package js_of_ocaml-compiler
Compiler from OCaml bytecode to JavaScript
Install
Dune Dependency
Authors
Maintainers
Sources
js_of_ocaml-5.7.2.tbz
sha256=d76f0748dbef45b68f5f6b66f1da2d7a462de64f1cd2932aa0740388e667793c
sha512=4d84f20eb60f9a61b82d8bf9d686ad0d44852addc0a3ffc553d124e488796ec2945bf38311922e57eec739a88346be200289055c56b90b3a22ae4354a073b38c
doc/src/js_of_ocaml-compiler/inline.ml.html
Source file inline.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
(* Js_of_ocaml compiler * http://www.ocsigen.org/js_of_ocaml/ * Copyright (C) 2010 Jérôme Vouillon * Laboratoire PPS - CNRS Université Paris Diderot * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation, with linking exception; * either version 2.1 of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *) open! Stdlib open Code type prop = { size : int ; optimizable : bool } let optimizable blocks pc _ = Code.traverse { fold = Code.fold_children } (fun pc { size; optimizable } -> let b = Addr.Map.find pc blocks in let this_size = match b with | { branch; body; _ } -> ( List.length body + match fst branch with | Cond _ -> 2 | Switch (_, a1) -> Array.length a1 | _ -> 0) in let optimizable = optimizable && List.for_all b.body ~f:(function | Let (_, Prim (Extern "caml_js_eval_string", _)), _ -> false | Let (_, Prim (Extern "debugger", _)), _ -> false | ( Let ( _ , Prim (Extern ("caml_js_var" | "caml_js_expr" | "caml_pure_js_expr"), _) ) , _ ) -> (* TODO: we should be smarter here and look the generated js *) (* let's consider it this opmiziable *) true | _ -> true) in { optimizable; size = size + this_size }) pc blocks { optimizable = true; size = 0 } let rec follow_branch_rec seen blocks = function | (pc, []) as k -> ( let seen = Addr.Set.add pc seen in try match Addr.Map.find pc blocks with | { body = []; branch = Branch (pc, []), _; _ } when not (Addr.Set.mem pc seen) -> follow_branch_rec seen blocks (pc, []) | _ -> k with Not_found -> k) | k -> k let follow_branch = follow_branch_rec Addr.Set.empty let get_closures { blocks; _ } = Addr.Map.fold (fun _ block closures -> List.fold_left block.body ~init:closures ~f:(fun closures i -> match i with | Let (x, Closure (l, cont)), _loc -> let cont = follow_branch blocks cont in (* we can compute this once during the pass as the property won't change with inlining *) let f_optimizable = optimizable blocks (fst cont) true in Var.Map.add x (l, cont, f_optimizable) closures | _ -> closures)) blocks Var.Map.empty (****) let rewrite_block pc' pc blocks = let block = Addr.Map.find pc blocks in let block = match block.branch, pc' with | (Return y, loc), Some pc' -> { block with branch = Branch (pc', [ y ]), loc } | _ -> block in Addr.Map.add pc block blocks (* Skip try body *) let fold_children blocks pc f accu = let block = Addr.Map.find pc blocks in match fst block.branch with | Return _ | Raise _ | Stop -> accu | Branch (pc', _) | Poptrap (pc', _) -> f pc' accu | Pushtrap ((try_body, _), _, (pc1, _)) -> f pc1 (Addr.Set.fold f (Code.poptraps blocks try_body) accu) | Cond (_, (pc1, _), (pc2, _)) -> let accu = f pc1 accu in let accu = f pc2 accu in accu | Switch (_, a1) -> let accu = Array.fold_right a1 ~init:accu ~f:(fun (pc, _) accu -> f pc accu) in accu let rewrite_closure blocks cont_pc clos_pc = Code.traverse { fold = fold_children } (rewrite_block cont_pc) clos_pc blocks blocks (****) let rec find_mapping mapping x = match mapping with | [] -> x | ([], []) :: rest -> find_mapping rest x | (a :: _, b :: _) :: rest when Code.Var.compare a x = 0 -> find_mapping rest b | (_ :: ax, _ :: bx) :: rest -> find_mapping ((ax, bx) :: rest) x | ([], _ | _, []) :: _ -> assert false let simple blocks cont mapping = let map_var mapping x = let x' = find_mapping mapping x in if Var.equal x x' then raise Not_found else x' in let map_prim_arg mapping = function | Pc c -> Pc c | Pv x -> Pv (map_var mapping x) in let rec follow seen (pc, args) (instr : [ `Empty | `Ok of 'a ]) mapping = if Addr.Set.mem pc seen then `Fail else let b = Addr.Map.find pc blocks in let mapping = (b.params, args) :: mapping in let instr : [ `Empty | `Ok of 'a | `Fail ] = match b.body, instr with | [], _ -> (instr :> [ `Empty | `Ok of 'a | `Fail ]) | [ (Let (y, exp), _) ], `Empty -> `Ok (y, exp) | _, _ -> `Fail in match instr, b.branch with | `Fail, _ -> `Fail | `Empty, (Return ret, _) -> `Alias (map_var mapping ret) | `Ok (x, exp), (Return ret, _) when Code.Var.compare x (find_mapping mapping ret) = 0 -> ( match exp with | Constant (Float _ | Int64 _ | Int _ | NativeString _) -> `Exp exp | Apply { f; args; exact = true } -> `Exp (Apply { f = map_var mapping f ; args = List.map args ~f:(map_var mapping) ; exact = true }) | Prim (prim, args) -> `Exp (Prim (prim, List.map args ~f:(map_prim_arg mapping))) | Special _ -> `Exp exp | Block (tag, args, aon) -> `Exp (Block (tag, Array.map args ~f:(map_var mapping), aon)) | Field (x, i) -> `Exp (Field (map_var mapping x, i)) | Closure _ -> `Fail | Constant _ -> `Fail | Apply _ -> `Fail) | ((`Empty | `Ok _) as instr), (Branch cont, _) -> follow (Addr.Set.add pc seen) cont instr mapping | (`Empty | `Ok _), _ -> `Fail in try follow Addr.Set.empty cont `Empty mapping with Not_found -> `Fail let rec args_equal xs ys = match xs, ys with | [], [] -> true | x :: xs, Pv y :: ys -> Code.Var.compare x y = 0 && args_equal xs ys | _ -> false let inline live_vars closures pc (outer, blocks, free_pc) = let block = Addr.Map.find pc blocks in let body, (outer, branch, blocks, free_pc) = List.fold_right block.body ~init:([], (outer, block.branch, blocks, free_pc)) ~f:(fun i (rem, state) -> match i with | Let (x, Apply { f; args; exact = true }), loc when Var.Map.mem f closures -> ( let outer, branch, blocks, free_pc = state in let params, clos_cont, { size = f_size; optimizable = f_optimizable } = Var.Map.find f closures in match simple blocks clos_cont [ params, args ] with | `Alias arg -> ( match rem, branch with | [], (Return y, loc) when Var.compare x y = 0 -> [], (outer, (Return arg, loc), blocks, free_pc) | _ -> let blocks = Addr.Map.add free_pc { params = [ x ]; body = rem; branch } blocks in [], (outer, (Branch (free_pc, [ arg ]), loc), blocks, free_pc + 1)) | `Exp exp -> (Let (x, exp), loc) :: rem, state | `Fail -> if live_vars.(Var.idx f) = 1 && Bool.equal outer.optimizable f_optimizable (* Inlining the code of an optimizable function could make this code unoptimized. (wrt to Jit compilers) *) && f_size < Config.Param.inlining_limit () then let blocks, cont_pc = match rem, branch with | [], (Return y, _) when Var.compare x y = 0 -> (* We do not need a continuation block for tail calls *) blocks, None | _ -> ( Addr.Map.add free_pc { params = [ x ]; body = rem; branch } blocks , Some free_pc ) in let blocks = rewrite_closure blocks cont_pc (fst clos_cont) in (* We do not really need this intermediate block. It just avoids the need to find which function parameters are used in the function body. *) let blocks = Addr.Map.add (free_pc + 1) { params; body = []; branch = Branch clos_cont, loc } blocks in let outer = { outer with size = outer.size + f_size } in [], (outer, (Branch (free_pc + 1, args), loc), blocks, free_pc + 2) else i :: rem, state) | Let (x, Closure (l, (pc, []))), loc when not (Config.Flag.effects ()) -> ( let block = Addr.Map.find pc blocks in match block with | { body = [ (Let (y, Prim (Extern prim, args)), _loc) ] ; branch = Return y', _ ; params = [] } -> let len = List.length l in if Code.Var.compare y y' = 0 && Primitive.has_arity prim len && args_equal l args then (Let (x, Special (Alias_prim prim)), loc) :: rem, state else i :: rem, state | _ -> i :: rem, state) | _ -> i :: rem, state) in outer, Addr.Map.add pc { block with body; branch } blocks, free_pc (****) let times = Debug.find "times" let f p live_vars = Code.invariant p; let t = Timer.make () in let closures = get_closures p in let _closures, blocks, free_pc = Code.fold_closures p (fun name _ (pc, _) (closures, blocks, free_pc) -> let traverse outer = Code.traverse { fold = Code.fold_children } (inline live_vars closures) pc blocks (outer, blocks, free_pc) in match name with | None -> let _, blocks, free_pc = traverse (optimizable blocks pc true) in closures, blocks, free_pc | Some x -> let l, c, outer = Var.Map.find x closures in let outer, blocks, free_pc = traverse outer in let closures = Var.Map.add x (l, c, outer) closures in closures, blocks, free_pc) (closures, p.blocks, p.free_pc) in if times () then Format.eprintf " inlining: %a@." Timer.print t; let p = { p with blocks; free_pc } in Code.invariant p; p
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>