package js_of_ocaml-compiler
Compiler from OCaml bytecode to JavaScript
Install
Dune Dependency
Authors
Maintainers
Sources
js_of_ocaml-5.8.1.tbz
sha256=0e886e10b273a8c48d9f453d5c4b8769ca1f3eba5ee950e0b1885adc943f4a53
sha512=1a55c5e2ba24a31dc51179e1b797e227c810c54c1e5a39ba1a35cdbfecd5119a91febcfc269524d9c64afebb6bb84c5485a01cd1b96387e2ac06563358e91560
doc/src/js_of_ocaml-compiler/global_deadcode.ml.html
Source file global_deadcode.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
(* Js_of_ocaml compiler * http://www.ocsigen.org/js_of_ocaml/ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation, with linking exception; * either version 2.1 of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *) open Code open Stdlib let debug = Debug.find "globaldeadcode" let times = Debug.find "times" (** Definition of a variable [x]. *) type def = | Expr of expr (** [x] is defined by an expression. *) | Param (** [x] is a block or closure parameter. *) (** Liveness of a variable [x], forming a lattice structure. *) type live = | Top (** [x] is live and not a block. *) | Live of IntSet.t (** [x] is a live block with a (non-empty) set of live fields. *) | Dead (** [x] is dead. *) module G = Dgraph.Make_Imperative (Var) (Var.ISet) (Var.Tbl) module Domain = struct type t = live let equal l1 l2 = match l1, l2 with | Top, Top | Dead, Dead -> true | Live f1, Live f2 -> IntSet.equal f1 f2 | Top, (Dead | Live _) | Live _, (Dead | Top) | Dead, (Live _ | Top) -> false let bot = Dead (** Join the liveness according to lattice structure. *) let join l1 l2 = match l1, l2 with | _, Top | Top, _ -> Top | Live f1, Live f2 -> Live (IntSet.union f1 f2) | Dead, Live f | Live f, Dead -> Live f | Dead, Dead -> Dead end module Solver = G.Solver (Domain) let definitions prog = let defs = Var.Tbl.make () Param in let set_def x d = Var.Tbl.set defs x d in Addr.Map.iter (fun _ block -> (* Add defs from block body *) List.iter ~f:(fun (i, _) -> match i with | Let (x, e) -> set_def x (Expr e) | Assign (x, _) -> set_def x Param | Set_field (_, _, _) | Offset_ref (_, _) | Array_set (_, _, _) -> ()) block.body) prog.blocks; defs let variable_may_escape x (global_info : Global_flow.info) = match global_info.info_variable_may_escape.(Var.idx x) with | Escape | Escape_constant -> true | No -> false (** Type of variable usage. *) type usage_kind = | Compute (** variable y is used to compute x *) | Propagate (** values of y propagate to x *) (** Compute the adjacency list for the dependency graph of given program. An edge between variables [x] and [y] is marked [Compute] if [x] is used in the definition of [y]. It is marked as [Propagate] if [x] is applied as a closure or block argument the parameter [y]. We use information from global flow to try to add edges between function calls and their return values at known call sites. *) let usages prog (global_info : Global_flow.info) : usage_kind Var.Map.t Var.Tbl.t = let uses = Var.Tbl.make () Var.Map.empty in let add_use kind x y = Var.Tbl.set uses y (Var.Map.add x kind (Var.Tbl.get uses y)) in let add_arg_dep params args = List.iter2 ~f:(fun x y -> add_use Propagate x y) params args in let add_cont_deps (pc, args) = match try Some (Addr.Map.find pc prog.blocks) with Not_found -> None with | Some block -> add_arg_dep block.params args | None -> () (* Dead continuation *) in let add_expr_uses x e : unit = match e with | Apply { f; args; _ } -> (match Var.Tbl.get global_info.info_approximation f with | Top -> () | Values { known; _ } -> Var.Set.iter (* For each known closure value of f *) (fun k -> (* 1. Look at return values, and add edge between x and these values. *) (* 2. Add an edge pairwise between the parameters and arguments *) match global_info.info_defs.