign:true ~eligible:(C.Eligible.param c) (C.lits c) |> Iter.fold (fun tree (l, _, sign, pos) -> assert sign; let with_pos = C.WithPos.({term=l; pos; clause=c;}) in f tree l with_pos) !_idx_sup_from ; (* terms that can be demodulated: all subterms (but vars) *) _idx_back_demod := Lits.fold_terms ~vars:false ~ty_args:false ~ord ~subterms:true ~which:`All ~eligible:C.Eligible.always (C.lits c) |> Iter.fold (fun tree (t, pos) -> let with_pos = C.WithPos.( {term=t; pos; clause=c} ) in f tree t with_pos) !_idx_back_demod; Signal.ContinueListening (* update simpl. index using the clause [c] just added or removed to the simplification set *) let _update_simpl f c = let ord = Ctx.ord () in let idx = !_idx_simpl in let idx' = match C.lits c with | [| Lit.Equation (l,r,true) |] -> begin match Ordering.compare ord l r with | Comparison.Gt -> f idx (l,r,true,c) | Comparison.Lt -> f idx (r,l,true,c) | Comparison.Incomparable -> let idx = f idx (l,r,true,c) in f idx (r,l,true,c) | Comparison.Eq -> idx (* no modif *) end | [| Lit.Equation (l,r,false) |] -> f idx (l,r,false,c) | [| Lit.Prop (p, sign) |] -> f idx (p,T.true_,sign,c) | _ -> idx in _idx_simpl := idx'; Signal.ContinueListening let () = Signal.on PS.ActiveSet.on_add_clause (fun c -> _idx_fv := SubsumIdx.add !_idx_fv c; _update_active TermIndex.add c); Signal.on PS.ActiveSet.on_remove_clause (fun c -> _idx_fv := SubsumIdx.remove !_idx_fv c; _update_active TermIndex.remove c); Signal.on PS.SimplSet.on_add_clause (_update_simpl UnitIdx.add); Signal.on PS.SimplSet.on_remove_clause (_update_simpl UnitIdx.remove); () (** {6 Inference Rules} *) (* all the information needed for a superposition inference *) module SupInfo = struct type t = { active : C.t; active_pos : Position.t; (* position of [s] *) scope_active : int; s : T.t; (* lhs of rule *) t : T.t; (* rhs of rule *) passive : C.t; passive_pos : Position.t; (* position of [u_p] *) passive_lit : Lit.t; scope_passive : int; u_p : T.t; (* rewritten subterm *) subst : US.t; } end exception ExitSuperposition of string (* check for hidden superposition at variables, e.g. superposing g x = f x into h (x b) = a to give h (f b) = a. Returns a term only containing the concerned variable and a term consisting of the part of info.t that unifies with the variable, e.g. (x, f) in the example above. *) let info = let open SupInfo in let active_idx = Lits.Pos.idx info.active_pos in begin match T.view info.u_p with | T.App (head, args) -> begin match T.as_var head with | Some _ -> (* rewritten term is variable-headed *) begin match T.view info.s, T.view info.t with | T.App (f, ss), T.App (g, tt) -> let s_args = Array.of_list ss in let t_args = Array.of_list tt in if Array.length s_args >= List.length args && Array.length t_args >= List.length args (* Check whether the last argument(s) of s and t are equal *) && Array.sub s_args (Array.length s_args - List.length args) (List.length args) = Array.sub t_args (Array.length t_args - List.length args) (List.length args) (* Check whether they are all variables that occur nowhere else *) && CCList.(Array.length s_args - List.length args --^ Array.length s_args) |> List.for_all (fun idx -> match T.as_var (Array.get s_args idx) with | Some v -> (* Check whether variable occurs in previous arguments: *) not (CCArray.exists (T.var_occurs ~var:v) (Array.sub s_args 0 idx)) && not (CCArray.exists (T.var_occurs ~var:v) (Array.sub t_args 0 (Array.length t_args - List.length args)) (* Check whether variable occurs in heads: *) && not (T.var_occurs ~var:v f) && not (T.var_occurs ~var:v g) (* Check whether variable occurs in other literals: *) && not (List.exists (Literal.var_occurs v) (CCArray.except_idx (C.lits info.active) active_idx))) | None -> false ) then (* Calculate the part of t that unifies with the variable *) let t_prefix = T.app g (Array.to_list (Array.sub t_args 0 (Array.length t_args - List.length args))) in Some (head, t_prefix) else None | _ -> None end | None -> None end | _ -> None end (* Checks whether we must allow superposition at variables to be complete. *) let sup_at_var_condition info var replacement = let open SupInfo in let ord = Ctx.ord () in let us = info.subst in let subst = US.subst us in let renaming = S.Renaming.create () in let replacement' = S.FO.apply renaming subst (replacement, info.scope_active) in let var' = S.FO.apply renaming subst (var, info.scope_passive) in if (not (Type.is_fun (Term.ty var')) || not (O.might_flip ord var' replacement')) then ( Util.debugf ~section 5 "Cannot flip: %a = %a" (fun k->k T.pp var' T.pp replacement'); false (* If the lhs vs rhs cannot flip, we don't need a sup at var *) ) else ( (* Check whether var occurs only with the same arguments everywhere. *) let unique_args_of_var = C.lits info.passive |> Lits.fold_terms ~vars:true ~ty_args:false ~which:`All ~ord ~subterms:true ~eligible:(fun _ _ -> true) |> Iter.fold_while (fun unique_args (t,_) -> if Head.term_to_head t == Head.term_to_head var then ( if unique_args == Some (Head.term_to_args t) then (unique_args, `Continue) (* found the same arguments of var again *) else (None, `Stop) (* different arguments of var found *) ) else (unique_args, `Continue) (* this term doesn't have var as head *) ) None in match unique_args_of_var with | Some _ -> Util.debugf ~section 5 "Variable %a has same args everywhere in %a" (fun k->k T.pp var C.pp info.passive); false (* If var occurs with the same arguments everywhere, we don't need sup at vars *) | None -> (* Check whether Cσ is >= C[var -> replacement]σ *) let passive'_lits = Lits.apply_subst renaming subst (C.lits info.passive, info.scope_passive) in let subst_t = Unif.FO.update subst (T.as_var_exn var, info.scope_passive) (replacement, info.scope_active) in let passive_t'_lits = Lits.apply_subst renaming subst_t (C.lits info.passive, info.scope_passive) in if Lits.compare_multiset ~ord passive'_lits passive_t'_lits = Comp.Gt then ( Util.debugf ~section 5 "Sup at var condition is not fulfilled because: %a >= %a" (fun k->k Lits.pp passive'_lits Lits.pp passive_t'_lits); false ) else true (* If Cσ is either <= or incomparable to C[var -> replacement]σ, we need sup at var.