package js_of_ocaml-compiler
Compiler from OCaml bytecode to JavaScript
Install
Dune Dependency
Authors
Maintainers
Sources
js_of_ocaml-5.7.2.tbz
sha256=d76f0748dbef45b68f5f6b66f1da2d7a462de64f1cd2932aa0740388e667793c
sha512=4d84f20eb60f9a61b82d8bf9d686ad0d44852addc0a3ffc553d124e488796ec2945bf38311922e57eec739a88346be200289055c56b90b3a22ae4354a073b38c
doc/src/js_of_ocaml-compiler/generate.ml.html
Source file generate.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
(* Js_of_ocaml compiler * http://www.ocsigen.org/js_of_ocaml/ * Copyright (C) 2010 Jérôme Vouillon * Laboratoire PPS - CNRS Université Paris Diderot * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation, with linking exception; * either version 2.1 of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *) (*XXX Patterns: => should have special code for switches that include the preceding if statement when possible => if e1 then {if e2 then P else Q} else {if e3 then P else Q} => if e then return e1; return e2 => if e then var x = e1; else var x = e2; => while (true) {.... if (e) continue; break; } *) open! Stdlib let debug = Debug.find "gen" let times = Debug.find "times" open Code module J = Javascript (****) let string_of_set s = String.concat ~sep:", " (List.map ~f:Addr.to_string (Addr.Set.elements s)) let rec list_group_rec ~equal f g l b m n = match l with | [] -> List.rev ((b, List.rev m) :: n) | a :: r -> let fa = f a in if equal fa b then list_group_rec ~equal f g r b (g a :: m) n else list_group_rec ~equal f g r fa [ g a ] ((b, List.rev m) :: n) let list_group ~equal f g l = match l with | [] -> [] | a :: r -> list_group_rec ~equal f g r (f a) [ g a ] [] (****) type fall_through = | Block of Addr.t | Return type application_description = { arity : int ; exact : bool ; cps : bool } module Ctx = struct type t = { blocks : block Addr.Map.t ; live : Deadcode.variable_uses ; share : Share.t ; debug : Parse_bytecode.Debug.t ; exported_runtime : (Code.Var.t * bool ref) option ; should_export : bool ; effect_warning : bool ref ; cps_calls : Effects.cps_calls ; deadcode_sentinal : Var.t ; mutated_vars : Code.Var.Set.t Code.Addr.Map.t ; freevars : Code.Var.Set.t Code.Addr.Map.t } let initial ~warn_on_unhandled_effect ~exported_runtime ~should_export ~deadcode_sentinal ~mutated_vars ~freevars blocks live cps_calls debug = { blocks ; live ; share ; debug ; exported_runtime ; should_export ; effect_warning = ref (not warn_on_unhandled_effect) ; cps_calls ; deadcode_sentinal ; mutated_vars ; freevars } end type edge_kind = | Loop | Exit_loop of bool ref | Exit_switch of bool ref | Forward let var x = J.EVar (J.V x) let int n = J.ENum (J.Num.of_int32 (Int32.of_int n)) let int32 n = J.ENum (J.Num.of_int32 n) let to_int cx = J.EBin (J.Bor, cx, int 0) let unsigned' x = J.EBin (J.Lsr, x, int 0) let unsigned x = let x = match x with | J.EBin (J.Bor, x, J.ENum maybe_zero) when J.Num.is_zero maybe_zero -> x | _ -> x in let pos_int32 = match x with | J.ENum num -> ( try Int32.(J.Num.to_int32 num >= 0l) with _ -> false) | _ -> false in if pos_int32 then x else unsigned' x let one = int 1 let zero = int 0 let plus_int x y = match x, y with | J.ENum y, x when J.Num.is_zero y -> x | x, J.ENum y when J.Num.is_zero y -> x | J.ENum x, J.ENum y -> J.ENum (J.Num.add x y) | x, y -> J.EBin (J.Plus, x, y) let bool e = J.ECond (e, one, zero) (****) let source_location ctx ?force (pc : Code.loc) = match Parse_bytecode.Debug.find_loc ctx.Ctx.debug ?force pc with | Some pi -> J.Pi pi | None -> J.N (****) let float_const f = J.ENum (J.Num.of_float f) let s_var name = J.EVar (J.ident (Utf8_string.of_string_exn name)) let runtime_fun ctx name = match ctx.Ctx.exported_runtime with | Some (runtime, runtime_needed) -> runtime_needed := true; let name = Utf8_string.of_string_exn name in J.dot (J.EVar (J.V runtime)) name | None -> s_var name let str_js_byte s = let b = Buffer.create (String.length s) in String.iter s ~f:(function | '\\' -> Buffer.add_string b "\\\\" | '\128' .. '\255' as c -> Buffer.add_string b "\\x"; Buffer.add_char_hex b c | c -> Buffer.add_char b c); let s = Buffer.contents b in J.EStr (Utf8_string.of_string_exn s) let str_js_utf8 s = let b = Buffer.create (String.length s) in String.iter s ~f:(function | '\\' -> Buffer.add_string b "\\\\" | c -> Buffer.add_char b c); let s = Buffer.contents b in J.EStr (Utf8_string.of_string_exn s) (****) (* Some variables are constant: x = 1 Some may change after effectful operations : x = y[z] There can be at most one effectful operations