(Var.idx k) with | Expr (Closure (params, _)) -> (* If the function is under/over-applied then global flow will mark arguments and return value as escaping. So we only need to consider the case when there is an exact application. *) if List.compare_lengths params args = 0 then ( let return_values = Var.Map.find k global_info.info_return_vals in Var.Set.iter (add_use Propagate x) return_values; List.iter2 ~f:(add_use Propagate) params args) | _ -> ()) known); add_use Compute x f; List.iter ~f:(fun a -> if variable_may_escape a global_info then add_use Compute x a) args | Block (_, vars, _, _) -> Array.iter ~f:(add_use Compute x) vars | Field (z, _) -> add_use Compute x z | Constant _ -> () | Special _ -> () | Closure (_, cont) -> add_cont_deps cont | Prim (_, args) -> List.iter ~f:(fun arg -> match arg with | Pv v -> add_use Compute x v | Pc _ -> ()) args in Addr.Map.iter (fun _ block -> (* Add uses from block body *) List.iter ~f:(fun (i, _) -> match i with | Let (x, e) -> add_expr_uses x e (* For assignment, propagate liveness from new to old variable like a block parameter *) | Assign (x, y) -> add_use Propagate x y | Set_field (_, _, _) | Offset_ref (_, _) | Array_set (_, _, _) -> ()) block.body; (* Add uses from block branch *) match fst block.branch with | Return _ | Raise _ | Stop -> () | Branch cont -> add_cont_deps cont | Cond (_, cont1, cont2) -> add_cont_deps cont1; add_cont_deps cont2 | Switch (_, a) -> Array.iter ~f:add_cont_deps a | Pushtrap (cont, _, cont_h) -> add_cont_deps cont; add_cont_deps cont_h | Poptrap cont -> add_cont_deps cont) prog.blocks; uses (** Return the set of variables used in a given expression *) let expr_vars e = let vars = Var.Set.empty in match e with | Apply { f; args; _ } -> let vars = Var.Set.add f vars in List.fold_left ~f:(fun acc x -> Var.Set.add x acc) ~init:vars args | Block (_, params, _, _) -> Array.fold_left ~f:(fun acc x -> Var.Set.add x acc) ~init:vars params | Field (z, _) -> Var.Set.add z vars | Prim (_, args) -> List.fold_left ~f:(fun acc v -> match v with | Pv v -> Var.Set.add v acc | Pc _ -> acc) ~init:vars args (* We can ignore closures. We want the set of previously defined variables used in the expression, so not parameters. The continuation may use some variables but we will add these when we visit the body *) | Constant _ | Closure (_, _) | Special _ -> vars (** Compute the initial liveness of each variable in the program. A variable [x] is marked as [Top] if + It is used in an impure expression (as defined by [Pure_fun.pure_expr]); + It is used in a conditonal/switch; + It is raised by an exception; + It is used in another stateful instruction (like setting a block or array field); + Or, it is returned or applied to a function and the global flow analysis marked it as escaping. A variable [x[i]] is marked as [Live {i}] if it is used in an instruction where field [i] is referenced or set. *) let liveness prog pure_funs (global_info : Global_flow.info) = let live_vars = Var.Tbl.make () Dead in let add_top v = Var.Tbl.set live_vars v Top in let add_live_field v i = let live_fields = match Var.Tbl.get live_vars v with | Live fields -> Live (IntSet.add i fields) | Top | Dead -> Live (IntSet.singleton i) in Var.Tbl.set live_vars v live_fields in let live_instruction i = match i with (* If e is impure, set all variables in e as Top. The only exception is for function applications, where we may be able to do better. Global flow gives us information about which arguments in a function application escape, so set only these as