package lambdapi

  1. Overview
  2. Docs
Proof assistant for the λΠ-calculus modulo rewriting

Install

Dune Dependency

Authors

Maintainers

Sources

lambdapi-2.5.0.tbz
sha256=9bc8ae3694dd51bd5742e7aba760bd2878c4b0e5ef9b3d4a7b06f3cd303b611d
sha512=c812c3129b3d85b0c4d7e741d11137dbb4fe2a0aaba3a5968409080b742924ecb506280c19ad83ef6bc910346db96d87780313fa7683c29345edae16ae79c704

doc/src/lambdapi.core/unif_rule.ml.html

Source file unif_rule.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
(** Symbols and signature for unification rules.

    This module provides a signature to be used to handle unification rules.
    The signature is not attached to any real lambdapi file and is henceforth
    qualified to be a "ghost" signature. *)

open Common
open Term

(** Symbol "≡". *)
let equiv : sym =
  let id = Pos.none "≡" in
  let s =
   Sign.add_symbol Ghost.sign Public Defin Eager false id None
    mk_Kind [] in
  Sign.add_notation Ghost.sign s (Infix(Pratter.Neither, 2.0)); s

(** Symbol ";". *)
let cons : sym =
  let id = Pos.none ";" in
  let s =
   Sign.add_symbol Ghost.sign Public Const Eager true id None
    mk_Kind [] in
  Sign.add_notation Ghost.sign s (Infix(Pratter.Right, 1.0)); s

(** [unpack eqs] transforms a term of the form
    [cons (equiv t u) (cons (equiv v w) ...)]
    into a list [[(t,u); (v,w); ...]]. *)
let rec unpack : term -> (term * term) list = fun eqs ->
  match get_args eqs with
  | (Symb(s), [v; w]) ->
      if s == cons then
        match get_args v with
        | (Symb(e), [t; u]) when e == equiv -> (t, u) :: unpack w
        | _ -> assert false
      else if s == equiv then [(v, w)]
      else assert false
  | _ -> assert false

(** [mem s] is true iff [s] belongs to [sign]. *)
let mem : sym -> bool = fun s -> s == equiv || s == cons
OCaml

Innovation. Community. Security.