*) ) (* Helper that does one or zero superposition inference, with all the given parameters. Clauses have a scope. *) let do_classic_superposition info acc = let ord = Ctx.ord () in let open SupInfo in let module P = Position in Util.incr_stat stat_superposition_call; let sc_a = info.scope_active in let sc_p = info.scope_passive in Util.debugf ~section 3 "@[<2>sup@ (@[<2>%a[%d]@ @[s=%a@]@ @[t=%a@]@])@ \ (@[<2>%a[%d]@ @[passive_lit=%a@]@ @[p=%a@]@])@ with subst=@[%a@]@]" (fun k->k C.pp info.active sc_a T.pp info.s T.pp info.t C.pp info.passive sc_p Lit.pp info.passive_lit Position.pp info.passive_pos US.pp info.subst); assert (InnerTerm.DB.closed (info.s:>InnerTerm.t)); assert (InnerTerm.DB.closed (info.u_p:T.t:>InnerTerm.t)); assert (not(T.is_var info.u_p) || T.is_ho_var info.u_p); let active_idx = Lits.Pos.idx info.active_pos in let passive_idx, passive_lit_pos = Lits.Pos.cut info.passive_pos in try let renaming = S.Renaming.create () in let us = info.subst in let subst = US.subst us in let t' = S.FO.apply renaming subst (info.t, sc_a) in begin match info.passive_lit, info.passive_pos with | Lit.Prop (_, true), P.Arg(_, P.Left P.Stop) -> if T.equal t' T.true_ then raise (ExitSuperposition "will yield a bool tautology") | Lit.Equation (_, v, true), P.Arg(_, P.Left P.Stop) | Lit.Equation (v, _, true), P.Arg(_, P.Right P.Stop) -> (* are we in the specific, but no that rare, case where we rewrite s=t using s=t (into a tautology t=t)? *) (* TODO: use Unif.FO.eq? *) let v' = S.FO.apply renaming subst (v, sc_p) in if T.equal t' v' then raise (ExitSuperposition "will yield a tautology"); | _ -> () end; let passive_lit' = Lit.apply_subst_no_simp renaming subst (info.passive_lit, sc_p) in let new_trail = C.trail_l [info.active; info.passive] in if Env.is_trivial_trail new_trail then raise (ExitSuperposition "trivial trail"); let s' = S.FO.apply renaming subst (info.s, sc_a) in if ( O.compare ord s' t' = Comp.Lt || not (Lit.Pos.is_max_term ~ord passive_lit' passive_lit_pos) || not (BV.get (C.eligible_res (info.passive, sc_p) subst) passive_idx) || not (C.is_eligible_param (info.active, sc_a) subst ~idx:active_idx) ) then raise (ExitSuperposition "bad ordering conditions"); (* Check for superposition at a variable *) if not !_sup_at_vars then assert (not (T.is_var info.u_p)) else if T.is_var info.u_p && not (sup_at_var_condition info info.u_p info.t) then raise (ExitSuperposition "superposition at variable"); (* Check for hidden superposition at a variable *) if !_restrict_hidden_sup_at_vars then ( match is_hidden_sup_at_var info with | Some (var,replacement) when not (!_sup_at_vars && sup_at_var_condition info var replacement) -> raise (ExitSuperposition "hidden superposition at variable") | _ -> () ); (* ordering constraints are ok *) let lits_a = CCArray.except_idx (C.lits info.active) active_idx in let lits_p = CCArray.except_idx (C.lits info.passive) passive_idx in (* replace s\sigma by t\sigma in u|_p\sigma *) let new_passive_lit = Lit.Pos.replace passive_lit' ~at:passive_lit_pos ~by:t' in let c_guard = Literal.of_unif_subst renaming us in let = Unif_subst.tags us in (* apply substitution to other literals *) let new_lits = new_passive_lit :: c_guard @ Lit.apply_subst_list renaming subst (lits_a, sc_a) @ Lit.apply_subst_list renaming subst (lits_p, sc_p) in let rule = let name = if Lit.sign passive_lit' then "sup+" else "sup-" in Proof.Rule.mk name in let proof = Proof.Step.inference ~rule ~tags [C.proof_parent_subst renaming (info.active,sc_a) subst; C.proof_parent_subst renaming (info.passive,sc_p) subst] and penalty = C.penalty info.active + C.penalty info.passive + (if T.is_var s' then 2 else 0) (* superposition from var = bad *) in let new_clause = C.create ~trail:new_trail ~penalty new_lits proof in Util.debugf ~section 3 "@[... ok, conclusion@ @[%a@]@]" (fun k->k C.pp new_clause); new_clause :: acc with ExitSuperposition reason -> Util.debugf ~section 3 "... cancel, %s" (fun k->k reason); acc (* simultaneous superposition: when rewriting D with C \lor s=t, replace s with t everywhere in D rather than at one place. *) let do_simultaneous_superposition info acc = let ord = Ctx.ord () in let open SupInfo in let module P = Position in Util.incr_stat stat_superposition_call; let sc_a = info.scope_active in let sc_p = info.scope_passive in Util.debugf ~section 3 "@[<hv2>simultaneous sup@ \ @[<2>active@ %a[%d]@ s=@[%a@]@ t=@[%a@]@]@ \ @[<2>passive@ %a[%d]@ passive_lit=@[%a@]@ p=@[%a@]@]@ with subst=@[%a@]@]" (fun k->k C.pp info.active sc_a T.pp info.s T.pp info.t C.pp info.passive sc_p Lit.pp info.passive_lit Position.pp info.passive_pos US.pp info.subst); assert (InnerTerm.DB.closed (info.s:>InnerTerm.t)); assert (InnerTerm.DB.closed (info.u_p:T.t:>InnerTerm.t)); assert (not(T.is_var info.u_p) || T.is_ho_var info.u_p); let active_idx = Lits.Pos.idx info.active_pos in let passive_idx, passive_lit_pos = Lits.Pos.cut info.passive_pos in try let renaming = S.Renaming.create () in let us = info.subst in let subst = US.subst us in let t' = S.FO.apply renaming subst (info.t, sc_a) in begin match info.passive_lit, info.passive_pos with | Lit.Prop (_, true), P.Arg(_, P.Left P.Stop) -> if T.equal t' T.true_ then raise (ExitSuperposition "will yield a bool tautology") | Lit.Equation (_, v, true), P.Arg(_, P.Left P.Stop) | Lit.Equation (v, _, true), P.Arg(_, P.Right P.Stop) -> (* are we in the specific, but no that rare, case where we rewrite s=t using s=t (into a tautology t=t)? *) let v' = S.FO.apply renaming subst (v, sc_p) in if T.equal t' v' then raise (ExitSuperposition "will yield a tautology"); | _ -> () end; let passive_lit' = Lit.apply_subst_no_simp renaming subst (info.passive_lit, sc_p) in let new_trail = C.trail_l [info.active; info.passive] in if Env.is_trivial_trail new_trail then raise (ExitSuperposition "trivial trail"); let s' = S.FO.apply renaming subst (info.s, sc_a) in if ( O.compare ord s' t' = Comp.Lt || not (Lit.Pos.is_max_term ~ord passive_lit' passive_lit_pos) || not (BV.get (C.eligible_res (info.passive, sc_p) subst) passive_idx) || not (C.is_eligible_param (info.active, sc_a) subst ~idx:active_idx) ) then raise (ExitSuperposition "bad ordering conditions"); (* Check for superposition at a variable *) if not !_sup_at_vars then assert (not (T.is_var info.u_p)) else if T.is_var info.u_p && not (sup_at_var_condition info info.u_p info.t) then raise (ExitSuperposition "superposition at variable"); (* Check for hidden superposition at a variable *) match is_hidden_sup_at_var info with | Some (var,replacement) when not (!