in the queue at once let (e, expr_queue) = ... in flush_queue expr_queue e *) let const_p = 0, Var.Set.empty let mutable_p = 1, Var.Set.empty let mutator_p = 2, Var.Set.empty let flush_p = 3, Var.Set.empty let or_p (p, s1) (q, s2) = max p q, Var.Set.union s1 s2 let is_mutable (p, _) = p >= fst mutable_p let kind k = match k with | `Pure -> const_p | `Mutable -> mutable_p | `Mutator -> mutator_p let ocaml_string ~ctx ~loc s = if Config.Flag.use_js_string () then s else let p = Share.get_prim (runtime_fun ctx) "caml_string_of_jsbytes" ctx.Ctx.share in J.call p [ s ] loc let rec constant_rec ~ctx x level instrs = match x with | String s -> let e = if String.is_ascii s then Share.get_utf_string str_js_byte s ctx.Ctx.share else Share.get_byte_string str_js_byte s ctx.Ctx.share in let e = ocaml_string ~ctx ~loc:J.N e in e, instrs | NativeString s -> ( match s with | Byte x -> Share.get_byte_string str_js_byte x ctx.Ctx.share, instrs | Utf (Utf8 x) -> Share.get_utf_string str_js_utf8 x ctx.Ctx.share, instrs) | Float f -> float_const f, instrs | Float_array a -> ( Mlvalue.Array.make ~tag:Obj.double_array_tag ~args:(Array.to_list (Array.map a ~f:(fun x -> J.Element (float_const x)))) , instrs ) | Int64 i -> let p = Share.get_prim (runtime_fun ctx) "caml_int64_create_lo_mi_hi" ctx.Ctx.share in let lo = int (Int64.to_int i land 0xffffff) and mi = int (Int64.to_int (Int64.shift_right i 24) land 0xffffff) and hi = int (Int64.to_int (Int64.shift_right i 48) land 0xffff) in J.call p [ lo; mi; hi ] J.N, instrs | Tuple (tag, a, _) -> ( let constant_max_depth = Config.Param.constant_max_depth () in let rec detect_list n acc = function | Tuple (0, [| x; l |], _) -> detect_list (succ n) (x :: acc) l | Int 0l -> if n > constant_max_depth then Some acc else None | _ -> None in match detect_list 0 [] x with | Some elts_rev -> let elements, instrs = List.fold_left elts_rev ~init:([], instrs) ~f:(fun (arr, instrs) elt -> let js, instrs = constant_rec ~ctx elt level instrs in js :: arr, instrs) in let p = Share.get_prim (runtime_fun ctx) "caml_list_of_js_array" ctx.Ctx.share in J.call p [ J.array elements ] J.N, instrs | None -> let split = level = constant_max_depth in let level = if split then 0 else level + 1 in let l, instrs = List.fold_left (Array.to_list a) ~init:([], instrs) ~f:(fun (l, instrs) cc -> let js, instrs = constant_rec ~ctx cc level instrs in js :: l, instrs) in let l, instrs = if split then List.fold_left l ~init:([], instrs) ~f:(fun (acc, instrs) js -> match js with | J.EArr _ -> let v = Code.Var.fresh_n "partial" in let instrs = (J.variable_declaration [ J.V v, (js, J.N) ], J.N) :: instrs in J.Element (J.EVar (J.V v)) :: acc, instrs | _ -> J.Element js :: acc, instrs) else List.map ~f:(fun x -> J.Element x) (List.rev l), instrs in Mlvalue.Block.make ~tag ~args:l, instrs) | Int i -> int32 i, instrs let constant ~ctx x level = let expr, instr = constant_rec ~ctx x level [] in expr, List.rev instr type queue_elt = { prop : int ; ce : J.expression ; loc : J.location ; deps : Code.Var.Set.t } let access_queue queue x = try let elt = List.assoc x queue in ((elt.prop, elt.deps), elt.ce), List.remove_assoc x queue with Not_found -> ((fst const_p, Code.Var.Set.singleton x), var x), queue let access_queue_loc queue x = try let elt = List.assoc x queue in ((elt.prop, elt.deps), elt.ce, elt.loc), List.remove_assoc x queue with Not_found -> ((fst const_p, Code.Var.Set.singleton x), var x, J.N), queue let access_queue' ~ctx queue x = match x with | Pc c -> let js, instrs = constant ~ctx c (Config.Param.constant_max_depth ()) in assert (List.is_empty instrs); (* We only have simple constants here *) (const_p, js), queue | Pv x -> access_queue queue x let should_flush (cond, _) prop = cond <> fst const_p && cond + prop >= fst flush_p let flush_queue expr_queue prop (l : J.statement_list) = let instrs, expr_queue = if fst prop >= fst flush_p then expr_queue, [] else List.partition ~f:(fun (_, elt) -> should_flush prop elt.prop) expr_queue in let instrs = List.map instrs ~f:(fun (x, elt) -> J.variable_declaration [ J.V x, (elt.ce, elt.loc) ], elt.loc) in List.rev_append instrs l, expr_queue let flush_all expr_queue l = fst (flush_queue expr_queue flush_p l) let enqueue expr_queue prop x ce loc acc = let instrs, expr_queue = if Config.Flag.compact () then if is_mutable prop then flush_queue expr_queue prop acc else acc, expr_queue else flush_queue expr_queue flush_p acc in let prop, deps = prop in instrs, (x, { prop; deps; ce; loc }) :: expr_queue (****) type state = { structure : Structure.t ; dom : Structure.graph ; visited_blocks : Addr.Set.t ref ; ctx : Ctx.t } module DTree = struct (* This as to be kept in sync with the way we build conditionals and switches! *) type cond = | IsTrue | CEq of int32 | CLt of int32 | CLe of int32 type 'a branch = int list * 'a type 'a t = | If of cond * 'a t * 'a t | Switch of 'a branch array | Branch of 'a branch let normalize a = a |> Array.to_list |> List.sort ~cmp:(fun (cont1, _) (cont2, _) -> Poly.compare cont1 cont2) |> list_group ~equal:Poly.equal fst snd |> List.map ~f:(fun (cont1, l1) -> cont1, List.flatten l1) |> List.sort ~cmp:(fun (_, l1) (_, l2) -> compare (List.length l1) (List.length l2)) |> Array.of_list let build_if b1 b2 = If (IsTrue, Branch ([ 1 ], b1), Branch ([ 0 ], b2)) let build_switch (a : cont array) : cont t = let m = Config.Param.switch_max_case () in let ai = Array.mapi a ~f:(fun i x -> x, i) in (* group the contiguous cases with the same continuation *) let ai : (Code.cont * int list) array = Array.of_list (list_group ~equal:Poly.equal fst snd (Array.to_list ai)) in let rec loop low up = let array_norm : (Code.cont * int list) array = normalize (Array.sub ai ~pos:low ~len:(up - low + 1)) in let array_len = Array.length array_norm in if array_len = 1 (* remaining cases all jump to the same branch *) then Branch (snd array_norm.(0), fst array_norm.(0)) else try (* try to optimize when there are only 2 branch *) match array_norm with | [| (b1, ([ i1 ] as l1)); (b2, l2) |] -> If (CEq (Int32.of_int i1), Branch (l1, b1), Branch (l2, b2)) | [| (b1, l1); (b2, ([ i2 ] as l2)) |] -> If (CEq (Int32.of_int i2), Branch (l2, b2), Branch (l1, b1)) | [| (b1, l1); (b2, l2) |] -> let bound l1 = match l1, List.rev l1 with | min :: _, max :: _ -> min, max | _ -> assert false in let min1, max1 = bound l1 in let min2, max2 = bound l2 in if max1 < min2 then If (CLt (Int32.of_int max1), Branch (l2, b2), Branch (l1, b1)) else if max2 < min1 then If (CLt (Int32.of_int max2), Branch (l1, b1), Branch (l2, b2)) else raise Not_found | _ -> raise Not_found with Not_found -> ( (* do we have to split again ? *) (* we count the number of cases, default/last case count for one *) let nbcases = ref 1 (* default case *) in for i = 0 to array_len - 2 do nbcases := !nbcases + List.length (snd array_norm.(i)) done; if !nbcases <= m then Switch (Array.map array_norm ~f:(fun (x, l) -> l, x)) else let h = (up + low) / 2 in let b1 = loop low h and b2 = loop (succ h) up in let range1 = snd ai.(h) and range2 = snd ai.(succ h) in match range1, range2 with | [], _ | _, [] -> assert false | _, lower_bound2 :: _ -> If (CLe (Int32.of_int lower_bound2), b2, b1)) in let len = Array.length ai in assert (len > 0); loop 0 (len - 1) let nbbranch (a : cont t) pc = let rec loop c : cont t -> int = function | Branch (_, (pc', _)) -> if pc' = pc then succ c else c | If (_, a, b) -> let c = loop c a in let c = loop c b in c | Switch a -> Array.fold_left a ~init:c ~f:(fun acc (_, (pc', _)) -> if pc' = pc then succ acc else acc) in loop 0 a let nbcomp a = let rec loop c = function | Branch _ -> c | If (_, a, b) -> let c = succ c in let c = loop c a in let c = loop c b in c | Switch _ -> let c = succ c in c in loop 0 a end let build_graph ctx pc = let visited_blocks = ref Addr.Set.empty in let structure = Structure.build_graph ctx.Ctx.blocks pc in let dom = Structure.dominator_tree structure in { visited_blocks; structure; dom; ctx } (****) let rec visit visited prev s m x l = if not (Var.Set.mem x visited) then let visited = Var.Set.add x visited in let y = Var.Map.find x m in if Code.Var.compare x y = 0 then visited, None, l else if Var.Set.mem y prev then let t = Code.Var.fresh () in visited, Some (y, t), (x, t) :: l else if Var.Set.mem y s then let visited, aliases, l = visit visited (Var.Set.add x prev) s m y l in match aliases with | Some (a, b) when Code.Var.compare a x = 0 -> visited, None, (b, a) :: (x, y) :: l | _ -> visited, aliases, (x, y) :: l else visited, None, (x, y) :: l else visited, None, l let visit_all params args = let m = Subst.build_mapping params args in let s = List.fold_left params ~init:Var.Set.empty ~f:(fun s x -> Var.Set.add x s) in let _, l = Var.Set.fold (fun x (visited, l) -> let visited, _, l = visit visited Var.Set.empty s m x l in visited, l) s (Var.Set.empty, []) in l let parallel_renaming back_edge params args continuation queue = let l = visit_all params args in let queue, before, renaming, _ = List.fold_left l ~init:(queue, [], [], Code.Var.Set.empty) ~f:(fun (queue, before, renaming, seen) (y, x) -> let (((_, deps_x) as px), cx, locx), queue = access_queue_loc queue x in let seen' = Code.Var.Set.add y seen in if not Code.Var.Set.