package libsail
Sail is a language for describing the instruction semantics of processors
Install
Dune Dependency
Authors
Maintainers
Sources
sail-0.18.tbz
sha256=fcdbda14f1ed59fa30e23da34abe02547416e3c2a83fbeee5606e100a5edcf35
sha512=0bbd72706cb4c1ddf13ea1c42004ec498aa9db8a301020f0dd3d8ac582d1bed8a48c7a825b8e3e6f629279f1f900384f6966608e1cd59e7b1217776413c7fa27
doc/src/libsail/interpreter.ml.html
Source file interpreter.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
(****************************************************************************) (* Sail *) (* *) (* Sail and the Sail architecture models here, comprising all files and *) (* directories except the ASL-derived Sail code in the aarch64 directory, *) (* are subject to the BSD two-clause licence below. *) (* *) (* The ASL derived parts of the ARMv8.3 specification in *) (* aarch64/no_vector and aarch64/full are copyright ARM Ltd. *) (* *) (* Copyright (c) 2013-2021 *) (* Kathyrn Gray *) (* Shaked Flur *) (* Stephen Kell *) (* Gabriel Kerneis *) (* Robert Norton-Wright *) (* Christopher Pulte *) (* Peter Sewell *) (* Alasdair Armstrong *) (* Brian Campbell *) (* Thomas Bauereiss *) (* Anthony Fox *) (* Jon French *) (* Dominic Mulligan *) (* Stephen Kell *) (* Mark Wassell *) (* Alastair Reid (Arm Ltd) *) (* *) (* All rights reserved. *) (* *) (* This work was partially supported by EPSRC grant EP/K008528/1 <a *) (* href="http://www.cl.cam.ac.uk/users/pes20/rems">REMS: Rigorous *) (* Engineering for Mainstream Systems</a>, an ARM iCASE award, EPSRC IAA *) (* KTF funding, and donations from Arm. This project has received *) (* funding from the European Research Council (ERC) under the European *) (* Union’s Horizon 2020 research and innovation programme (grant *) (* agreement No 789108, ELVER). *) (* *) (* This software was developed by SRI International and the University of *) (* Cambridge Computer Laboratory (Department of Computer Science and *) (* Technology) under DARPA/AFRL contracts FA8650-18-C-7809 ("CIFV") *) (* and FA8750-10-C-0237 ("CTSRD"). *) (* *) (* Redistribution and use in source and binary forms, with or without *) (* modification, are permitted provided that the following conditions *) (* are met: *) (* 1. Redistributions of source code must retain the above copyright *) (* notice, this list of conditions and the following disclaimer. *) (* 2. Redistributions in binary form must reproduce the above copyright *) (* notice, this list of conditions and the following disclaimer in *) (* the documentation and/or other materials provided with the *) (* distribution. *) (* *) (* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' *) (* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED *) (* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A *) (* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR *) (* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, *) (* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT *) (* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF *) (* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND *) (* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, *) (* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT *) (* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF *) (* SUCH DAMAGE. *) (****************************************************************************) open Ast open Ast_defs open Ast_util open Value module Document = Pretty_print_sail.Document module Printer = Pretty_print_sail.Printer (struct let insert_braces = false let resugar = false let hide_attributes = true end) type gstate = { registers : value Bindings.t; allow_registers : bool; (* For some uses we want to forbid touching any registers. *) primops : (value list -> value) StringMap.t; letbinds : Type_check.tannot letbind list; fundefs : Type_check.tannot fundef Bindings.t; last_write_ea : (value * value * value) option; typecheck_env : Type_check.Env.t; } type lstate = { locals : value Bindings.t } type state = lstate * gstate let value_of_lit (L_aux (l_aux, _)) = match l_aux with | L_unit -> V_unit | L_zero -> V_bit Sail_lib.B0 | L_one -> V_bit Sail_lib.B1 | L_true -> V_bool true | L_false -> V_bool false | L_string str -> V_string str | L_num n -> V_int n | L_hex str -> Util.string_to_list str |> List.map (fun c -> List.map (fun b -> V_bit b) (Sail_lib.hex_char c)) |> List.concat |> fun v -> V_vector v | L_bin str -> Util.string_to_list str |> List.map (fun c -> V_bit (Sail_lib.bin_char c)) |> fun v -> V_vector v | L_real str -> begin match Util.split_on_char '.' str with | [whole; frac] -> let whole = Rational.of_big_int (Big_int.of_string whole) in let frac = Rational.div (Rational.of_big_int (Big_int.of_string frac)) (Rational.of_int (Util.power 10 (String.length frac))) in V_real (Rational.add whole frac) | _ -> failwith "could not parse real literal" end | L_undef -> failwith "value_of_lit of undefined" let is_value = function E_aux (E_internal_value _, _) -> true | _ -> false let is_true = function E_aux (E_internal_value (V_bool b), annot) -> b | _ -> false let is_false = function E_aux (E_internal_value (V_bool b), _) -> not b | _ -> false let exp_of_value v = E_aux (E_internal_value v, (Parse_ast.Unknown, Type_check.empty_tannot)) let value_of_exp = function E_aux (E_internal_value v, _) -> v | _ -> failwith "value_of_exp coerction failed" let fallthrough = let open Type_check in let open Type_error in try