_sup_at_vars && sup_at_var_condition info var replacement) -> raise (ExitSuperposition "hidden superposition at variable") | _ -> (); (* ordering constraints are ok, build new active lits (excepted s=t) *) let lits_a = CCArray.except_idx (C.lits info.active) active_idx in let lits_a = Lit.apply_subst_list renaming subst (lits_a, sc_a) in (* build passive literals and replace u|p\sigma with t\sigma *) let u' = S.FO.apply renaming subst (info.u_p, sc_p) in assert (Type.equal (T.ty u') (T.ty t')); let lits_p = Array.to_list (C.lits info.passive) in let lits_p = Lit.apply_subst_list renaming subst (lits_p, sc_p) in (* assert (T.equal (Lits.Pos.at (Array.of_list lits_p) info.passive_pos) u'); *) let lits_p = List.map (Lit.map (fun t-> T.replace t ~old:u' ~by:t')) lits_p in let c_guard = Literal.of_unif_subst renaming us in let = Unif_subst.tags us in (* build clause *) let new_lits = c_guard @ lits_a @ lits_p in let rule = let name = if Lit.sign passive_lit' then "s_sup+" else "s_sup-" in Proof.Rule.mk name in let proof = Proof.Step.inference ~rule ~tags [C.proof_parent_subst renaming (info.active,sc_a) subst; C.proof_parent_subst renaming (info.passive,sc_p) subst] and penalty = C.penalty info.active + C.penalty info.passive + (if T.is_var s' then 2 else 0) (* superposition from var = bad *) in let new_clause = C.create ~trail:new_trail ~penalty new_lits proof in Util.debugf ~section 3 "@[... ok, conclusion@ @[%a@]@]" (fun k->k C.pp new_clause); new_clause :: acc with ExitSuperposition reason -> Util.debugf ~section 3 "@[... cancel, %s@]" (fun k->k reason); acc (* choose between regular and simultaneous superposition *) let do_superposition info acc= let open SupInfo in assert (Type.equal (T.ty info.s) (T.ty info.t)); assert (Unif.Ty.equal ~subst:(US.subst info.subst) (T.ty info.s, info.scope_active) (T.ty info.u_p, info.scope_passive)); if !_use_simultaneous_sup then do_simultaneous_superposition info acc else do_classic_superposition info acc let infer_active clause = Util.enter_prof prof_infer_active; (* no literal can be eligible for paramodulation if some are selected. This checks if inferences with i-th literal are needed? *) let eligible = C.Eligible.param clause in (* do the inferences where clause is active; for this, we try to rewrite conditionally other clauses using non-minimal sides of every positive literal *) let new_clauses = Lits.fold_eqn ~sign:true ~ord:(Ctx.ord ()) ~both:true ~eligible (C.lits clause) |> Iter.fold (fun acc (s, t, _, s_pos) -> (* rewrite clauses using s *) I.retrieve_unifiables (!_idx_sup_into, 1) (s, 0) |> Iter.filter (fun (u_p,_,_) -> T.DB.is_closed u_p) |> Iter.fold (fun acc (u_p, with_pos, subst) -> (* rewrite u_p with s *) let passive = with_pos.C.WithPos.clause in let passive_pos = with_pos.C.WithPos.pos in let passive_lit, _ = Lits.Pos.lit_at (C.lits passive) passive_pos in let info = SupInfo.( { s; t; active=clause; active_pos=s_pos; scope_active=0; u_p; passive; passive_lit; passive_pos; scope_passive=1; subst; }) in do_superposition info acc) acc) [] in Util.exit_prof prof_infer_active; new_clauses let infer_passive clause = Util.enter_prof prof_infer_passive; (* perform inference on this lit? *) let eligible = C.Eligible.(res clause) in (* do the inferences in which clause is passive (rewritten), so we consider both negative and positive literals *) let new_clauses = Lits.fold_terms ~vars:!_sup_at_vars ~subterms:true ~ord:(Ctx.ord ()) ~which:`Max ~eligible ~ty_args:false (C.lits clause) |> Iter.filter (fun (u_p, _) -> not (T.is_var u_p) || T.is_ho_var u_p) (* TODO: could exclude more variables from the index: they are not needed if they occur with the same args everywhere in the clause *) |> Iter.filter (fun (u_p, _) -> T.DB.is_closed u_p) |> Iter.fold (fun acc (u_p, passive_pos) -> let passive_lit, _ = Lits.Pos.lit_at (C.lits clause) passive_pos in (* all terms that occur in an equation in the active_set and that are potentially unifiable with u_p (u at position p) *) I.retrieve_unifiables (!_idx_sup_from, 1) (u_p,0) |> Iter.fold (fun acc (_, with_pos, subst) -> let active = with_pos.C.WithPos.clause in let s_pos = with_pos.C.WithPos.pos in match Lits.View.get_eqn (C.lits active) s_pos with | Some (s, t, true) -> let info = SupInfo.({ s; t; active; active_pos=s_pos; scope_active=1; subst; u_p; passive=clause; passive_lit; passive_pos; scope_passive=0; }) in do_superposition info acc | _ -> acc) acc) [] in Util.exit_prof prof_infer_passive; new_clauses let infer_equality_resolution clause = Util.enter_prof prof_infer_equality_resolution; let eligible = C.Eligible.always in (* iterate on those literals *) let new_clauses = Lits.fold_eqn ~sign:false ~ord:(Ctx.ord ()) ~both:false ~eligible (C.lits clause) |> Iter.filter_map (fun (l, r, _, l_pos) -> let pos = Lits.Pos.idx l_pos in try let us = Unif.FO.unify_full (l, 0) (r, 0) in if BV.get (C.eligible_res_no_subst clause) pos (* subst(lit) is maximal, we can do the inference *) then ( Util.incr_stat stat_equality_resolution_call; let renaming = Subst.Renaming.create () in let subst = US.subst us in let rule = Proof.Rule.mk "eq_res" in let new_lits = CCArray.except_idx (C.lits clause) pos in let new_lits = Lit.apply_subst_list renaming subst (new_lits,0) in let c_guard = Literal.of_unif_subst renaming us in let = Unif_subst.tags us in let trail = C.trail clause and penalty = C.penalty clause in let proof = Proof.Step.inference ~rule ~tags [C.proof_parent_subst renaming (clause,0) subst] in let new_clause = C.create ~trail ~penalty (c_guard@new_lits) proof in Util.debugf ~section 3 "@[<hv2>equality resolution on@ @[%a@]@ yields @[%a@]@]" (fun k->k C.pp clause C.pp new_clause); Some new_clause ) else None with Unif.Fail -> (* l and r not unifiable, try next *) None) |> Iter.to_rev_list in Util.exit_prof prof_infer_equality_resolution; new_clauses module EqFactInfo = struct type t = { clause : C.t; active_idx : int; s : T.t; t : T.t; u : T.t; v : T.t; subst : US.t; scope : int; } end (* do the inference between given positions, if ordering conditions are respected *) let do_eq_factoring info acc = let open EqFactInfo in let ord = Ctx.ord () in let s = info.s and t = info.t and v = info.v in let us = info.subst in (* check whether subst(lit) is maximal, and not (subst(s) < subst(t)) *) let renaming = S.Renaming.create () in let subst = US.subst us in if O.compare ord (S.FO.apply renaming subst (s, info.scope)) (S.FO.apply renaming subst (t, info.scope)) <> Comp.Lt && C.is_eligible_param (info.clause,info.scope) subst ~idx:info.active_idx then ( Util.incr_stat stat_equality_factoring_call; let = Unif_subst.tags us in let proof = Proof.Step.inference ~rule:(Proof.Rule.mk"eq_fact") ~tags [C.proof_parent_subst renaming (info.clause,0) subst] (* new_lits: literals of the new clause. remove active literal and replace it by a t!=v one, and apply subst *) and new_lits = CCArray.except_idx (C.lits info.clause) info.active_idx in let new_lits = Lit.apply_subst_list renaming subst (new_lits,info.scope) in let c_guard = Literal.of_unif_subst renaming us in let lit' = Lit.mk_neq (S.FO.apply renaming subst (t, info.scope)) (S.FO.apply renaming subst (v, info.scope)) in let new_lits = lit' :: c_guard @ new_lits in let new_clause = C.create ~trail:(C.trail info.clause) ~penalty:(C.penalty info.clause) new_lits proof in Util.debugf ~section 3 "@[<hv2>equality factoring on@ @[%a@]@ yields @[%a@]@]" (fun k->k C.pp info.clause C.pp new_clause); new_clause :: acc ) else acc let infer_equality_factoring clause = Util.enter_prof prof_infer_equality_factoring; let eligible = C.Eligible.