(is_empty (inter seen deps_x)) then let () = assert back_edge in let before, queue = flush_queue queue px ((J.variable_declaration [ J.V x, (cx, locx) ], locx) :: before) in let renaming = (J.variable_declaration [ J.V y, (J.EVar (J.V x), J.N) ], J.N) :: renaming in queue, before, renaming, seen' else let renaming, queue = flush_queue queue px ((J.variable_declaration [ J.V y, (cx, J.N) ], J.N) :: renaming) in queue, before, renaming, seen') in let never, code = continuation queue in never, List.rev_append before (List.rev_append renaming code) (****) let apply_fun_raw ctx f params exact cps = let n = List.length params in let apply_directly = (* Make sure we are performing a regular call, not a (slower) method call *) match f with | J.EAccess _ | J.EDot _ -> J.call (J.dot f (Utf8_string.of_string_exn "call")) (s_var "null" :: params) J.N | _ -> J.call f params J.N in let apply = (* We skip the arity check when we know that we have the right number of parameters, since this test is expensive. *) if exact then apply_directly else let l = Utf8_string.of_string_exn "l" in J.ECond ( J.EBin ( J.EqEq , J.ECond ( J.EBin (J.Ge, J.dot f l, int 0) , J.dot f l , J.EBin (J.Eq, J.dot f l, J.dot f (Utf8_string.of_string_exn "length")) ) , int n ) , apply_directly , J.call (runtime_fun ctx "caml_call_gen") [ f; J.array params ] J.N ) in if cps then ( assert (Config.Flag.effects ()); (* When supporting effect, we systematically perform tailcall optimization. To implement it, we check the stack depth and bounce to a trampoline if needed, to avoid a stack overflow. The trampoline then performs the call in an shorter stack. *) J.ECond ( J.call (runtime_fun ctx "caml_stack_check_depth") [] J.N , apply , J.call (runtime_fun ctx "caml_trampoline_return") [ f; J.array params ] J.N )) else apply let generate_apply_fun ctx { arity; exact; cps } = let f' = Var.fresh_n "f" in let f = J.V f' in let params = Array.to_list (Array.init arity ~f:(fun i -> let a = Var.fresh_n (Printf.sprintf "a%d" i) in J.V a)) in let f' = J.EVar f in let params' = List.map params ~f:(fun x -> J.EVar x) in J.EFun ( None , J.fun_ (f :: params) [ J.Return_statement (Some (apply_fun_raw ctx f' params' exact cps)), J.N ] J.N ) let apply_fun ctx f params exact cps loc = (* We always go through an intermediate function when doing CPS calls. This function first checks the stack depth to prevent a stack overflow. This makes the code smaller than inlining the test, and we expect the performance impact to be low since the function should get inlined by the JavaScript engines. *) if Config.Flag.inline_callgen () || (exact && not cps) then apply_fun_raw ctx f params exact cps else let y = Share.get_apply (generate_apply_fun ctx) { arity = List.length params; exact; cps } ctx.Ctx.share in J.call y (f :: params) loc (****) let internal_primitives = Hashtbl.create 31 let internal_prim name = try let _, f = Hashtbl.find internal_primitives name in Some f with Not_found -> None let register_prim name k f = Hashtbl.add internal_primitives name (k, f) let invalid_arity name l ~loc ~expected = failwith (Printf.sprintf "%sInvalid arity for primitive %s. Expecting %d but used with %d." (match (loc : J.location) with | Pi { name = Some name; col; line; _ } -> Printf.sprintf "%s:%d:%d: " name line col | Pi _ | N | U -> "") name expected (List.length l)) let register_un_prim name k f = register_prim name k (fun l queue ctx loc -> match l with | [ x ] -> let (px, cx), queue = access_queue' ~ctx queue x in f cx loc, or_p (kind k) px, queue | l -> invalid_arity name l ~loc ~expected:1) let register_un_prim_ctx name k f = register_prim name k (fun l queue ctx loc -> match l with | [ x ] -> let (px, cx), queue = access_queue' ~ctx queue x in f ctx cx loc, or_p (kind k) px, queue | _ -> invalid_arity name l ~loc ~expected:1) let register_bin_prim name k f = register_prim name k (fun l queue ctx loc -> match l with | [ x; y ] -> let (px, cx), queue = access_queue' ~ctx queue x in let (py, cy), queue = access_queue' ~ctx queue y in f cx cy loc, or_p (kind k) (or_p px py), queue | _ -> invalid_arity name l ~loc ~expected:2) let register_tern_prim name f = register_prim name `Mutator (fun l queue ctx loc -> match l with | [ x; y; z ] -> let (px, cx), queue = access_queue' ~ctx queue x in let (py, cy), queue = access_queue' ~ctx queue y in let (pz, cz), queue = access_queue' ~ctx queue z in f cx cy cz loc, or_p mutator_p (or_p px (or_p py pz)), queue | _ -> invalid_arity name l ~loc ~expected:3) let register_un_math_prim name prim = let prim = Utf8_string.of_string_exn prim in register_un_prim name `Pure (fun cx loc -> J.call (J.dot (s_var "Math") prim) [ cx ] loc) let register_bin_math_prim name prim = let prim = Utf8_string.of_string_exn prim in register_bin_prim name `Pure (fun cx cy loc -> J.call (J.dot (s_var "Math") prim) [ cx; cy ] loc) let _ = register_un_prim_ctx "%caml_format_int_special" `Pure (fun ctx cx loc -> let s = J.EBin (J.Plus, str_js_utf8 "", cx) in ocaml_string ~ctx ~loc s); register_un_prim "%direct_obj_tag" `Mutator (fun cx _loc -> Mlvalue.Block.tag cx); register_bin_prim "caml_array_unsafe_get" `Mutable (fun cx cy _ -> Mlvalue.Array.field cx cy); register_bin_prim "%int_add" `Pure (fun cx cy _ -> to_int (plus_int cx cy)); register_bin_prim "%int_sub" `Pure (fun cx cy _ -> to_int (J.EBin (J.Minus, cx, cy))); register_bin_prim "%direct_int_mul" `Pure (fun cx cy _ -> to_int (J.EBin (J.Mul, cx, cy))); register_bin_prim "%direct_int_div" `Pure (fun cx cy _ -> to_int (J.EBin (J.Div, cx, cy))); register_bin_prim "%direct_int_mod" `Pure (fun cx cy _ -> to_int (J.EBin (J.Mod, cx, cy))); register_bin_prim "%int_and" `Pure (fun cx cy _ -> J.EBin (J.Band, cx, cy)); register_bin_prim "%int_or" `Pure (fun cx cy _ -> J.EBin (J.Bor, cx, cy)); register_bin_prim "%int_xor" `Pure (fun cx cy _ -> J.EBin (J.Bxor, cx, cy)); register_bin_prim "%int_lsl" `Pure (fun cx cy _ -> J.EBin (J.Lsl, cx, cy)); register_bin_prim "%int_lsr" `Pure (fun cx cy _ -> to_int (J.EBin (J.Lsr, cx, cy))); register_bin_prim "%int_asr" `Pure (fun cx cy _ -> J.EBin (J.Asr, cx, cy)); register_un_prim "%int_neg" `Pure (fun cx _ -> to_int (J.EUn (J.Neg, cx))); register_bin_prim "caml_eq_float" `Pure (fun cx cy _ -> bool (J.EBin (J.EqEq, cx, cy))); register_bin_prim "caml_neq_float" `Pure (fun cx cy _ -> bool (J.EBin (J.NotEq, cx, cy))); register_bin_prim "caml_ge_float" `Pure (fun cx cy _ -> bool (J.EBin (J.Le, cy, cx))); register_bin_prim "caml_le_float" `Pure (fun cx cy _ -> bool (J.EBin (J.Le, cx, cy))); register_bin_prim "caml_gt_float" `Pure (fun cx cy _ -> bool (J.EBin (J.Lt, cy, cx))); register_bin_prim "caml_lt_float" `Pure (fun cx cy _ -> bool (J.EBin (J.Lt, cx, cy))); register_bin_prim "caml_add_float" `Pure (fun cx cy _ -> J.EBin (J.Plus, cx, cy)); register_bin_prim "caml_sub_float" `Pure (fun cx cy _ -> J.EBin (J.Minus, cx, cy)); register_bin_prim "caml_mul_float" `Pure (fun cx cy _ -> J.EBin (J.Mul, cx, cy)); register_bin_prim "caml_div_float" `Pure (fun cx cy _ -> J.EBin (J.Div, cx, cy)); register_un_prim "caml_neg_float" `Pure (fun cx _ -> J.EUn (J.Neg, cx)); register_bin_prim "caml_fmod_float" `Pure (fun cx cy _ -> J.EBin (J.Mod, cx, cy)); register_tern_prim "caml_array_unsafe_set" (fun cx cy cz _ -> J.EBin (J.Eq, Mlvalue.Array.field cx cy, cz)); register_un_prim "caml_alloc_dummy" `Pure (fun _ _ -> J.array []); register_un_prim "caml_obj_dup" `Mutable (fun cx loc -> J.call (J.dot cx (Utf8_string.of_string_exn "slice")) [] loc); register_un_prim "caml_int_of_float" `Pure (fun cx _loc -> to_int cx); register_un_math_prim "caml_abs_float" "abs"; register_un_math_prim "caml_acos_float" "acos"; register_un_math_prim "caml_asin_float" "asin"; register_un_math_prim "caml_atan_float" "atan"; register_bin_math_prim "caml_atan2_float" "atan2"; register_un_math_prim "caml_ceil_float" "ceil"; register_un_math_prim "caml_cos_float" "cos"; register_un_math_prim "caml_exp_float" "exp"; register_un_math_prim "caml_floor_float" "floor"; register_un_math_prim "caml_log_float" "log"; register_bin_math_prim "caml_power_float" "pow"; register_un_math_prim "caml_sin_float" "sin"; register_un_math_prim "caml_sqrt_float" "sqrt"; register_un_math_prim "caml_tan_float" "tan"; register_un_prim "caml_js_from_bool" `Pure (fun cx _ -> J.EUn (J.Not, J.EUn (J.Not, cx))); register_un_prim "caml_js_to_bool" `Pure (fun cx _ -> to_int cx); register_tern_prim "caml_js_set" (fun cx cy cz _ -> J.EBin (J.Eq, J.EAccess (cx, ANormal, cy), cz)); (* [caml_js_get] can have side effect, we declare it as mutator. see https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/get *) register_bin_prim "caml_js_get" `Mutator (fun cx cy _ -> J.EAccess (cx, ANormal, cy)); register_bin_prim "caml_js_delete" `Mutator (fun cx cy _ -> J.EUn (J.Delete, J.EAccess (cx, ANormal, cy))); register_bin_prim "caml_js_equals" `Mutable (fun cx cy _ -> bool (J.EBin (J.EqEq, cx, cy))); register_bin_prim "caml_js_strict_equals" `Mutable (fun cx cy _ -> bool (J.EBin (J.EqEqEq, cx, cy))); register_bin_prim "caml_js_instanceof" `Mutator (fun cx cy _ -> bool (J.EBin (J.InstanceOf, cx, cy))); register_un_prim "caml_js_typeof" `Mutator (fun cx _ -> J.EUn (J.Typeof, cx)) (* This is not correct when switching the js-string flag *) (* {[ register_un_prim "caml_jsstring_of_string" `Mutable (fun cx loc -> J.ECall (J.EDot (cx, "toString"), [], loc)); register_bin_prim "caml_string_notequal" `Pure (fun cx cy _ -> J.EBin (J.NotEqEq, cx, cy)); register_bin_prim "caml_string_equal" `Pure (fun cx cy _ -> bool (J.EBin (J.EqEq, cx, cy))) ]} *) (****) (* when raising ocaml exception and [improved_stacktrace] is enabled, tag the ocaml exception with a Javascript error (that contain js stacktrace). {[ throw e ]} becomes {[ throw (caml_exn_with_js_backtrace(e,false)) ]} *) let throw_statement ctx cx k loc = match (k : [ `Normal | `Reraise | `Notrace ]) with | `Notrace -> [ J.Throw_statement cx, loc ] | (`Normal | `Reraise) as m -> let force = match m with | `Normal -> true | `Reraise -> false in [ ( J.Throw_statement (J.call (Share.get_prim (runtime_fun ctx) "caml_maybe_attach_backtrace" ctx.share) [ cx; (if force then int 1 else int 0) ] loc) , loc ) ] let rec translate_expr ctx queue loc x e level : _ * J.statement_list = match e with | Apply { f; args; exact } -> let cps = Var.Set.mem x ctx.Ctx.cps_calls in let args, prop, queue = List.fold_right ~f:(fun x (args, prop, queue) -> let (prop', cx), queue = access_queue queue x in cx :: args, or_p prop prop', queue) args ~init:([], mutator_p, queue) in let (prop', f), queue = access_queue queue f in let prop = or_p prop prop' in let e = apply_fun ctx f args exact cps loc in (e, prop, queue), [] | Block (tag, a, array_or_not) -> let contents, prop, queue = List.fold_right ~f:(fun x (args, prop, queue) -> let (prop', cx), queue = access_queue queue x in let cx = match cx with | J.EVar (J.V v) -> if Var.equal v ctx.deadcode_sentinal then J.ElementHole else J.Element cx | _ -> J.Element cx in cx :: args, or_p prop prop', queue) (Array.to_list a) ~init:([], const_p, queue) in let x = match array_or_not with | Array -> Mlvalue.Array.make ~tag ~args:contents | NotArray | Unknown -> Mlvalue.Block.make ~tag ~args:contents in (x, prop, queue), [] | Field (x, n) -> let (px, cx), queue = access_queue queue x in (Mlvalue.Block.field cx n, or_p px mutable_p, queue), [] | Closure (args, ((pc, _) as cont)) -> let loc = source_location ctx ~force:After (After pc) in let fv = Addr.Map.find pc ctx.freevars in let clo = compile_closure ctx cont in let clo = match clo with | (st, x) :: rem -> let loc = match x, source_location ctx (Before pc) with | (J.U | J.N), (J.U | J.N) -> J.U | x, (J.U | J.N) -> x | (J.U | J.N), x -> x | _, x -> x in (st, loc) :: rem | _ -> clo in let clo = J.EFun (None, J.fun_ (List.map args ~f:(fun v -> J.V v)) clo loc) in (clo, (fst const_p, fv), queue), [] | Constant c -> let js, instrs = constant ~ctx c level in (js, const_p, queue), instrs | Special (Alias_prim name) -> let prim = Share.get_prim (runtime_fun ctx) name ctx.Ctx.share in (prim, const_p, queue), [] | Special Undefined -> (J.(EVar (ident (Utf8_string.of_string_exn "undefined"))), const_p, queue), [] | Prim (Extern "debugger", _) -> let ins = if Config.Flag.debugger () then J.Debugger_statement else J.Empty_statement in (int 0, const_p, queue), [ ins, loc ] | Prim (p, l) -> let res = match p, l with | Vectlength, [ x ] -> let (px, cx), queue = access_queue' ~ctx queue x in Mlvalue.Array.length cx, px, queue | Array_get, [ x; y ] -> let (px, cx), queue = access_queue' ~ctx queue x in let (py, cy), queue = access_queue' ~ctx queue y in Mlvalue.Array.field cx cy, or_p mutable_p (or_p px py), queue | Extern "caml_js_var", [ Pc (String nm) ] | Extern ("caml_js_expr" | "caml_pure_js_expr"), [ Pc (String nm) ] -> ( try let pos = match loc with | J.N | J.U -> None | J.Pi pi -> ( (* [pi] is the position of the call, not the string. We don't have enough information to recover the start column *) match pi.src with | Some pos_fname -> Some { Lexing.pos_fname ; pos_lnum = pi.line ; pos_cnum = pi.idx ; pos_bol = pi.idx } | None -> None) in let lex = Parse_js.Lexer.of_string ?pos nm in let e = Parse_js.parse_expr lex in e, const_p, queue with Parse_js.Parsing_error pi -> failwith (Printf.sprintf "Parsing error %S%s at l:%d col:%d" nm (match