top. *) | Let (_, e) -> ( if not (Pure_fun.pure_expr pure_funs e) then match e with | Apply { f; args; _ } -> add_top f; List.iter ~f:(fun x -> if variable_may_escape x global_info then add_top x) args | Block (_, _, _, _) | Field (_, _) | Closure (_, _) | Constant _ | Prim (_, _) | Special _ -> let vars = expr_vars e in Var.Set.iter add_top vars) | Set_field (x, i, y) -> add_live_field x i; add_top y | Array_set (x, y, z) -> add_top x; add_top y; add_top z | Offset_ref (x, _) -> add_live_field x 0 (* Assignment can be ignored. Liveness of old variable is just propagated to new variable. See [usages]. *) | Assign (_, _) -> () in let live_block block = List.iter ~f:(fun (i, _) -> live_instruction i) block.body; match fst block.branch with | Return x -> if variable_may_escape x global_info then add_top x | Raise (x, _) -> add_top x | Cond (x, _, _) -> add_top x | Switch (x, _) -> add_top x | Stop | Branch _ | Poptrap _ | Pushtrap _ -> () in Addr.Map.iter (fun _ block -> live_block block) prog.blocks; Code.traverse { Code.fold = Code.fold_children } (fun pc () -> match Addr.Map.find pc prog.blocks with | { branch = Return x, _; _ } -> add_top x | _ -> ()) prog.start prog.blocks (); live_vars (* Returns the set of variables given a table of variables. *) let variables deps = let vars = Var.ISet.empty () in Var.Tbl.iter (fun v _ -> Var.ISet.add vars v) deps; vars (** Propagate liveness of the usages of a variable [x] to [x]. The liveness of [x] is defined by joining its current liveness and the contribution of each vairable [y] that uses [x]. *) let propagate uses defs live_vars live_table x = (* Variable [y] uses [x] either in its definition ([Compute]) or as a closure/block parameter ([Propagate]). In the latter case, the contribution is simply the liveness of [y]. In the former, the contribution depends on the liveness of [y] and its definition. *) let contribution y usage_kind = match usage_kind with (* If x is used to compute y, we consider the liveness of y *) | Compute -> ( match Var.Tbl.get live_table y with (* If y is dead, then x is dead. *) | Dead -> Dead (* If y is a live block, then x is the join of liveness fields that are x *) | Live fields -> ( match Var.Tbl.get defs y with | Expr (Block (_, vars, _, _)) -> let found = ref false in Array.iteri ~f:(fun i v -> if Var.equal v x && IntSet.mem i fields then found := true) vars; if !found then Top else Dead | Expr (Field (_, i)) -> Live (IntSet.singleton i) | _ -> Top) (* If y is top and y is a field access, x depends only on that field *) | Top -> ( match Var.Tbl.get defs y with | Expr (Field (_, i)) -> Live (IntSet.singleton i) | _ -> Top)) (* If x is used as an argument for parameter y, then contribution is liveness of y *) | Propagate -> Var.Tbl.get live_table y in Var.Map.fold (fun y usage_kind live -> Domain.join (contribution y usage_kind) live) (Var.Tbl.get uses x) (Domain.join (Var.Tbl.get live_vars x) (Var.Tbl.get live_table x)) let solver vars uses defs live_vars = let g = { G.domain = vars ; G.iter_children = (fun f x -> Var.Map.iter (fun y _ -> f y) (Var.Tbl.get uses x)) } in Solver.f () (G.invert () g) (propagate uses defs live_vars) (** Replace each instance of a dead variable with a sentinal value. Blocks that end in dead variables are compacted to the first live entry. Dead variables are replaced when + They appear in a dead field of a block; or + They are returned; or + They are applied to a function. *) let zero prog sentinal live_table = let compact_vars vars = let i = ref (Array.length vars - 1) in while !i >= 0 && Var.equal vars.