(filter Lit.is_pos) in (* find root terms that are unifiable with s and are not in the literal at s_pos. Calls [k] with a position and substitution *) let find_unifiable_lits idx s _s_pos k = Array.iteri (fun i lit -> match lit with | _ when i = idx -> () (* same index *) | Lit.Prop (p, true) -> (* positive proposition *) begin try let subst = Unif.FO.unify_full (s,0) (p,0) in k (p, T.true_, subst) with Unif.Fail -> () end | Lit.Equation (u, v, true) -> (* positive equation *) begin try let subst = Unif.FO.unify_full (s,0) (u,0) in k (u, v, subst) with Unif.Fail -> () end; begin try let subst = Unif.FO.unify_full (s,0) (v,0) in k (v, u, subst) with Unif.Fail -> () end; | _ -> () (* ignore other literals *) ) (C.lits clause) in (* try to do inferences with each positive literal *) let new_clauses = Lits.fold_eqn ~sign:true ~ord:(Ctx.ord ()) ~both:true ~eligible (C.lits clause) |> Iter.fold (fun acc (s, t, _, s_pos) -> (* try with s=t *) let active_idx = Lits.Pos.idx s_pos in find_unifiable_lits active_idx s s_pos |> Iter.fold (fun acc (u,v,subst) -> let info = EqFactInfo.({ clause; s; t; u; v; active_idx; subst; scope=0; }) in do_eq_factoring info acc) acc) [] in Util.exit_prof prof_infer_equality_factoring; new_clauses (* ---------------------------------------------------------------------- * simplifications * ---------------------------------------------------------------------- *) (* TODO: put forward pointers in simpl_set, to make some rewriting steps faster? (invalidate when updated, also allows to reclaim memory) *) (* TODO: use a record with - head - args - subst so as not to rebuild intermediate terms, and also to avoid mixing the head normal form and the substitution for (evaluated) arguments. Might even convert rules into De Bruijn, because: - special restriction (vars rhs ⊆ vars lhs) - indexing on first symbol might be sufficient if matching is fast - must rewrite matching to work on the record anyway *) let lazy_false = Lazy.from_val false type demod_state = { mutable demod_clauses: (C.t * Subst.t * Scoped.scope) list; (* rules used *) mutable demod_sc: Scoped.scope; (* current scope *) } (** Compute normal form of term w.r.t active set. Clauses used to rewrite are added to the clauses hashset. restrict is an option for restricting demodulation in positive maximal terms *) let demod_nf ?(restrict=lazy_false) (st:demod_state) c t : T.t = let ord = Ctx.ord () in (* compute normal form of subterm. If restrict is true, substitutions that are variable renamings are forbidden (since we are at root of a max term) *) let rec reduce_at_root ~restrict t k = (* find equations l=r that match subterm *) let cur_sc = st.demod_sc in assert (cur_sc > 0); let step = UnitIdx.retrieve ~sign:true (!_idx_simpl, cur_sc) (t, 0) |> Iter.find_map (fun (l, r, (_,_,sign,unit_clause), subst) -> (* r is the term subterm is going to be rewritten into *) assert (C.is_unit_clause unit_clause); if sign && (not (Lazy.force restrict) || not (S.is_renaming subst)) && C.trail_subsumes unit_clause c && (O.compare ord (S.FO.apply Subst.Renaming.none subst (l,cur_sc)) (S.FO.apply Subst.Renaming.none subst (r,cur_sc)) = Comp.Gt) (* subst(l) > subst(r) and restriction does not apply, we can rewrite *) then ( Util.debugf ~section 5 "@[<hv2>demod:@ @[<hv>t=%a[%d],@ l=%a[%d],@ r=%a[%d]@],@ subst=@[%a@]@]" (fun k->k T.pp t 0 T.pp l cur_sc T.pp r cur_sc S.pp subst); (* sanity checks *) assert (Type.equal (T.ty l) (T.ty r)); assert (Unif.FO.equal ~subst (l,cur_sc) (t,0)); st.demod_clauses <- (unit_clause,subst,cur_sc) :: st.demod_clauses; st.demod_sc <- 1 + st.demod_sc; (* allocate new scope *) Util.incr_stat stat_demodulate_step; Some (r, subst, cur_sc) ) else None) in begin match step with | None -> k t (* not found any match, normal form found *) | Some (rhs,subst,cur_sc) -> (* reduce [rhs] in current scope [cur_sc] *) assert (cur_sc < st.demod_sc); Util.debugf ~section 5 "@[<2>demod:@ rewrite `@[%a@]`@ into `@[%a@]`@ using %a[%d]@]" (fun k->k T.pp t T.pp rhs Subst.pp subst cur_sc); (* NOTE: we retraverse the term several times, but this is simpler *) let rhs = Subst.FO.apply Subst.Renaming.none subst (rhs,cur_sc) in normal_form ~restrict rhs k (* done one rewriting step, continue *) end (* rewrite innermost-leftmost of [subst(t,scope)]. The initial scope is 0, but then we normal_form terms in which variables are really the variables of the RHS of a previously applied rule (in context !sc); all those variables are bound to terms in context 0 *) and normal_form ~restrict t k = match T.view t with | T.Const _ -> reduce_at_root ~restrict t k | T.App (hd, l) -> (* rewrite subterms in call by value. Note that we keep restrictions for the head, so as not to rewrite [f x=g x] into ⊤ after equality completion of [f=g] *) let rewrite_head = (* Don't rewrite heads in the following situations: *) (List.length l = 0 || not (T.is_type (List.hd l))) && not (Ordering.monotonic ord) in (if rewrite_head then normal_form ~restrict hd else (fun k -> k hd)) (fun hd' -> normal_form_l l (fun l' -> let t' = if T.equal hd hd' && T.same_l l l' then t else T.app hd' l' in (* rewrite term at root *) reduce_at_root ~restrict t' k)) | T.Fun (ty_arg, body) -> (* reduce under lambdas *) normal_form ~restrict:lazy_false body (fun body' -> let u = if T.equal body body' then t else T.fun_ ty_arg body' in k u) | T.Var _ | T.DB _ -> k t | T.AppBuiltin (b, l) -> normal_form_l l (fun l' -> let u = if T.same_l l l' then t else T.app_builtin ~ty:(T.ty t) b l' in k u) and normal_form_l l k = match l with | [] -> k [] | t :: tail -> normal_form ~restrict:lazy_false t (fun t' -> normal_form_l tail (fun l' -> k (t' :: l'))) in normal_form ~restrict t (fun t->t) let[@inline] eq_c_subst (c1,s1,sc1)(c2,s2,sc2) = C.equal c1 c2 && sc1=sc2 && Subst.equal s1 s2 (* Demodulate the clause, with restrictions on which terms to rewrite *) let demodulate_ c = Util.incr_stat stat_demodulate_call; let ord = Ctx.ord () in (* state for storing proofs and scope *) let st = { demod_clauses=[]; demod_sc=1; } in (* literals that are eligible for paramodulation. *) let eligible_param = lazy (C.eligible_param (c,0) S.empty) in (* demodulate literals *) let demod_lit i lit = (* strictly maximal terms might be blocked *) let strictly_max = lazy ( begin match lit with | Lit.Equation (t1,t2,true) -> begin match O.compare ord t1 t2 with | Comp.Gt -> [t1] | Comp.Lt -> [t2] | _ -> [] end | Lit.Prop (t,true) -> [t] | _ -> [] end ) in (* shall we restrict a subterm? only for max terms in positive equations