package lambdapi
Proof assistant for the λΠ-calculus modulo rewriting
Install
Dune Dependency
Authors
Maintainers
Sources
lambdapi-2.5.0.tbz
sha256=9bc8ae3694dd51bd5742e7aba760bd2878c4b0e5ef9b3d4a7b06f3cd303b611d
sha512=c812c3129b3d85b0c4d7e741d11137dbb4fe2a0aaba3a5968409080b742924ecb506280c19ad83ef6bc910346db96d87780313fa7683c29345edae16ae79c704
doc/src/lambdapi.core/unif_rule.ml.html
Source file unif_rule.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
(** Symbols and signature for unification rules. This module provides a signature to be used to handle unification rules. The signature is not attached to any real lambdapi file and is henceforth qualified to be a "ghost" signature. *) open Common open Term (** Symbol "≡". *) let equiv : sym = let id = Pos.none "≡" in let s = Sign.add_symbol Ghost.sign Public Defin Eager false id None mk_Kind [] in Sign.add_notation Ghost.sign s (Infix(Pratter.Neither, 2.0)); s (** Symbol ";". *) let cons : sym = let id = Pos.none ";" in let s = Sign.add_symbol Ghost.sign Public Const Eager true id None mk_Kind [] in Sign.add_notation Ghost.sign s (Infix(Pratter.Right, 1.0)); s (** [unpack eqs] transforms a term of the form [cons (equiv t u) (cons (equiv v w) ...)] into a list [[(t,u); (v,w); ...]]. *) let rec unpack : term -> (term * term) list = fun eqs -> match get_args eqs with | (Symb(s), [v; w]) -> if s == cons then match get_args v with | (Symb(e), [t; u]) when e == equiv -> (t, u) :: unpack w | _ -> assert false else if s == equiv then [(v, w)] else assert false | _ -> assert false (** [mem s] is true iff [s] belongs to [sign]. *) let mem : sym -> bool = fun s -> s == equiv || s == cons
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>