pi.Parse_info.src with | None -> "" | Some s -> Printf.sprintf ", file %S" s) pi.Parse_info.line pi.Parse_info.col)) | Extern "%js_array", l -> let args, prop, queue = List.fold_right ~f:(fun x (args, prop, queue) -> let (prop', cx), queue = access_queue' ~ctx queue x in cx :: args, or_p prop prop', queue) l ~init:([], const_p, queue) in J.array args, prop, queue | Extern "%caml_js_opt_call", f :: o :: l -> let (pf, cf), queue = access_queue' ~ctx queue f in let (po, co), queue = access_queue' ~ctx queue o in let args, prop, queue = List.fold_right ~f:(fun x (args, prop, queue) -> let (prop', cx), queue = access_queue' ~ctx queue x in cx :: args, or_p prop prop', queue) l ~init:([], mutator_p, queue) in ( J.call (J.dot cf (Utf8_string.of_string_exn "call")) (co :: args) loc , or_p (or_p pf po) prop , queue ) | Extern "%caml_js_opt_fun_call", f :: l -> let (pf, cf), queue = access_queue' ~ctx queue f in let args, prop, queue = List.fold_right ~f:(fun x (args, prop, queue) -> let (prop', cx), queue = access_queue' ~ctx queue x in cx :: args, or_p prop prop', queue) l ~init:([], mutator_p, queue) in J.call cf args loc, or_p pf prop, queue | Extern "%caml_js_opt_meth_call", o :: Pc (NativeString (Utf m)) :: l -> let (po, co), queue = access_queue' ~ctx queue o in let args, prop, queue = List.fold_right ~f:(fun x (args, prop, queue) -> let (prop', cx), queue = access_queue' ~ctx queue x in cx :: args, or_p prop prop', queue) l ~init:([], mutator_p, queue) in J.call (J.dot co m) args loc, or_p po prop, queue | Extern "%caml_js_opt_meth_call", _ -> assert false | Extern "%caml_js_opt_new", c :: l -> let (pc, cc), queue = access_queue' ~ctx queue c in let args, prop, queue = List.fold_right ~f:(fun x (args, prop, queue) -> let (prop', cx), queue = access_queue' ~ctx queue x in J.Arg cx :: args, or_p prop prop', queue) l ~init:([], mutator_p, queue) in ( J.ENew (cc, if List.is_empty args then None else Some args) , or_p pc prop , queue ) | Extern "caml_js_get", [ Pv o; Pc (NativeString (Utf f)) ] when J.is_ident' f -> let (po, co), queue = access_queue queue o in J.dot co f, or_p po mutable_p, queue | Extern "caml_js_set", [ Pv o; Pc (NativeString (Utf f)); v ] when J.is_ident' f -> let (po, co), queue = access_queue queue o in let (pv, cv), queue = access_queue' ~ctx queue v in J.EBin (J.Eq, J.dot co f, cv), or_p (or_p po pv) mutator_p, queue | Extern "caml_js_delete", [ Pv o; Pc (NativeString (Utf f)) ] when J.is_ident' f -> let (po, co), queue = access_queue queue o in J.EUn (J.Delete, J.dot co f), or_p po mutator_p, queue (* This is only useful for debugging: {[ | Extern "caml_js_get", [ _; Pc (String _) ] -> assert false | Extern "caml_js_set", [ _; Pc (String s); _ ] -> assert false | Extern "caml_js_delete", [ _; Pc (String _) ] -> assert false ]} *) | Extern "%caml_js_opt_object", fields -> let rec build_fields queue l = match l with | [] -> const_p, [], queue | Pc (NativeString (Utf nm)) :: x :: r -> let (prop, cx), queue = access_queue' ~ctx queue x in let prop', r', queue = build_fields queue r in let p_name = if J.is_ident' nm then J.PNI nm else J.PNS nm in or_p prop prop', J.Property (p_name, cx) :: r', queue | _ -> assert false in let prop, fields, queue = build_fields queue fields in J.EObj fields, prop, queue | Extern "caml_alloc_dummy_function", [ _; size ] -> let i, queue = let (_px, cx), queue = access_queue' ~ctx queue size in match cx with | J.ENum i -> Int32.to_int (J.Num.to_int32 i), queue | _ -> assert false in let args = Array.to_list (Array.init i ~f:(fun _ -> J.V (Var.fresh ()))) in let f = J.V (Var.fresh ()) in let call = J.call (J.dot (J.EVar f) (Utf8_string.of_string_exn "fun")) (List.map args ~f:(fun v -> J.EVar v)) loc in let e = J.EFun (Some f, J.fun_ args [ J.Return_statement (Some call), J.N ] J.N) in e, const_p, queue | Extern "caml_alloc_dummy_function", _ -> assert false | Extern ("%resume" | "%perform" | "%reperform"), _ -> if Config.Flag.effects () then assert false; if not !