that are eligible for paramodulation. NOTE: E's paper mentions that restrictions should occur for literals eligible for {b resolution}, not paramodulation, but it seems it might be a typo *) let restrict_term t = lazy ( Lit.is_pos lit && BV.get (Lazy.force eligible_param) i && (* restrict max terms in positive literals eligible for resolution *) CCList.mem ~eq:T.equal t (Lazy.force strictly_max) ) in Lit.map_no_simp (fun t -> demod_nf ~restrict:(restrict_term t) st c t) lit in (* demodulate every literal *) let lits = Array.mapi demod_lit (C.lits c) in if CCList.is_empty st.demod_clauses then ( (* no rewriting performed *) SimplM.return_same c ) else ( assert (not (Lits.equal_com lits (C.lits c))); (* construct new clause *) st.demod_clauses <- CCList.uniq ~eq:eq_c_subst st.demod_clauses; let proof = Proof.Step.simp ~rule:(Proof.Rule.mk "demod") (C.proof_parent c :: List.rev_map (fun (c,subst,sc) -> C.proof_parent_subst Subst.Renaming.none (c,sc) subst) st.demod_clauses) in let trail = C.trail c in (* we know that demodulating rules have smaller trail *) let new_c = C.create_a ~trail ~penalty:(C.penalty c) lits proof in Util.debugf ~section 3 "@[<hv2>demodulate@ @[%a@]@ into @[%a@]@ using {@[<hv>%a@]}@]" (fun k-> let pp_c_s out (c,s,sc) = Format.fprintf out "(@[%a@ :subst %a[%d]@])" C.pp c Subst.pp s sc in k C.pp c C.pp new_c (Util.pp_list pp_c_s) st.demod_clauses); (* return simplified clause *) SimplM.return_new new_c ) let demodulate c = Util.with_prof prof_demodulate demodulate_ c (** Find clauses that [given] may demodulate, add them to set *) let backward_demodulate set given = Util.enter_prof prof_back_demodulate; let ord = Ctx.ord () in let renaming = Subst.Renaming.create () in (* find clauses that might be rewritten by l -> r *) let recurse ~oriented set l r = I.retrieve_specializations (!_idx_back_demod,1) (l,0) |> Iter.fold (fun set (_t',with_pos,subst) -> let c = with_pos.C.WithPos.clause in (* subst(l) matches t' and is > subst(r), very likely to rewrite! *) if ((oriented || O.compare ord (S.FO.apply renaming subst (l,0)) (S.FO.apply renaming subst (r,0)) = Comp.Gt ) && C.trail_subsumes c given ) then (* add the clause to the set, it may be rewritten by l -> r *) C.ClauseSet.add c set else set) set in let set' = match C.lits given with | [|Lit.Equation (l,r,true) |] -> begin match Ordering.compare ord l r with | Comp.Gt -> recurse ~oriented:true set l r | Comp.Lt -> recurse ~oriented:true set r l | _ -> let set' = recurse ~oriented:false set l r in recurse ~oriented:false set' r l (* both sides can rewrite, but we need to check ordering *) end | _ -> set in Util.exit_prof prof_back_demodulate; set' let is_tautology c = let is_tauto = Lits.is_trivial (C.lits c) || Trail.is_trivial (C.trail c) in if is_tauto then Util.debugf ~section 3 "@[@[%a@]@ is a tautology@]" (fun k->k C.pp c); is_tauto (* semantic tautology deletion, using a congruence closure algorithm to see if negative literals imply some positive literal *) let is_semantic_tautology_real (c:C.t) : bool = (* create the congruence closure of all negative equations of [c] *) let cc = Congruence.FO.create ~size:8 () in let cc = Array.fold_left (fun cc lit -> match lit with | Lit.Equation (l, r, false) -> Congruence.FO.mk_eq cc l r | Lit.Prop (p, false) -> Congruence.FO.mk_eq cc p T.true_ | _ -> cc) cc (C.lits c) in let res = CCArray.exists (function | Lit.Equation (l, r, true) -> (* if l=r is implied by the congruence, then the clause is redundant *) Congruence.FO.is_eq cc l r | Lit.Prop (p, true) -> Congruence.FO.is_eq cc p T.true_ | _ -> false) (C.lits c) in if res then ( Util.incr_stat stat_semantic_tautology; Util.debugf ~section 2 "@[@[%a@]@ is a semantic tautology@]" (fun k->k C.pp c); ); res let is_semantic_tautology_ c = if Array.length (C.lits c) >= 2 && CCArray.exists Lit.is_neg (C.lits c) && CCArray.exists Lit.is_pos (C.lits c) then is_semantic_tautology_real c else false let is_semantic_tautology c = Util.with_prof prof_semantic_tautology is_semantic_tautology_ c let var_in_subst_ us v sc = S.mem (US.subst us) ((v:T.var:>InnerTerm.t HVar.t),sc) let basic_simplify c = if C.get_flag flag_simplified c then SimplM.return_same c else ( Util.enter_prof prof_basic_simplify; Util.incr_stat stat_basic_simplify_calls; let lits = C.lits c in let has_changed = ref false in let = ref [] in (* bv: literals to keep *) let bv = BV.create ~size:(Array.length lits) true in (* eliminate absurd lits *) Array.iteri (fun i lit -> if Lit.is_absurd lit then ( has_changed := true; tags := Lit.is_absurd_tags lit @ !tags; BV.reset bv i )) lits; (* eliminate inequations x != t *) let us = ref US.empty in let try_unif i t1 sc1 t2 sc2 = try let subst' = Unif.FO.unify_full ~subst:!us (t1,sc1) (t2,sc2) in has_changed := true; BV.reset bv i; us := subst'; with Unif.Fail -> () in Array.iteri (fun i lit -> let can_destr_eq_var v = not (var_in_subst_ !us v 0) && not (Type.is_fun (HVar.ty v)) in if BV.get bv i then match lit with | Lit.Equation (l, r, false) -> begin match T.view l, T.view r with | T.Var v, _ when can_destr_eq_var v -> (* eligible for destructive Equality Resolution, try to update [subst]. Careful: in the case [X!=a | X!=b | C] we must bind X only to [a] or [b], not unify [a] with [b]. NOTE: this also works for HO constraints for unshielded vars *) try_unif i l 0 r 0 | _, T.Var v when can_destr_eq_var v -> try_unif i r 0 l 0 | _ -> () end | Lit.Equation (l, r, true) when Type.is_prop (T.ty l) -> begin match T.view l, T.view r with | ( T.AppBuiltin (Builtin.True, []), T.Var x | T.Var x, T.AppBuiltin (Builtin.True, [])) when not (var_in_subst_ !us x 0) -> (* [C or x=true ---> C[x:=false]] *) begin try let subst' = US.FO.bind !us (x,0) (T.false_,0) in has_changed := true; BV.reset bv i; us := subst'; with Unif.Fail -> () end | _ -> () end | _ -> ()) lits; let new_lits = BV.select bv lits in let new_lits = if US.is_empty !us then new_lits else ( assert !has_changed; let subst = US.subst !us in let tgs = US.tags !us in tags := tgs @ !tags; let c_guard = Literal.of_unif_subst Subst.Renaming.none !us in c_guard @ Lit.apply_subst_list Subst.Renaming.none subst (new_lits,0) ) in let new_lits = CCList.uniq ~eq:Lit.equal_com new_lits in if not !has_changed && List.length new_lits = Array.length lits then ( Util.exit_prof prof_basic_simplify; C.set_flag flag_simplified c true; SimplM.return_same c (* no simplification *) ) else ( let parent = if Subst.is_empty (US.subst !us) then C.proof_parent c else C.proof_parent_subst Subst.Renaming.none (c,0) (US.subst !us) in let proof = Proof.Step.simp [parent] ~tags:!tags ~rule:(Proof.Rule.mk "simplify") in let new_clause = C.create ~trail:(C.trail c) ~penalty:(C.penalty c) new_lits