let env = initial_env |> Env.add_scattered_variant (mk_id "exception") (mk_typquant []) in check_case env exc_typ (mk_pexp (Pat_exp (mk_pat (P_id (mk_id "exn")), mk_exp (E_throw (mk_exp (E_id (mk_id "exn"))))))) unit_typ with Type_error (l, err) -> Reporting.unreachable l __POS__ (fst (string_of_type_error err)) (**************************************************************************) (* 1. Interpreter Monad *) (**************************************************************************) type return_value = Return_ok of value | Return_exception of value (* when changing effect arms remember to also update effect_request type below *) type 'a response = | Early_return of value | Exception of value | Assertion_failed of string | Call of id * value list * (return_value -> 'a) | Fail of string | Read_mem of (* read_kind : *) value * (* address : *) value * (* length : *) value * (value -> 'a) | Write_ea of (* write_kind : *) value * (* address : *) value * (* length : *) value * (unit -> 'a) | Excl_res of (bool -> 'a) | Write_mem of (* write_kind : *) value * (* address : *) value * (* length : *) value * (* value : *) value * (bool -> 'a) | Barrier of (* barrier_kind : *) value * (unit -> 'a) | Read_reg of string * (value -> 'a) | Write_reg of string * value * (unit -> 'a) | Get_primop of string * ((value list -> value) -> 'a) | Get_local of string * (value -> 'a) | Put_local of string * value * (unit -> 'a) | Get_global_letbinds of (Type_check.tannot letbind list -> 'a) and 'a monad = Pure of 'a | Yield of 'a monad response let map_response f = function | Early_return v -> Early_return v | Exception v -> Exception v | Assertion_failed str -> Assertion_failed str | Call (id, vals, cont) -> Call (id, vals, fun v -> f (cont v)) | Fail s -> Fail s | Read_mem (rk, addr, len, cont) -> Read_mem (rk, addr, len, fun v -> f (cont v)) | Write_ea (wk, addr, len, cont) -> Write_ea (wk, addr, len, fun () -> f (cont ())) | Excl_res cont -> Excl_res (fun b -> f (cont b)) | Write_mem (wk, addr, len, v, cont) -> Write_mem (wk, addr, len, v, fun b -> f (cont b)) | Barrier (bk, cont) -> Barrier (bk, fun () -> f (cont ())) | Read_reg (name, cont) -> Read_reg (name, fun v -> f (cont v)) | Write_reg (name, v, cont) -> Write_reg (name, v, fun () -> f (cont ())) | Get_primop (name, cont) -> Get_primop (name, fun op -> f (cont op)) | Get_local (name, cont) -> Get_local (name, fun v -> f (cont v)) | Put_local (name, v, cont) -> Put_local (name, v, fun () -> f (cont ())) | Get_global_letbinds cont -> Get_global_letbinds (fun lbs -> f (cont lbs)) let rec liftM f = function Pure x -> Pure (f x) | Yield g -> Yield (map_response (liftM f) g) let return x = Pure x let rec bind m f = match m with Pure x -> f x | Yield m -> Yield (map_response (fun m -> bind m f) m) let ( >>= ) m f = bind m f let ( >> ) m1 m2 = bind m1 (function () -> m2) type ('a, 'b) either = Left of 'a | Right of 'b (* Support for interpreting exceptions *) let catch m = match m with | Pure x -> Pure (Right x) | Yield (Exception v) -> Pure (Left v) | Yield resp -> Yield (map_response (fun m -> liftM (fun r -> Right r) m) resp) let throw v = Yield (Exception v) let call (f : id) (args : value list) : return_value monad = Yield (Call (f, args, fun v -> Pure v)) let read_mem rk addr len : value monad = Yield (Read_mem (rk, addr, len, fun v -> Pure v)) let write_ea wk addr len : unit monad = Yield (Write_ea (wk, addr, len, fun () -> Pure ())) let excl_res () : bool monad = Yield (Excl_res (fun b -> Pure b)) let write_mem wk addr len v : bool monad = Yield (Write_mem (wk, addr, len, v, fun b -> Pure b)) let barrier bk : unit monad = Yield (Barrier (bk, fun () -> Pure ())) let read_reg name : value monad = Yield (Read_reg (name, fun v -> Pure v)) let write_reg name v : unit monad = Yield (Write_reg (name, v, fun () -> Pure ())) let fail s = Yield (Fail s) let get_primop name : (value list -> value) monad = Yield (Get_primop (name, fun op -> Pure op)) let get_local name : value monad = Yield (Get_local (name, fun v -> Pure v)) let put_local name v : unit monad = Yield (Put_local (name, v, fun () -> Pure ())) let get_global_letbinds () : Type_check.tannot letbind list monad = Yield (Get_global_letbinds (fun lbs -> Pure lbs)) let early_return v = Yield (Early_return v) let assertion_failed msg = Yield (Assertion_failed msg) let liftM2 f m1 m2 = m1 >>= fun x -> m2 >>= fun y -> return (f x y) let letbind_pat_ids (LB_aux (LB_val (pat, _), _)) = pat_ids pat let subst id value exp = Ast_util.subst id (exp_of_value value) exp let local_variable id lstate gstate = try Bindings.find id lstate.locals |> exp_of_value with Not_found -> failwith ("Could not find local variable " ^ string_of_id id) (**************************************************************************) (* 2. Expression Evaluation *) (**************************************************************************) let unit_exp = E_lit (L_aux (L_unit, Parse_ast.Unknown)) let is_value_fexp (FE_aux (FE_fexp (id, exp), _)) = is_value exp let value_of_fexp (FE_aux (FE_fexp (id, exp), _)) = (string_of_id id, value_of_exp exp) let rec build_letchain id lbs (E_aux (_, annot) as exp) = match lbs with | [] -> exp | lb :: lbs when IdSet.mem id (letbind_pat_ids lb) -> let exp = E_aux (E_let (lb, exp), annot) in build_letchain id lbs exp | _ :: lbs -> build_letchain id lbs exp let is_interpreter_extern id env = let open Type_check in Env.is_extern id env "interpreter" let get_interpreter_extern id env = let open Type_check in Env.get_extern id env "interpreter" type partial_binding = Complete_binding of value | Partial_binding of (value * Big_int.num * Big_int.num) list let combine _ v1 v2 = match (v1, v2) with | None, None -> None | Some v1, None -> Some v1 | None, Some v2 -> Some v2 | Some (Partial_binding p1), Some (Partial_binding p2) -> Some (Partial_binding (p1 @ p2)) | Some (Complete_binding _), Some (Complete_binding _) -> failwith "Tried to bind same identifier twice!" | Some _, Some _ -> failwith "Tried to mix partial and complete binding!" let complete_bindings = Bindings.map (function | Complete_binding v -> v | Partial_binding ((v1, n1, m1) :: partial_values) -> let max, min = List.fold_left (fun (max, min) (_, n, m) -> (Big_int.max max (Big_int.max n m), Big_int.min min (Big_int.min n m))) (n1, m1) partial_values in let len = Big_int.sub (Big_int.succ max) min in List.fold_left (fun bv (slice, n, m) -> prerr_endline (string_of_value slice); value_update_subrange [bv; V_int n; V_int m; slice] ) (value_zeros [V_int len]) ((v1, n1, m1) :: partial_values) | Partial_binding [] -> Reporting.unreachable Parse_ast.Unknown __POS__ "Empty partial binding set" ) let rec step (E_aux (e_aux, annot) as orig_exp) = let wrap e_aux' = return (E_aux (e_aux', annot)) in match e_aux with | E_block [] -> wrap (E_lit (L_aux (L_unit, Parse_ast.Unknown))) | E_block [exp] when is_value exp -> return exp | E_block [(E_aux (E_block _, _) as exp)] -> return exp | E_block (exp :: exps) when is_value exp -> wrap (E_block exps) | E_block (exp :: exps) -> step exp >>= fun exp' -> wrap (E_block (exp' :: exps)) | E_lit (L_aux (L_undef, _)) -> begin let env = Type_check.env_of_annot annot in let typ = Type_check.typ_of_annot annot in let undef_exp = Ast_util.undefined_of_typ false Parse_ast.Unknown (fun _ -> empty_uannot) typ in let undef_exp = Type_check.check_exp env undef_exp typ in return undef_exp end | E_lit lit -> begin try return (exp_of_value (value_of_lit lit)) with Failure s -> fail ("Failure: " ^ s) end | E_if (exp, then_exp, else_exp) when is_true exp -> return then_exp | E_if (exp, then_exp, else_exp) when is_false exp -> return else_exp | E_if (exp, then_exp, else_exp) -> step exp >>= fun exp' -> wrap (E_if (exp', then_exp, else_exp)) | E_loop (While, _, exp, body) -> wrap (E_if (exp, E_aux (E_block [body; orig_exp], annot), exp_of_value V_unit)) | E_loop (Until, _, exp, body) -> wrap (E_block [body; E_aux (E_if (exp, exp_of_value V_unit, orig_exp), annot)]) | E_assert (exp, msg) when is_true exp -> wrap unit_exp | E_assert (exp, msg) when is_false exp && is_value msg -> assertion_failed (coerce_string (value_of_exp msg)) | E_assert (exp, msg) when is_false exp -> step msg >>= fun msg' -> wrap (E_assert (exp, msg')) | E_assert (exp, msg) -> step exp >>= fun exp' -> wrap (E_assert (exp', msg)) | E_vector exps -> let evaluated, unevaluated = Util.take_drop is_value exps in begin match unevaluated with | exp :: exps -> step exp >>= fun exp' -> wrap (E_vector (evaluated @ (exp' :: exps))) | [] -> return (exp_of_value (V_vector (List.map value_of_exp evaluated))) end | E_list exps -> let evaluated, unevaluated = Util.take_drop is_value exps in begin match unevaluated with | exp :: exps -> step exp >>= fun exp' -> wrap (E_list (evaluated @ (exp' :: exps))) | [] -> return (exp_of_value (V_list (List.map value_of_exp evaluated))) end (* Special rules for short circuting boolean operators *) | E_app (id, [x; y]) when (string_of_id id = "and_bool" || string_of_id id = "or_bool") && not (is_value x) -> step x >>= fun x' -> wrap (E_app (id, [x'; y])) | E_app (id, [x; y]) when string_of_id id = "and_bool" && is_false x -> return (exp_of_value (V_bool false)) | E_app (id, [x; y]) when string_of_id id = "or_bool" && is_true x -> return (exp_of_value (V_bool true)) | E_let (LB_aux (LB_val (pat, bind), lb_annot), body) when not (is_value bind) -> step bind >>= fun bind' -> wrap (E_let (LB_aux (LB_val (pat, bind'), lb_annot), body)) | E_let (LB_aux (LB_val (pat, bind), lb_annot), body) -> let matched, bindings = pattern_match (Type_check.env_of orig_exp) pat (value_of_exp bind) in if matched then return (List.fold_left (fun body (id, v) -> subst id v body) body (Bindings.bindings (complete_bindings bindings))) else fail "Match failure" | E_vector_subrange (vec, n, m) -> wrap (E_app (mk_id "vector_subrange_dec", [vec; n; m])) | E_vector_access (vec, n) -> wrap (E_app (mk_id "vector_access_dec", [vec; n])) | E_vector_update (vec, n, x) -> wrap (E_app (mk_id "vector_update", [vec; n; x])) | E_vector_update_subrange (vec, n, m, x) -> (* FIXME: Currently not general enough *) wrap (E_app (mk_id "vector_update_subrange_dec", [vec; n; m; x])) (* otherwise left-to-right evaluation order for function applications *) | E_app (id, exps) -> let evaluated, unevaluated = Util.take_drop is_value exps in begin let open Type_check in match unevaluated with | exp :: exps -> step exp >>= fun exp' -> wrap (E_app (id, evaluated @ (exp' :: exps))) | [] when Env.is_union_constructor id (env_of_annot annot) -> return (exp_of_value (V_ctor (string_of_id id, List.map value_of_exp evaluated))) | [] when is_interpreter_extern id (env_of_annot annot) -> begin let extern = get_interpreter_extern id (env_of_annot annot) in match extern with | "reg_deref" -> let regname = List.hd evaluated |> value_of_exp |> coerce_ref in read_reg