package js_of_ocaml-compiler
Compiler from OCaml bytecode to JavaScript
Install
Dune Dependency
Authors
Maintainers
Sources
js_of_ocaml-5.8.2.tbz
sha256=7220194bd2f9b14d958153a5a206750359d7b49de12fe88d7450d385cecbf04a
sha512=1a282bf88eba8489747f51e228385be8d926e5c57efe33ad6f324c30fbe4100e99970192284172b5cdef92922ca613968bf116eb706194a879899baddd0a47f4
doc/src/js_of_ocaml-compiler/dgraph.ml.html
Source file dgraph.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
(* Js_of_ocaml compiler * http://www.ocsigen.org/js_of_ocaml/ * Copyright (C) 2010 Jérôme Vouillon * Laboratoire PPS - CNRS Université Paris Diderot * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation, with linking exception; * either version 2.1 of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *) open! Stdlib module Make (N : sig type t end) (NSet : Set.S with type elt = N.t) (NMap : Map.S with type key = N.t) = struct type t = { domain : NSet.t ; fold_children : 'a. (N.t -> 'a -> 'a) -> N.t -> 'a -> 'a } let successors g x = try NMap.find x g with Not_found -> NSet.empty let add_edge g x y = let l = successors g x in NMap.add x (NSet.add y l) g let invert g = let h = NSet.fold (fun x h -> g.fold_children (fun y h -> add_edge h y x) x h) g.domain NMap.empty in { domain = g.domain; fold_children = (fun f x a -> NSet.fold f (successors h x) a) } module type DOMAIN = sig type t val equal : t -> t -> bool val bot : t end module Solver (D : DOMAIN) = struct let n = ref 0 let m = ref 0 type queue = { queue : N.t Queue.t ; mutable set : NSet.t } let is_empty st = Queue.is_empty st.queue let pop st = let x = Queue.pop st.queue in st.set <- NSet.remove x st.set; x let push x st = if not (NSet.mem x st.set) then ( Queue.push x st.queue; st.set <- NSet.add x st.set) let rec iterate g f v w = if is_empty w then v else let x = pop w in let a = NMap.find x v in incr m; let b = f v x in let v = NMap.add x b v in if not (D.equal a b) then ( g.fold_children (fun y () -> push y w) x (); iterate g f v w) else iterate g f v w let rec traverse g visited lst x = if not (NSet.mem x visited) then ( let visited = NSet.add x visited in let visited = g.fold_children (fun y visited -> traverse g visited lst y) x visited in lst := x :: !lst; visited) else visited let traverse_all g = let lst = ref [] in let visited = NSet.fold (fun x visited -> traverse g visited lst x) g.domain NSet.empty in assert (NSet.equal g.domain visited); let queue = Queue.create () in List.iter ~f:(fun x -> Queue.push x queue) !lst; queue let f g f = n := 0; m := 0; (* let t1 = Timer.make () in *) let v = NSet.fold (fun x v -> incr n; NMap.add x D.bot v) g.domain NMap.empty in (* let t1 = Timer.get t1 in let t2 = Timer.make () in *) let w = { set = g.domain; queue = traverse_all g } in (* let t2 = Timer.get t2 in let t3 = Timer.make () in *) let res = iterate g f v w in (* let t3 = Timer.get t3 in Format.eprintf "YYY %.2f %.2f %.2f@." t1 t2 t3; Format.eprintf "YYY %d %d (%f)@." !m !n (float !m /. float !n); *) res end end module type ISet = sig type t type elt val iter : (elt -> unit) -> t -> unit val mem : t -> elt -> bool val add : t -> elt -> unit val remove : t -> elt -> unit val copy : t -> t end module type Tbl = sig type 'a t type key type size val get : 'a t -> key -> 'a val set : 'a t -> key -> 'a -> unit val make : size -> 'a -> 'a t end module Make_Imperative (N : sig type t end) (NSet : ISet with type elt = N.t) (NTbl : Tbl with type key = N.t) = struct type t = { domain : NSet.t ; iter_children : (N.t -> unit) -> N.t -> unit } let successors g x = NTbl.get g x let add_edge g x y = NTbl.set g x (y :: successors g x) let invert size g = let h = NTbl.make size [] in NSet.iter (fun x -> g.iter_children (fun y -> add_edge h y x) x) g.domain; { domain = g.domain; iter_children = (fun f x -> List.iter ~f (successors h x)) } module type DOMAIN = sig type t val equal : t -> t -> bool val bot : t end module Solver (D : DOMAIN) = struct let n = ref 0 let m = ref 0 type queue = { queue : N.t Queue.t ; set : NSet.t } let is_empty st = Queue.is_empty st.queue let pop st = let x = Queue.pop st.queue in NSet.add st.set x; x let push x st = if NSet.mem st.set x then ( Queue.push x st.queue; NSet.remove st.set x) let rec iterate g ~update f v w = if is_empty w then v else let x = pop w in let a = NTbl.get v x in incr m; let b = f ~update v x in if not (D.equal a b) then ( NTbl.set v x b; g.iter_children (fun y -> push y w) x); iterate g ~update f v w let rec traverse g to_visit lst x = if NSet.mem to_visit x then ( NSet.remove to_visit x; incr n; g.iter_children (fun y -> traverse g to_visit lst y) x; lst := x :: !lst) let traverse_all g = let lst = ref [] in let to_visit = NSet.copy g.domain in NSet.iter (fun x -> traverse g to_visit lst x) g.domain; let queue = Queue.create () in List.iter ~f:(fun x -> Queue.push x queue) !lst; { queue; set = to_visit } let f' size g f = n := 0; m := 0; (* let t1 = Timer.make () in *) let v = NTbl.make size D.bot in (* let t1 = Timer.get t1 in let t2 = Timer.make () in *) let w = traverse_all g in (* let t2 = Timer.get t2 in let t3 = Timer.make () in *) let update ~children x = if children then g.iter_children (fun y -> push y w) x else push x w in let res = iterate g ~update f v w in (* let t3 = Timer.get t3 in Format.eprintf "YYY %.2f %.2f %.2f@." t1 t2 t3; Format.eprintf "YYY %d %d (%f)@." !m !n (float !m /. float !n); *) res let f size g f = f' size g (fun ~update:_ v x -> f v x) end end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>