proof in Util.debugf ~section 3 "@[<>@[%a@]@ @[<2>basic_simplifies into@ @[%a@]@]@ with @[%a@]@]" (fun k->k C.pp c C.pp new_clause US.pp !us); Util.incr_stat stat_basic_simplify; Util.exit_prof prof_basic_simplify; SimplM.return_new new_clause ) ) let handle_distinct_constants lit = match lit with | Lit.Equation (l, r, sign) when T.is_const l && T.is_const r -> let s1 = T.head_exn l and s2 = T.head_exn r in if ID.is_distinct_object s1 && ID.is_distinct_object s2 then if sign = (ID.equal s1 s2) then Some (Lit.mk_tauto,[],[Proof.Tag.T_distinct]) (* "a" = "a", or "a" != "b" *) else Some (Lit.mk_absurd,[],[Proof.Tag.T_distinct]) (* "a" = "b" or "a" != "a" *) else None | _ -> None exception FoundMatch of T.t * C.t * S.t let positive_simplify_reflect c = Util.enter_prof prof_pos_simplify_reflect; (* iterate through literals and try to resolve negative ones *) let rec iterate_lits acc lits clauses = match lits with | [] -> List.rev acc, clauses | (Lit.Equation (s, t, false) as lit)::lits' -> begin match equatable_terms clauses s t with | None -> (* keep literal *) iterate_lits (lit::acc) lits' clauses | Some new_clauses -> (* drop literal, remember clauses *) iterate_lits acc lits' new_clauses end | lit::lits' -> iterate_lits (lit::acc) lits' clauses (* try to make the terms equal using some positive unit clauses from active_set *) and equatable_terms clauses t1 t2 = match T.Classic.view t1, T.Classic.view t2 with | _ when T.equal t1 t2 -> Some clauses (* trivial *) | T.Classic.App (f, ss), T.Classic.App (g, ts) when ID.equal f g && List.length ss = List.length ts -> (* try to make the terms equal directly *) begin match equate_root clauses t1 t2 with | None -> (* otherwise try to make subterms pairwise equal *) let ok, clauses = List.fold_left2 (fun (ok, clauses) t1' t2' -> if ok then match equatable_terms clauses t1' t2' with | None -> false, [] | Some clauses -> true, clauses else false, []) (true, clauses) ss ts in if ok then Some clauses else None | Some clauses -> Some clauses end | _ -> equate_root clauses t1 t2 (* try to solve it with a unit equality *) (* try to equate terms with a positive unit clause that match them *) and equate_root clauses t1 t2 = try UnitIdx.retrieve ~sign:true (!_idx_simpl,1)(t1,0) |> Iter.iter (fun (l,r,(_,_,_,c'),subst) -> assert (Unif.FO.equal ~subst (l,1)(t1,0)); if Unif.FO.equal ~subst (r,1)(t2,0) && C.trail_subsumes c' c then begin (* t1!=t2 is refuted by l\sigma = r\sigma *) Util.debugf ~section 4 "@[<2>equate @[%a@]@ and @[%a@]@ using @[%a@]@]" (fun k->k T.pp t1 T.pp t2 C.pp c'); raise (FoundMatch (r, c', subst)) (* success *) end ); None (* no match *) with FoundMatch (_r, c', subst) -> Some (C.proof_parent_subst Subst.Renaming.none (c',1) subst :: clauses) (* success *) in (* fold over literals *) let lits, premises = iterate_lits [] (C.lits c |> Array.to_list) [] in if List.length lits = Array.length (C.lits c) then ( (* no literal removed, keep c *) Util.exit_prof prof_pos_simplify_reflect; SimplM.return_same c ) else ( let proof = Proof.Step.simp ~rule:(Proof.Rule.mk "simplify_reflect+") (C.proof_parent c::premises) in let trail = C.trail c and penalty = C.penalty c in let new_c = C.create ~trail ~penalty lits proof in Util.debugf ~section 3 "@[@[%a@]@ pos_simplify_reflect into @[%a@]@]" (fun k->k C.pp c C.pp new_c); Util.exit_prof prof_pos_simplify_reflect; SimplM.return_new new_c ) let negative_simplify_reflect c = Util.enter_prof prof_neg_simplify_reflect; (* iterate through literals and try to resolve positive ones *) let rec iterate_lits acc lits clauses = match lits with | [] -> List.rev acc, clauses | (Lit.Equation (s, t, true) as lit)::lits' -> begin match can_refute s t, can_refute t s with | None, None -> (* keep literal *) iterate_lits (lit::acc) lits' clauses | Some new_clause, _ | _, Some new_clause -> (* drop literal, remember clause *) iterate_lits acc lits' (new_clause :: clauses) end | lit::lits' -> iterate_lits (lit::acc) lits' clauses (* try to remove the literal using a negative unit clause *) and can_refute s t = try UnitIdx.retrieve ~sign:false (!_idx_simpl,1) (s,0) |> Iter.iter (fun (l, r, (_,_,_,c'), subst) -> assert (Unif.FO.equal ~subst (l, 1) (s, 0)); if Unif.FO.equal ~subst (r, 1) (t, 0) && C.trail_subsumes c' c then begin (* TODO: useless? *) let subst = Unif.FO.matching ~subst ~pattern:(r, 1) (t, 0) in Util.debugf ~section 3 "@[neg_reflect eliminates@ @[%a=%a@]@ with @[%a@]@]" (fun k->k T.pp s T.pp t C.pp c'); raise (FoundMatch (r, c', subst)) (* success *) end ); None (* no match *) with FoundMatch (_r, c', subst) -> Some (C.proof_parent_subst Subst.Renaming.none (c',1) subst) (* success *) in (* fold over literals *) let lits, premises = iterate_lits [] (C.lits c |> Array.to_list) [] in if List.length lits = Array.length (C.lits c) then ( (* no literal removed *) Util.exit_prof prof_neg_simplify_reflect; SimplM.return_same c ) else ( let proof = Proof.Step.simp ~rule:(Proof.Rule.mk "simplify_reflect-") (C.proof_parent c :: premises) in let new_c = C.create ~trail:(C.trail c) ~penalty:(C.penalty c) lits proof in Util.debugf ~section 3 "@[@[%a@]@ neg_simplify_reflect into @[%a@]@]" (fun k->k C.pp c C.pp new_c); Util.exit_prof prof_neg_simplify_reflect; SimplM.return_new new_c ) (* ---------------------------------------------------------------------- * subsumption * ---------------------------------------------------------------------- *) (** raised when a subsuming substitution is found *) exception SubsumptionFound of S.t (** check that every literal in a matches at least one literal in b *) let all_lits_match a sc_a b sc_b = CCArray.for_all (fun lita -> CCArray.exists (fun litb -> not (Iter.is_empty (Lit.subsumes (lita, sc_a) (litb, sc_b)))) b) a (** Compare literals by subsumption difficulty (see "towards efficient subsumption", Tammet). We sort by increasing order, so non-ground, deep, heavy literals are smaller (thus tested early) *) let compare_literals_subsumption lita litb = CCOrd.( (* ground literal is bigger *) bool (Lit.is_ground lita) (Lit.is_ground litb) (* deep literal is smaller *) <?> (map Lit.depth (opp int), lita, litb) (* heavy literal is smaller *) <?> (map Lit.weight (opp int), lita, litb) ) (* replace the bitvector system by some backtracking scheme? XXX: maybe not a good idea. the algorithm is actually quite subtle and needs tight control over the traversal (lookahead of free variables in next literals, see [check_vars]...) *) (** Check whether [a] subsumes [b], and if it does, return the corresponding substitution *) let subsumes_with_ (a,sc_a) (b,sc_b) : _ option = (* a must not have more literals, and it must be possible to bind all its vars during subsumption *) if Array.length a > Array.length b || not (all_lits_match a sc_a b sc_b) then None else ( (* sort a copy of [a] by decreasing difficulty *) let a = Array.copy a in let = ref [] in (* try to subsumes literals of b whose index are not in bv, with [subst] *) let rec try_permutations i subst bv = if i = Array.length a then raise (SubsumptionFound subst) else let lita = a.