(!i) sentinal do i := !i - 1 done; if !i + 1 < Array.length vars then Array.sub vars ~pos:0 ~len:(!i + 1) else vars in let is_live v = match Var.Tbl.get live_table v with | Dead -> false | Top | Live _ -> true in let zero_var x = if is_live x then x else sentinal in let zero_instr instr = match instr with | Let (x, e) -> ( match e with | Block (start, vars, is_array, mut) -> ( match Var.Tbl.get live_table x with | Live fields -> let vars = Array.mapi ~f:(fun i v -> if IntSet.mem i fields then v else sentinal) vars |> compact_vars in let e = Block (start, vars, is_array, mut) in Let (x, e) | _ -> instr) | Apply ap -> let args = List.map ~f:zero_var ap.args in Let (x, Apply { ap with args }) | Field (_, _) | Closure (_, _) | Constant _ | Prim (_, _) | Special _ -> instr) | Assign (_, _) | Set_field (_, _, _) | Offset_ref (_, _) | Array_set (_, _, _) -> instr in let zero_block block = (* Analyze block instructions *) let body = List.map ~f:(fun (instr, loc) -> zero_instr instr, loc) block.body in (* Analyze branch *) let branch = (* Zero out return values in last instruction, otherwise do nothing. *) match block.branch with | Return x, loc -> let tc = (* We don't want to break tailcalls. *) match List.last body with | Some (Let (x', Apply _), _) when Code.Var.equal x' x -> true | Some _ | None -> false in if tc then Return x, loc else Return (zero_var x), loc | Raise (_, _), _ | Stop, _ | Branch _, _ | Cond (_, _, _), _ | Switch (_, _), _ | Pushtrap (_, _, _), _ | Poptrap _, _ -> block.branch in { block with body; branch } in let blocks = prog.blocks |> Addr.Map.map zero_block in { prog with blocks } module Print = struct let live_to_string = function | Live fields -> "live { " ^ IntSet.fold (fun i s -> s ^ Format.sprintf "%d " i) fields "" ^ "}" | Top -> "top" | Dead -> "dead" let print_uses uses = Format.eprintf "Usages:\n"; Var.Tbl.iter (fun v ds -> Format.eprintf "%a: { " Var.print v; Var.Map.iter (fun d k -> Format.eprintf "(%a, %s) " Var.print d (match k with | Compute -> "C" | Propagate -> "P")) ds; Format.eprintf "}\n") uses let print_liveness live_vars = Format.eprintf "Liveness:\n"; Var.Tbl.iter (fun v l -> Format.eprintf "%a: %s\n" Var.print v (live_to_string l)) live_vars let print_live_tbl live_table = Format.eprintf "Liveness with dependencies:\n"; Var.Tbl.iter (fun v l -> Format.eprintf "%a: %s\n" Var.print v (live_to_string l)) live_table end (** Add a sentinal variable declaration to the IR. The fresh variable is assigned to `undefined`. *) let add_sentinal p sentinal = let instr, loc = Let (sentinal, Special Undefined), noloc in Code.prepend p [ instr, loc ] (** Run the liveness analysis and replace dead variables with the given sentinal. *) let f p ~deadcode_sentinal global_info = Code.invariant p; let t = Timer.make () in (* Add sentinal variable *) let p = add_sentinal p deadcode_sentinal in (* Compute definitions *) let defs = definitions p in (* Compute usages *) let uses = usages p global_info in (* Compute initial liveness *) let pure_funs = Pure_fun.f p in let live_vars = liveness p pure_funs global_info in (* Propagate liveness to dependencies *) let vars = variables uses in let live_table = solver vars uses defs live_vars in (* Print debug info *) if debug () then ( Format.eprintf "Before Zeroing:\n"; Code.Print.program (fun _ _ -> "") p; Print.print_liveness live_vars; Print.print_uses uses; Print.print_live_tbl live_table); (* Zero out dead fields *) let p = zero p deadcode_sentinal live_table in if debug () then ( Format.printf "After Zeroing:\n"; Code.Print.program (fun _ _ -> "") p); if times () then Format.eprintf " deadcode dgraph.: %a@." Timer.print t; p
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>