regname >>= fun v -> return (exp_of_value v) | "read_mem" -> begin match evaluated with | [rk; addrsize; addr; len] -> read_mem (value_of_exp rk) (value_of_exp addr) (value_of_exp len) >>= fun v -> return (exp_of_value v) | _ -> fail "Wrong number of parameters to read_mem intrinsic" end | "write_mem_ea" -> begin match evaluated with | [wk; addrsize; addr; len] -> write_ea (value_of_exp wk) (value_of_exp addr) (value_of_exp len) >> wrap unit_exp | _ -> fail "Wrong number of parameters to write_ea intrinsic" end | "excl_res" -> begin match evaluated with | [_] -> excl_res () >>= fun b -> return (exp_of_value (V_bool b)) | _ -> fail "Wrong number of parameters to excl_res intrinsic" end | "write_mem" -> begin match evaluated with | [wk; addrsize; addr; len; v] -> write_mem (value_of_exp wk) (value_of_exp addr) (value_of_exp len) (value_of_exp v) >>= fun b -> return (exp_of_value (V_bool b)) | _ -> fail "Wrong number of parameters to write_memv intrinsic" end | "barrier" -> begin match evaluated with | [bk] -> barrier (value_of_exp bk) >> wrap unit_exp | _ -> fail "Wrong number of parameters to barrier intrinsic" end | _ -> ( get_primop extern >>= fun op -> try return (exp_of_value (op (List.map value_of_exp evaluated))) with _ as exc -> fail ("Exception calling primop '" ^ extern ^ "': " ^ Printexc.to_string exc) ) end | [] -> ( call id (List.map value_of_exp evaluated) >>= function | Return_ok v -> return (exp_of_value v) | Return_exception v -> wrap (E_throw (exp_of_value v)) ) end | E_app_infix (x, id, y) when is_value x && is_value y -> ( call id [value_of_exp x; value_of_exp y] >>= function | Return_ok v -> return (exp_of_value v) | Return_exception v -> wrap (E_throw (exp_of_value v)) ) | E_app_infix (x, id, y) when is_value x -> step y >>= fun y' -> wrap (E_app_infix (x, id, y')) | E_app_infix (x, id, y) -> step x >>= fun x' -> wrap (E_app_infix (x', id, y)) | E_return exp when is_value exp -> early_return (value_of_exp exp) | E_return exp -> step exp >>= fun exp' -> wrap (E_return exp') | E_tuple exps -> let evaluated, unevaluated = Util.take_drop is_value exps in begin match unevaluated with | exp :: exps -> step exp >>= fun exp' -> wrap (E_tuple (evaluated @ (exp' :: exps))) | [] -> return (exp_of_value (tuple_value (List.map value_of_exp exps))) end | E_match (exp, pexps) when not (is_value exp) -> step exp >>= fun exp' -> wrap (E_match (exp', pexps)) | E_match (_, []) -> fail "Pattern matching failed" | E_match (exp, Pat_aux (Pat_exp (pat, body), _) :: pexps) -> begin try let matched, bindings = pattern_match (Type_check.env_of body) pat (value_of_exp exp) in if matched then return (List.fold_left (fun body (id, v) -> subst id v body) body (Bindings.bindings (complete_bindings bindings))) else wrap (E_match (exp, pexps)) with Failure s -> fail ("Failure: " ^ s) end | E_match (exp, Pat_aux (Pat_when (pat, guard, body), pat_annot) :: pexps) when not (is_value guard) -> begin try let matched, bindings = pattern_match (Type_check.env_of body) pat (value_of_exp exp) in let bindings = complete_bindings bindings in if matched then ( let guard = List.fold_left (fun guard (id, v) -> subst id v guard) guard (Bindings.bindings bindings) in let body = List.fold_left (fun body (id, v) -> subst id v body) body (Bindings.bindings bindings) in step guard >>= fun guard' -> wrap (E_match (exp, Pat_aux (Pat_when (pat, guard', body), pat_annot) :: pexps)) ) else wrap (E_match (exp, pexps)) with Failure s -> fail ("Failure: " ^ s) end | E_match (exp, Pat_aux (Pat_when (pat, guard, body), pat_annot) :: pexps) when is_true guard -> return body | E_match (exp, Pat_aux (Pat_when (pat, guard, body), pat_annot) :: pexps) when is_false guard -> wrap (E_match (exp, pexps)) | E_typ (typ, exp) -> return exp | E_throw exp when is_value exp -> throw (value_of_exp exp) | E_throw exp -> step exp >>= fun exp' -> wrap (E_throw exp') | E_exit exp when is_value exp -> throw (V_ctor ("Exit", [value_of_exp exp])) | E_exit exp -> step exp >>= fun exp' -> wrap (E_exit exp') | E_ref id -> return (exp_of_value (V_ref (string_of_id id))) | E_id id -> begin let open Type_check in match Env.lookup_id id (env_of_annot annot) with | Register _ -> read_reg (string_of_id id) >>= fun v -> return (exp_of_value v) | Local (Mutable, _) -> get_local (string_of_id id) >>= fun v -> return (exp_of_value v) | Local (Immutable, _) -> (* if we get here without already having substituted, it must be a top-level letbind *) get_global_letbinds () >>= fun lbs -> let chain = build_letchain id lbs orig_exp in return chain | Enum _ -> return (exp_of_value (V_member (string_of_id id))) | _ -> fail ("Couldn't find id " ^ string_of_id id) end | E_struct fexps -> let evaluated, unevaluated = Util.take_drop is_value_fexp fexps in begin match unevaluated with | FE_aux (FE_fexp (id, exp), fe_annot) :: fexps -> step exp >>= fun exp' -> wrap (E_struct (evaluated @ (FE_aux (FE_fexp (id, exp'), fe_annot) :: fexps))) | [] -> List.map value_of_fexp fexps |> List.fold_left (fun record (field, v) -> StringMap.add field v record) StringMap.empty |> (fun record -> V_record record) |> exp_of_value |> return end | E_struct_update (exp, fexps) when not (is_value exp) -> step exp >>= fun exp' -> wrap (E_struct_update (exp', fexps)) | E_struct_update (record, fexps) -> let evaluated, unevaluated = Util.take_drop is_value_fexp fexps in begin match unevaluated with | FE_aux (FE_fexp (id, exp), fe_annot) :: fexps -> step exp >>= fun exp' -> wrap (E_struct_update (record, evaluated @ (FE_aux (FE_fexp (id, exp'), fe_annot) :: fexps))) | [] -> List.map value_of_fexp fexps |> List.fold_left (fun record (field, v) -> StringMap.add field v record) (coerce_record (value_of_exp record)) |> (fun record -> V_record record) |> exp_of_value |> return end | E_field (exp, id) when not (is_value exp) -> step exp >>= fun exp' -> wrap (E_field (exp', id)) | E_field (exp, id) -> let record = coerce_record (value_of_exp exp) in return (exp_of_value (StringMap.find (string_of_id id) record)) | E_var (lexp, exp, E_aux (E_block body, _)) -> wrap (E_block (E_aux (E_assign (lexp, exp), annot) :: body)) | E_var (lexp, exp, body) -> wrap (E_block [E_aux (E_assign (lexp, exp), annot); body]) | E_assign (lexp, exp) when not (is_value exp) -> step exp >>= fun exp' -> wrap (E_assign (lexp, exp')) | E_assign (LE_aux (LE_app (id, args), _), exp) -> wrap (E_app (id, args @ [exp])) | E_assign (LE_aux (LE_field (lexp, id), ul), exp) -> begin try let open Type_check in let lexp_exp = infer_exp (env_of_annot annot) (exp_of_lexp (strip_lexp lexp)) in let exp' = E_aux (E_struct_update (lexp_exp, [FE_aux (FE_fexp (id, exp), ul)]), ul) in wrap (E_assign (lexp, exp')) with Failure s -> fail ("Failure: " ^ s) end | E_assign (LE_aux (LE_vector (vec, n), lexp_annot), exp) -> begin try let open Type_check in let vec_exp = infer_exp (env_of_annot annot) (exp_of_lexp (strip_lexp vec)) in let exp' = E_aux (E_vector_update (vec_exp, n, exp), lexp_annot) in wrap (E_assign (vec, exp')) with Failure s -> fail ("Failure: " ^ s) end | E_assign (LE_aux (LE_vector_range (vec, n, m), lexp_annot), exp) -> begin try let open Type_check in let vec_exp = infer_exp (env_of_annot annot) (exp_of_lexp (strip_lexp vec)) in (* FIXME: let the type checker check this *) let exp' = E_aux (E_vector_update_subrange (vec_exp, n, m, exp), lexp_annot) in wrap (E_assign (vec, exp')) with Failure s -> fail ("Failure: " ^ s) end | E_assign (LE_aux (LE_id id, _), exp) | E_assign (LE_aux (LE_typ (_, id), _), exp) -> begin let open Type_check in let name = string_of_id id in match Env.lookup_id id (env_of_annot annot) with | Register _ -> write_reg name (value_of_exp exp) >> wrap unit_exp | Local (Mutable, _) | Unbound _ -> put_local name (value_of_exp exp) >> wrap unit_exp | Local (Immutable, _) -> fail ("Assignment to immutable local: " ^ name) | Enum _ -> fail ("Assignment to union constructor: " ^ name) end | E_assign (LE_aux (LE_deref reference, annot), exp) when not (is_value reference) -> step reference >>= fun reference' -> wrap (E_assign (LE_aux (LE_deref reference', annot), exp)) | E_assign (LE_aux (LE_deref reference, annot), exp) -> let name = coerce_ref (value_of_exp reference) in write_reg name (value_of_exp exp) >> wrap unit_exp | E_assign (LE_aux (LE_tuple lexps, annot), exp) -> fail "Tuple assignment" | E_assign (LE_aux (LE_vector_concat lexps, annot), exp) -> fail "Vector concat assignment" (* let values = coerce_tuple (value_of_exp exp) in wrap (E_block (List.map2 (fun lexp v -> E_aux (E_assign (lexp, exp_of_value v), (Parse_ast.Unknown, None))) lexps values)) *) | E_try (exp, pexps) when is_value exp -> return exp | E_try (exp, pexps) -> begin catch (step exp) >>= fun exp' -> match exp' with | Left exn -> wrap (E_match (exp_of_value exn, pexps @ [fallthrough])) | Right exp' -> wrap (E_try (exp', pexps)) end | E_for (id, exp_from, exp_to, exp_step, ord, body) when is_value exp_from && is_value exp_to && is_value exp_step -> let v_from = value_of_exp exp_from in let v_to = value_of_exp exp_to in let v_step = value_of_exp exp_step in begin match ord with | Ord_aux (Ord_inc, _) -> begin match value_gt [v_from; v_to] with | V_bool true -> wrap (E_lit (L_aux (L_unit, Parse_ast.Unknown))) | V_bool false -> wrap (E_block [ subst id v_from body; E_aux (E_for (id, exp_of_value (value_add_int [v_from; v_step]), exp_to, exp_step, ord, body), annot); ] ) | _ -> assert false end | Ord_aux (Ord_dec, _) -> begin match value_lt [v_from; v_to] with | V_bool true -> wrap (E_lit (L_aux (L_unit, Parse_ast.Unknown))) | V_bool false -> wrap (E_block [ subst id v_from body; E_aux (E_for (id, exp_of_value (value_sub_int [v_from; v_step]), exp_to, exp_step, ord, body), annot); ] ) | _ -> assert false end end | E_for (id, exp_from, exp_to, exp_step, ord, body) when is_value exp_to && is_value exp_step -> step exp_from >>= fun exp_from' -> wrap (E_for (id, exp_from', exp_to, exp_step, ord, body)) | E_for (id, exp_from, exp_to, exp_step, ord, body) when is_value exp_step -> step exp_to >>= fun exp_to' -> wrap (E_for (id, exp_from, exp_to', exp_step, ord, body)) | E_for (id, exp_from, exp_to, exp_step, ord, body) -> step exp_step >>= fun exp_step' -> wrap (E_for (id, exp_from, exp_to, exp_step', ord, body)) | E_sizeof nexp -> begin match Type_check.big_int_of_nexp nexp with | Some n -> return (exp_of_value (V_int n)) | None -> fail "Sizeof unevaluable nexp" end | E_cons (hd, tl) when is_value hd && is_value tl -> let hd = value_of_exp hd in let tl = coerce_listlike (value_of_exp tl) in return (exp_of_value (V_list (hd :: tl))) | E_cons (hd, tl) when is_value hd -> step tl >>= fun tl' -> wrap (E_cons (hd, tl')) | E_cons (hd, tl) -> step hd >>= fun hd' -> wrap (E_cons (hd', tl)) | _ -> raise (Invalid_argument ("Unimplemented " ^ string_of_exp orig_exp)) and exp_of_lexp (LE_aux (lexp_aux, _)) = match lexp_aux with | LE_id id -> mk_exp (E_id id) | LE_app (f, args) -> mk_exp (E_app (f, args)) | LE_typ (typ, id) -> mk_exp (E_typ (typ, mk_exp (E_id id))) | LE_deref exp -> mk_exp (E_app (mk_id "_reg_deref", [exp])) | LE_tuple lexps -> mk_exp (E_tuple (List.map exp_of_lexp lexps)) | LE_vector (lexp, exp) -> mk_exp (E_vector_access (exp_of_lexp lexp, exp)) | LE_vector_range (lexp, exp1, exp2) -> mk_exp (E_vector_subrange (exp_of_lexp lexp, exp1, exp2)) | LE_vector_concat [] -> failwith "Empty LE_vector_concat node in exp_of_lexp" | LE_vector_concat [lexp] -> exp_of_lexp lexp | LE_vector_concat (lexp :: lexps) -> mk_exp (E_vector_append (exp_of_lexp lexp, exp_of_lexp (mk_lexp (LE_vector_concat lexps)))) | LE_field (lexp, id) -> mk_exp (E_field (exp_of_lexp lexp, id)) and pattern_match env (P_aux (p_aux, (l, _))) value = match p_aux with | P_lit lit -> (eq_value (value_of_lit lit) value, Bindings.empty) | P_wild -> (true, Bindings.empty) | P_or (pat1, pat2) -> let m1, b1 = pattern_match env pat1 value in let m2, b2 = pattern_match env pat2 value in (* todo: maybe add assertion that bindings are consistent or empty? *) (m1 || m2, Bindings.merge combine b1 b2) | P_not pat -> let m, b = pattern_match env pat value in (* todo: maybe add assertion that binding is empty *) (not m, b) | P_as (pat, id) -> let matched, bindings = pattern_match env pat value in (matched, Bindings.add id (Complete_binding value) bindings) | P_typ (_, pat) -> pattern_match env pat value | P_id id -> let open Type_check in begin match Env.lookup_id id env with | Enum _ -> if is_member value && string_of_id id = coerce_member value then (true, Bindings.empty) else (false, Bindings.empty) | _ -> (true, Bindings.singleton id (Complete_binding value)) end | P_vector_subrange (id, n, m) -> (true, Bindings.singleton id (Partial_binding [(value, n, m)])) | P_var (pat, _) -> pattern_match env pat value | P_app (id, pats) -> let ctor, vals = coerce_ctor value in if Id.compare id (mk_id ctor) = 0 then ( let matches = List.map2 (pattern_match env) pats vals in (List.for_all fst matches, List.fold_left (Bindings.merge combine) Bindings.empty (List.map snd matches)) ) else (false, Bindings.empty) | P_vector pats -> let matches = List.map2 (pattern_match env) pats (coerce_gv value) in (List.for_all fst matches, List.fold_left (Bindings.merge combine) Bindings.empty (List.map snd matches)) | P_vector_concat [] -> (eq_value (V_vector []) value, Bindings.empty) | P_vector_concat (pat :: pats) -> (* We have to use the annotation on each member of the vector_concat pattern to figure out its length. Due to the recursive call that has an empty_tannot we must not use the annotation in the whole vector_concat pattern. *) let open Type_check in let vector_concat_match n = let init, rest = (Util.take (Big_int.to_int n) (coerce_gv value), Util.drop (Big_int.to_int n) (coerce_gv value)) in let init_match, init_bind = pattern_match env pat (V_vector init) in let rest_match, rest_bind = pattern_match env (P_aux (P_vector_concat pats, (l, empty_tannot))) (V_vector rest) in (init_match && rest_match, Bindings.merge combine init_bind rest_bind) in begin match destruct_vector (env_of_pat pat) (typ_of_pat pat) with | Some (Nexp_aux (Nexp_constant n, _), _) -> vector_concat_match n | None -> begin match destruct_bitvector (env_of_pat pat) (typ_of_pat pat) with | Some (Nexp_aux (Nexp_constant n, _)) -> vector_concat_match n | _ -> failwith ("Bad bitvector annotation for bitvector concatenation pattern " ^ string_of_typ (Type_check.typ_of_pat pat) ) end | _ -> failwith ("Bad vector annotation for vector concatentation pattern " ^ string_of_typ (Type_check.typ_of_pat pat)) end | P_tuple [pat] -> pattern_match env pat value | P_tuple pats | P_list pats -> let values = coerce_listlike value in if List.compare_lengths pats values = 0 then ( let matches = List.map2 (pattern_match env) pats values in (List.for_all fst matches, List.fold_left (Bindings.merge combine) Bindings.empty (List.map snd matches)) ) else (false, Bindings.empty) | P_cons (hd_pat, tl_pat) -> begin match coerce_cons value with | Some (hd_value, tl_values) -> let hd_match, hd_bind = pattern_match env hd_pat hd_value in let tl_match, tl_bind = pattern_match env tl_pat (V_list tl_values) in (hd_match && tl_match, Bindings.merge combine hd_bind tl_bind) | None -> (false, Bindings.empty) end | P_struct (fpats, _) -> List.fold_left (fun (matches, binds) (field, pat) -> match StringMap.find_opt (string_of_id field) (coerce_record value) with | Some value -> let field_match, field_binds = pattern_match env pat value in (matches && field_match, Bindings.merge combine field_binds binds) | None -> (false, Bindings.empty) ) (true, Bindings.empty) fpats | P_string_append _ -> assert false (* TODO *) let exp_of_fundef (FD_aux (FD_function (_, _, funcls), annot)) value = let pexp_of_funcl (FCL_aux (FCL_funcl (_, pexp), _)) = pexp in E_aux (E_match (exp_of_value value, List.map pexp_of_funcl funcls), annot) let rec defs_letbinds defs = match defs with | [] -> [] | DEF_aux (DEF_let lb, _) :: defs -> lb :: defs_letbinds defs | _ :: defs -> defs_letbinds defs let initial_lstate = { locals = Bindings.empty } let stack_cont (_, _, cont) = cont let stack_string (str, _, _) = str let stack_state (_, lstate, _) = lstate type frame = | Done of state * value | Step of string Lazy.t * state * Type_check.tannot exp monad * (string Lazy.t * lstate * (return_value -> Type_check.tannot exp monad)) list | Break of frame | Effect_request of string Lazy.t * state * (string Lazy.t * lstate * (return_value -> Type_check.tannot exp monad)) list * effect_request | Fail of string Lazy.t * state * Type_check.tannot exp monad * (string Lazy.t * lstate * (return_value -> Type_check.tannot exp monad)) list * string (* when changing effect_request remember to also update response type above *) and effect_request = | Read_mem of (* read_kind : *) value * (* address : *) value * (* length : *) value * (value -> state -> frame) | Write_ea of (* write_kind : *) value * (* address : *) value * (* length : *) value * (unit -> state -> frame) | Excl_res of (bool -> state -> frame) | Write_mem of (* write_kind : *) value * (* address : *) value * (* length : *) value * (* value : *) value * (bool -> state -> frame) | Barrier of (* barrier_kind : *) value * (unit -> state -> frame) | Read_reg of string * (value -> state -> frame) | Write_reg of string * value * (unit -> state -> frame) let rec eval_frame' = function | Done (state, v) -> Done (state, v) | Fail (out, state, m, stack, msg) -> Fail (out, state, m, stack, msg) | Break frame -> Break frame | Effect_request (out, state, stack, eff) -> Effect_request (out, state, stack, eff) | Step (out, state, m, stack) -> ( let lstate, gstate = state in match (m, stack) with | Pure v, [] when is_value v -> Done (state, value_of_exp v) | Pure v, head :: stack' when is_value v -> Step (stack_string head, (stack_state head, gstate), stack_cont head (Return_ok (value_of_exp v)), stack') | Pure exp', _ -> let out' = lazy (Document.to_string (Printer.doc_exp (Type_check.strip_exp exp'))) in Step (out', state, step exp', stack) | Yield (Call (id, vals, cont)), _ when string_of_id id = "break" -> begin let arg = if List.length vals != 1 then tuple_value vals else List.hd vals in try let body = exp_of_fundef (Bindings.find id gstate.fundefs) arg in Break (Step (lazy "", (initial_lstate, gstate), return body, (out, lstate, cont) :: stack)) with Not_found -> Step (out, state, fail ("Fundef not found: " ^ string_of_id id), stack) end | Yield (Call (id, vals, cont)), _ -> begin let arg = if List.length vals != 1 then tuple_value vals else List.hd vals in try let body = exp_of_fundef (Bindings.find id gstate.fundefs) arg in Step (lazy "", (initial_lstate, gstate), return body, (out, lstate, cont) :: stack) with Not_found -> Step (out, state, fail ("Fundef not found: " ^ string_of_id id), stack) end | Yield (Read_reg (name, cont)), _ -> Effect_request (out, state, stack, Read_reg (name, fun v state' -> eval_frame' (Step (out, state', cont v, stack)))) | Yield (Write_reg (name, v, cont)), _ -> Effect_request (out, state, stack, Write_reg (name, v, fun () state' -> eval_frame' (Step (out, state', cont (), stack)))) | Yield (Get_primop (name, cont)), _ -> begin try (* If we are in the toplevel interactive interpreter allow the set of primops to be changed dynamically *) let op = StringMap.find name (if !Interactive.opt_interactive then !Value.primops else gstate.primops) in eval_frame' (Step (out, state, cont op, stack)) with Not_found -> eval_frame' (Step (out, state, fail ("No such primop: " ^ name), stack)) end | Yield (Get_local (name, cont)), _ -> begin try eval_frame' (Step (out, state, cont (Bindings.find (mk_id name) lstate.locals), stack)) with Not_found -> eval_frame' (Step (out, state, fail ("Local not found: " ^ name), stack)) end | Yield (Put_local (name, v, cont)), _ -> let state' = ({ locals = Bindings.add (mk_id name) v lstate.locals }, gstate) in eval_frame' (Step (out, state', cont (), stack)) | Yield (Get_global_letbinds cont), _ -> eval_frame' (Step (out, state, cont gstate.letbinds, stack)) | Yield (Read_mem (rk, addr, len, cont)), _ -> Effect_request ( out, state, stack, Read_mem (rk, addr, len, fun result state' -> eval_frame' (Step (out, state', cont result, stack))) ) | Yield (Write_ea (wk, addr, len, cont)), _ -> Effect_request ( out, state, stack, Write_ea (wk, addr, len, fun () state' -> eval_frame' (Step (out, state', cont (), stack))) ) | Yield (Excl_res cont), _ -> Effect_request (out, state, stack, Excl_res (fun b state' -> eval_frame' (Step (out, state', cont b, stack)))) | Yield (Write_mem (wk, addr, len, v, cont)), _ -> Effect_request ( out, state, stack, Write_mem (wk, addr, len, v, fun b state' -> eval_frame' (Step (out, state', cont b, stack))) ) | Yield (Barrier (bk, cont)), _ -> Effect_request (out, state, stack, Barrier (bk, fun () state' -> eval_frame' (Step (out, state', cont (), stack)))) | Yield (Early_return v), [] -> Done (state, v) | Yield (Early_return v), head :: stack' -> Step (stack_string head, (stack_state head, gstate), stack_cont head (Return_ok v), stack') | Yield (Assertion_failed msg), _ | Yield (Fail msg), _ -> Fail (out, state, m, stack, msg) | Yield (Exception v), [] -> Fail (out, state, m, stack, "Uncaught exception: " ^ string_of_value v) | Yield (Exception v), head :: stack' -> Step (stack_string head, (stack_state head, gstate), stack_cont head (Return_exception v), stack') ) let eval_frame frame = try eval_frame' frame with Type_error.Type_error (l, err) -> raise (Type_error.to_reporting_exn l err) let default_effect_interp state eff = let lstate, gstate = state in match eff with | Read_mem (rk, addr, len, cont) -> (* all read-kinds treated the same in single-threaded interpreter *) let addr' = coerce_bv addr in let