(i) in find_matched lita i subst bv 0 (* find literals of b that are not bv and that are matched by lita *) and find_matched lita i subst bv j = if j = Array.length b then () (* if litb is already matched, continue *) else if BV.get bv j then find_matched lita i subst bv (j+1) else ( let litb = b.(j) in BV.set bv j; (* match lita and litb, then flag litb as used, and try with next literal of a *) let n_subst = ref 0 in Lit.subsumes ~subst (lita, sc_a) (litb, sc_b) (fun (subst',tgs) -> incr n_subst; tags := tgs @ !tags; try_permutations (i+1) subst' bv); BV.reset bv j; (* some variable of lita occur in a[j+1...], try another literal of b *) if !n_subst > 0 && not (check_vars lita (i+1)) then () (* no backtracking for litb *) else find_matched lita i subst bv (j+1) ) (* does some literal in a[j...] contain a variable in l or r? *) and check_vars lit j = let vars = Lit.vars lit in if vars = [] then false else try for k = j to Array.length a - 1 do if List.exists (fun v -> Lit.var_occurs v a.(k)) vars then raise Exit done; false with Exit -> true in try Array.sort compare_literals_subsumption a; let bv = BV.empty () in try_permutations 0 S.empty bv; None with (SubsumptionFound subst) -> Util.debugf ~section 2 "(@[<hv>subsumes@ :c1 @[%a@]@ :c2 @[%a@]@ :subst %a%a@]" (fun k->k Lits.pp a Lits.pp b Subst.pp subst Proof.pp_tags !tags); Some (subst, !tags) ) let subsumes_with a b = Util.enter_prof prof_subsumption; Util.incr_stat stat_subsumption_call; let res = subsumes_with_ a b in Util.exit_prof prof_subsumption; res let subsumes a b = match subsumes_with (a,0) (b,1) with | None -> false | Some _ -> true (* anti-unification of the two terms with at most one disagreement point *) let anti_unify (t:T.t)(u:T.t): (T.t * T.t) option = match Unif.FO.anti_unify ~cut:1 t u with | Some [pair] -> Some pair | _ -> None let eq_subsumes_with (a,sc_a) (b,sc_b) = (* subsume a literal using a = b *) let rec equate_lit_with a b lit = match lit with | Lit.Equation (u, v, true) when not (T.equal u v) -> equate_terms a b u v | _ -> None (* make u=v using a=b once *) and equate_terms a b u v = begin match anti_unify u v with | None -> None | Some (u', v') -> equate_root a b u' v' end (* check whether a\sigma = u and b\sigma = v, for some sigma; or the commutation thereof *) and equate_root a b u v: Subst.t option = let check_ a b u v = try let subst = Unif.FO.matching ~pattern:(a, sc_a) (u, sc_b) in let subst = Unif.FO.matching ~subst ~pattern:(b, sc_a) (v, sc_b) in Some subst with Unif.Fail -> None in begin match check_ a b u v with | Some _ as s -> s | None -> check_ b a u v end in (* check for each literal *) Util.enter_prof prof_eq_subsumption; Util.incr_stat stat_eq_subsumption_call; let res = match a with | [|Lit.Equation (s, t, true)|] -> let res = CCArray.find (equate_lit_with s t) b in begin match res with | None -> None | Some subst -> Util.debugf ~section 3 "@[<2>@[%a@]@ eq-subsumes @[%a@]@ :subst %a@]" (fun k->k Lits.pp a Lits.pp b Subst.pp subst); Util.incr_stat stat_eq_subsumption_success; Some subst end | _ -> None (* only a positive unit clause unit-subsumes a clause *) in Util.exit_prof prof_eq_subsumption; res let eq_subsumes a b = CCOpt.is_some (eq_subsumes_with (a,1) (b,0)) let subsumed_by_active_set c = Util.enter_prof prof_subsumption_set; Util.incr_stat stat_subsumed_by_active_set_call; (* if there is an equation in c, try equality subsumption *) let try_eq_subsumption = CCArray.exists Lit.is_eqn (C.lits c) in (* use feature vector indexing *) let res = SubsumIdx.retrieve_subsuming_c !_idx_fv c |> Iter.exists (fun c' -> C.trail_subsumes c' c && ( (try_eq_subsumption && eq_subsumes (C.lits c') (C.lits c)) || subsumes (C.lits c') (C.lits c) )) in Util.exit_prof prof_subsumption_set; if res then ( Util.debugf ~section 3 "@[<2>@[%a@]@ subsumed by active set@]" (fun k->k C.pp c); Util.incr_stat stat_clauses_subsumed; ); res let subsumed_in_active_set acc c = Util.enter_prof prof_subsumption_in_set; Util.incr_stat stat_subsumed_in_active_set_call; (* if c is a single unit clause *) let try_eq_subsumption = C.is_unit_clause c && Lit.is_pos (C.lits c).(0) in (* use feature vector indexing *) let res = SubsumIdx.retrieve_subsumed_c !_idx_fv c |> Iter.fold (fun res c' -> if C.trail_subsumes c c' then let redundant = (try_eq_subsumption && eq_subsumes (C.lits c) (C.lits c')) || subsumes (C.lits c) (C.lits c') in if redundant then ( Util.incr_stat stat_clauses_subsumed; C.ClauseSet.add c' res ) else res else res) acc in Util.exit_prof prof_subsumption_in_set; res (* Number of equational lits. Used as an estimation for the difficulty of the subsumption check for this clause. *) let num_equational lits = Array.fold_left (fun acc lit -> match lit with | Lit.Equation _ -> acc+1 | _ -> acc ) 0 lits (* ---------------------------------------------------------------------- * contextual literal cutting * ---------------------------------------------------------------------- *) (* Performs successive contextual literal cuttings *) let rec contextual_literal_cutting_rec c = let open SimplM.Infix in if Array.length (C.lits c) <= 1 || num_equational (C.lits c) > 3 || Array.length (C.lits c) > 8 then SimplM.return_same c else ( (* do we need to try to use equality subsumption? *) let try_eq_subsumption = CCArray.exists Lit.is_eqn (C.lits c) in (* try to remove one literal from the literal array *) let remove_one_lit lits = Iter.of_array_i lits |> Iter.filter (fun (_,lit) -> not (Lit.is_constraint lit)) |> Iter.find_map (fun (i,old_lit) -> (* negate literal *) lits.(i) <- Lit.negate old_lit; (* test for subsumption *) SubsumIdx.retrieve_subsuming !_idx_fv (Lits.Seq.to_form lits) (C.trail c |> Trail.labels) |> Iter.filter (fun c' -> C.trail_subsumes c' c) |> Iter.find_map (fun c' -> let subst = match if try_eq_subsumption then eq_subsumes_with (C.lits c',1) (lits,0) else None with | Some s -> Some (s, []) | None -> subsumes_with (C.lits c',1) (lits,0) in subst |> CCOpt.map (fun (subst,) -> (* remove the literal and recurse *) CCArray.except_idx lits i, i, c', subst, tags)) |> CCFun.tap (fun _ -> (* restore literal *) lits.(i) <- old_lit)) in begin match remove_one_lit (Array.copy (C.lits c)) with | None -> SimplM.return_same c (* no literal removed *) | Some (new_lits, _, c',subst,) -> (* hc' allowed us to cut a literal *) assert (List.length new_lits + 1 = Array.length (C.lits c)); let proof = Proof.Step.inference ~rule:(Proof.Rule.mk "clc") ~tags [C.proof_parent c; C.proof_parent_subst Subst.Renaming.none (c',1) subst] in let new_c = C.create ~trail:(C.trail c) ~penalty:(C.penalty c) new_lits proof in Util.debugf ~section 3 "@[<2>contextual literal cutting@ in @[%a@]@ using @[%a@]@ gives @[%a@]@]" (fun k->k C.pp c C.pp c' C.pp new_c); Util.incr_stat stat_clc; (* try to cut another literal *) SimplM.return_new new_c >>= contextual_literal_cutting_rec end ) let contextual_literal_cutting c = Util.enter_prof prof_clc; let res = contextual_literal_cutting_rec c in Util.exit_prof prof_clc; res (* ---------------------------------------------------------------------- * contraction (condensation) * ---------------------------------------------------------------------- *) exception CondensedInto of Lit.t array * S.t * Subst.Renaming.t * Proof.tag list (** performs condensation on the clause. It looks for two literals l1 and l2 of same sign such that l1\sigma = l2, and hc\sigma \ {l2} subsumes hc. Then hc is simplified into hc\sigma \ {l2}. If there are too many equational literals, the simplification is disabled to avoid pathologically expensive subsumption checks. TODO remove this limitation after an efficient subsumption check is implemented. *) let rec condensation_rec c = let open SimplM.Infix in if Array.length (C.lits c) <= 1 || num_equational (C.lits c) > 3 || Array.length (C.lits c) > 8 then SimplM.return_same c else (* scope is used to rename literals for subsumption *) let lits = C.lits c in let n = Array.length lits in try for i = 0 to n - 1 do let lit = lits.(i) in for j = i+1 to n - 1 do let lit' = lits.(j) in (* see whether [lit |= lit'], and if removing [lit] gives a clause that subsumes c. Also try to swap [lit] and [lit']. *) let subst_remove_lit = Lit.subsumes (lit, 0) (lit', 0) |> Iter.map (fun s -> s, i) and subst_remove_lit' = Lit.subsumes (lit', 0) (lit, 0) |> Iter.map (fun s -> s, j) in (* potential condensing substitutions *) let substs = Iter.append subst_remove_lit subst_remove_lit' in Iter.iter (fun ((subst,),idx_to_remove) -> let new_lits = Array.sub lits 0 (n - 1) in if idx_to_remove <> n-1 then new_lits.(idx_to_remove) <- lits.(n-1); (* remove lit *) let renaming = Subst.Renaming.create () in let new_lits = Lits.apply_subst renaming subst (new_lits,0) in (* check subsumption *) if subsumes new_lits lits then ( raise (CondensedInto (new_lits, subst, renaming, tags)) )) substs done; done; SimplM.return_same c with CondensedInto (new_lits, subst, renaming, ) -> (* clause is simplified *) let proof = Proof.Step.simp ~rule:(Proof.Rule.mk "condensation") ~tags [C.proof_parent_subst renaming (c,0) subst] in let c' = C.create_a ~trail:(C.trail c) ~penalty:(C.penalty c) new_lits proof in Util.debugf ~section 3 "@[<2>condensation@ of @[%a@] (with @[%a@])@ gives @[%a@]@]" (fun k->k C.pp c S.pp subst C.pp c'); (* try to condense further *) Util.incr_stat stat_condensation; SimplM.return_new c' >>= condensation_rec let condensation c = Util.with_prof prof_condensation condensation_rec c (** {2 Registration} *) (* print index into file *) let _print_idx ~f file idx = CCIO.with_out file (fun oc -> let out = Format.formatter_of_out_channel oc in Format.fprintf out "@[%a@]@." f idx; flush oc) let setup_dot_printers () = let pp_leaf _ _ = () in CCOpt.iter (fun file -> Signal.once Signals.on_dot_output (fun () -> _print_idx ~f:(TermIndex.to_dot pp_leaf) file !_idx_sup_into)) !_dot_sup_into; CCOpt.iter (fun file -> Signal.once Signals.on_dot_output (fun () -> _print_idx ~f:(TermIndex.to_dot pp_leaf) file !_idx_sup_from)) !_dot_sup_from; CCOpt.iter (fun file -> Signal.once Signals.on_dot_output (fun () -> _print_idx ~f:UnitIdx.to_dot file !_idx_simpl)) !_dot_simpl; CCOpt.iter (fun file -> Signal.once Signals.on_dot_output (fun () -> _print_idx ~f:(TermIndex.to_dot pp_leaf) file !_idx_back_demod)) !_dot_demod_into; () let register () = let open SimplM.Infix in let rw_simplify c = demodulate c >>= basic_simplify >>= positive_simplify_reflect >>= negative_simplify_reflect and active_simplify c = condensation c >>= contextual_literal_cutting and backward_simplify c = let set = C.ClauseSet.empty in backward_demodulate set c and redundant = subsumed_by_active_set and backward_redundant = subsumed_in_active_set and is_trivial = is_tautology in Env.add_binary_inf "superposition_passive" infer_passive; Env.add_binary_inf "superposition_active" infer_active; Env.add_unary_inf "equality_factoring" infer_equality_factoring; Env.add_unary_inf "equality_resolution" infer_equality_resolution; if not (!_dont_simplify) then ( Env.add_rw_simplify rw_simplify; Env.add_basic_simplify basic_simplify; Env.add_active_simplify active_simplify; Env.add_backward_simplify backward_simplify ); Env.add_redundant redundant; Env.add_backward_redundant backward_redundant; if !_use_semantic_tauto then Env.add_is_trivial is_semantic_tautology; Env.add_is_trivial is_trivial; Env.add_lit_rule "distinct_symbol" handle_distinct_constants; setup_dot_printers (); () end let key = Flex_state.create_key() let register ~sup = let module Sup = (val sup : S) in let module E = Sup.Env in E.update_flex_state (Flex_state.add key sup) (* TODO: move DOT index printing into the extension *) let extension = let action env = let module E = (val env : Env.S) in let module Sup = Make(E) in Sup.register(); register ~sup:(module Sup : S) in { Extensions.default with Extensions. name="superposition"; env_actions = [action]; } let () = Params.add_opts [ "--semantic-tauto" , Arg.Set _use_semantic_tauto , " enable semantic tautology check" ; "--no-semantic-tauto" , Arg.Clear _use_semantic_tauto , " disable semantic tautology check" ; "--dot-sup-into" , Arg.String (fun s -> _dot_sup_into := Some s) , " print superposition-into index into file" ; "--dot-sup-from" , Arg.String (fun s -> _dot_sup_from := Some s) , " print superposition-from index into file" ; "--dot-demod" , Arg.String (fun s -> _dot_simpl := Some s) , " print forward rewriting index into file" ; "--dot-demod-into" , Arg.String (fun s -> _dot_demod_into := Some s) , " print backward rewriting index into file" ; "--simultaneous-sup" , Arg.Bool (fun b -> _use_simultaneous_sup := b) , " enable/disable simultaneous superposition" ; "--dont-simplify" , Arg.Set _dont_simplify , " disable simplification rules" ; "--sup-at-vars" , Arg.Set _sup_at_vars , " enable superposition at variables under certain ordering conditions" ; "--restrict-hidden-sup-at-vars" , Arg.Set _restrict_hidden_sup_at_vars , " perform hidden superposition at variables only under certain ordering conditions" ]
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>