len' = coerce_int len in let result = mk_vector (Sail_lib.read_ram (List.length addr', len', [], addr')) in cont result state | Write_ea (wk, addr, len, cont) -> (* just store the values for the next Write_memv *) let state' = (lstate, { gstate with last_write_ea = Some (wk, addr, len) }) in cont () state' | Excl_res cont -> (* always succeeds in single-threaded interpreter *) cont true state | Write_mem (wk, addr, len, v, cont) -> begin match gstate.last_write_ea with | Some (wk', addr', len') -> let state' = (lstate, { gstate with last_write_ea = None }) in (* all write-kinds treated the same in single-threaded interpreter *) let addr' = coerce_bv addr in let len' = coerce_int len in let v' = coerce_bv v in if Big_int.mul len' (Big_int.of_int 8) = Big_int.of_int (List.length v') then ( let b = Sail_lib.write_ram (List.length addr', len', [], addr', v') in cont b state' ) else failwith "Write_memv with length mismatch to preceding Write_ea" | None -> failwith "Write_memv without preceding Write_ea" end | Barrier (bk, cont) -> (* no-op in single-threaded interpreter *) cont () state | Read_reg (name, cont) -> if gstate.allow_registers then ( try cont (Bindings.find (mk_id name) gstate.registers) state with Not_found -> failwith ("Read of nonexistent register: " ^ name) ) else failwith ("Register read disallowed by allow_registers setting: " ^ name) | Write_reg (name, v, cont) -> let id = mk_id name in if gstate.allow_registers then if Bindings.mem id gstate.registers then ( let state' = (lstate, { gstate with registers = Bindings.add id v gstate.registers }) in cont () state' ) else failwith ("Write of nonexistent register: " ^ name) else failwith ("Register write disallowed by allow_registers setting: " ^ name) let effect_interp = ref default_effect_interp let set_effect_interp interp = effect_interp := interp let rec run_frame frame = match frame with | Done (state, v) -> v | Fail (_, _, _, _, msg) -> failwith ("run_frame got Fail: " ^ msg) | Step (_, _, _, _) -> run_frame (eval_frame frame) | Break frame -> run_frame (eval_frame frame) | Effect_request (_, state, _, eff) -> run_frame (!effect_interp state eff) let eval_exp state exp = run_frame (Step (lazy "", state, return exp, [])) let initial_gstate primops defs env = { registers = Bindings.empty; allow_registers = true; primops; letbinds = defs_letbinds defs; fundefs = Bindings.empty; last_write_ea = None; typecheck_env = env; } let rec initialize_registers allow_registers undef_registers gstate = let process_def = function | DEF_aux (DEF_register (DEC_aux (DEC_reg (typ, id, opt_exp), annot)), _) when allow_registers -> begin match opt_exp with | None when undef_registers -> let env = Type_check.env_of_annot annot in let typ = Type_check.Env.expand_synonyms env typ in let exp = mk_exp (E_typ (typ, mk_exp (E_lit (mk_lit L_undef)))) in let exp = Type_check.check_exp env exp typ in { gstate with registers = Bindings.add id (eval_exp (initial_lstate, gstate) exp) gstate.registers } | None -> gstate | Some exp -> { gstate with registers = Bindings.add id (eval_exp (initial_lstate, gstate) exp) gstate.registers } end | _ -> gstate in function def :: defs -> initialize_registers allow_registers undef_registers (process_def def) defs | [] -> gstate let initial_state ?(registers = true) ?(undef_registers = true) ast env primops = let gstate = initial_gstate primops ast.defs env in let add_function gstate = function | DEF_aux (DEF_fundef fdef, _) -> { gstate with fundefs = Bindings.add (id_of_fundef fdef) fdef gstate.fundefs } | _ -> gstate in let gstate = List.fold_left add_function gstate ast.defs in let gstate = { (initialize_registers registers undef_registers gstate ast.defs) with allow_registers = registers } in (initial_lstate, gstate) type value_result = Value_success of value | Value_error of exn let decode_instruction state bv = try let env = (snd state).typecheck_env in let untyped = mk_exp (E_app (mk_id "decode", [mk_exp (E_vector (List.map mk_lit_exp bv))])) in let typed = Type_check.check_exp env untyped (app_typ (mk_id "option") [A_aux (A_typ (mk_typ (Typ_id (mk_id "ast"))), Parse_ast.Unknown)]) in let evaled = eval_exp state typed in match evaled with | V_ctor ("Some", [v]) -> Value_success v | V_ctor ("None", _) -> failwith "decode returned None" | _ -> failwith "decode returned wrong value type" with _ as exn -> Value_error exn let annot_exp_effect e_aux l env typ = E_aux (e_aux, (l, Type_check.mk_tannot env typ)) let annot_exp e_aux l env typ = annot_exp_effect e_aux l env typ let id_typ id = mk_typ (Typ_id (mk_id id)) let analyse_instruction state ast = let env = (snd state).typecheck_env in let unk = Parse_ast.Unknown in let typed = annot_exp (E_app (mk_id "initial_analysis", [annot_exp (E_internal_value ast) unk env (id_typ "ast")])) unk env (tuple_typ [id_typ "regfps"; id_typ "regfps"; id_typ "regfps"; id_typ "niafps"; id_typ "diafp"; id_typ "instruction_kind"] ) in Step (lazy (Document.to_string (Printer.doc_exp (Type_check.strip_exp typed))), state, return typed, []) let execute_instruction state ast = let env = (snd state).typecheck_env in let unk = Parse_ast.Unknown in let typed = annot_exp (E_app (mk_id "execute", [annot_exp (E_internal_value ast) unk env (id_typ "ast")])) unk env unit_typ in Step (lazy (Document.to_string (Printer.doc_exp (Type_check.strip_exp typed))), state, return typed, [])
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>