(ctx.effect_warning) then ( warn "Warning: your program contains effect handlers; you should probably run \ js_of_ocaml with option '--enable=effects'@."; ctx.effect_warning := true); let name = "jsoo_effect_not_supported" in let prim = Share.get_prim (runtime_fun ctx) name ctx.Ctx.share in let prim_kind = kind (Primitive.kind name) in J.call prim [] loc, prim_kind, queue | Extern name, l -> ( let name = Primitive.resolve name in match internal_prim name with | Some f -> f l queue ctx loc | None -> if String.is_prefix name ~prefix:"%" then failwith (Printf.sprintf "Unresolved internal primitive: %s" name); let prim = Share.get_prim (runtime_fun ctx) name ctx.Ctx.share in let prim_kind = kind (Primitive.kind name) in let args, prop, queue = List.fold_right ~f:(fun x (args, prop, queue) -> let (prop', cx), queue = access_queue' ~ctx queue x in cx :: args, or_p prop prop', queue) l ~init:([], prim_kind, queue) in J.call prim args loc, prop, queue) | Not, [ x ] -> let (px, cx), queue = access_queue' ~ctx queue x in J.EBin (J.Minus, one, cx), px, queue | Lt, [ x; y ] -> let (px, cx), queue = access_queue' ~ctx queue x in let (py, cy), queue = access_queue' ~ctx queue y in bool (J.EBin (J.LtInt, cx, cy)), or_p px py, queue | Le, [ x; y ] -> let (px, cx), queue = access_queue' ~ctx queue x in let (py, cy), queue = access_queue' ~ctx queue y in bool (J.EBin (J.LeInt, cx, cy)), or_p px py, queue | Eq, [ x; y ] -> let (px, cx), queue = access_queue' ~ctx queue x in let (py, cy), queue = access_queue' ~ctx queue y in bool (J.EBin (J.EqEqEq, cx, cy)), or_p px py, queue | Neq, [ x; y ] -> let (px, cx), queue = access_queue' ~ctx queue x in let (py, cy), queue = access_queue' ~ctx queue y in bool (J.EBin (J.NotEqEq, cx, cy)), or_p px py, queue | IsInt, [ x ] -> let (px, cx), queue = access_queue' ~ctx queue x in bool (Mlvalue.is_immediate cx), px, queue | Ult, [ x; y ] -> let (px, cx), queue = access_queue' ~ctx queue x in let (py, cy), queue = access_queue' ~ctx queue y in bool (J.EBin (J.LtInt, unsigned cx, unsigned cy)), or_p px py, queue | (Vectlength | Array_get | Not | IsInt | Eq | Neq | Lt | Le | Ult), _ -> assert false in res, [] and translate_instr ctx expr_queue instr = let instr, pc = instr in match instr with | Assign (x, y) -> let loc = source_location ctx pc in let (_py, cy), expr_queue = access_queue expr_queue y in flush_queue expr_queue mutator_p [ J.Expression_statement (J.EBin (J.Eq, J.EVar (J.V x), cy)), loc ] | Let (x, e) -> ( let loc = source_location ctx pc in let (ce, prop, expr_queue), instrs = translate_expr ctx expr_queue loc x e 0 in let keep_name x = match Code.Var.get_name x with | None -> false (* "switcher" is emitted by the OCaml compiler when compiling pattern matching, it does not help much to keep it in the generated js, let's drop it *) | Some "" -> false | Some s -> (not (generated_name s)) && not (String.is_prefix s ~prefix:"jsoo_") in match ctx.Ctx.live.(Var.idx x), e with | 0, _ -> (* deadcode is off *) flush_queue expr_queue prop (instrs @ [ J.Expression_statement ce, loc ]) | 1, _ when Config.Flag.compact () && ((not (Config.Flag.pretty ())) || not (keep_name x)) -> enqueue expr_queue prop x ce loc instrs | 1, Constant (Int _ | Float _) -> enqueue expr_queue prop x ce loc instrs | _ -> flush_queue expr_queue prop (instrs @ [ J.variable_declaration [ J.V x, (ce, loc) ], loc ])) | Set_field (x, n, y) -> let loc = source_location ctx pc in let (_px, cx), expr_queue = access_queue expr_queue x in let (_py, cy), expr_queue = access_queue expr_queue y in flush_queue expr_queue mutator_p [ J.Expression_statement (J.EBin (J.Eq, Mlvalue.Block.field cx n, cy)), loc ] | Offset_ref (x, 1) -> let loc = source_location ctx pc in (* FIX: may overflow.. *) let (_px, cx), expr_queue = access_queue expr_queue x in flush_queue expr_queue mutator_p [ J.Expression_statement (J.EUn (J.IncrA, Mlvalue.Block.field cx 0)), loc ] | Offset_ref (x, n) -> let loc = source_location ctx pc in (* FIX: may overflow.. *) let (_px, cx), expr_queue = access_queue expr_queue x in flush_queue expr_queue mutator_p [ J.Expression_statement (J.EBin (J.PlusEq, Mlvalue.Block.field cx 0, int n)), loc ] | Array_set (x, y, z) -> let loc = source_location ctx pc in let (_px, cx), expr_queue = access_queue expr_queue x in let (_py, cy), expr_queue = access_queue expr_queue y in let (_pz, cz), expr_queue = access_queue expr_queue z in flush_queue expr_queue mutator_p [ J.Expression_statement (J.EBin (J.Eq, Mlvalue.Array.field cx cy, cz)), loc ] and translate_instrs_rev (ctx : Ctx.t) expr_queue instrs acc_rev muts_map : _ * _ = match instrs with | [] -> acc_rev, expr_queue | (Let (_, Closure _), _) :: _ -> let names, pcs, all, rem = collect_closures instrs in let fvs = List.fold_left pcs ~init:Code.Var.Set.empty ~f:(fun acc pc -> Code.Var.Set.union acc (Addr.Map.find pc ctx.freevars)) in let muts = List.fold_left pcs ~init:Code.Var.Set.empty ~f:(fun acc pc -> Code.Var.Set.union acc (Code.Addr.Map.find pc ctx.Ctx.mutated_vars)) in let names = List.fold_left names ~init:Code.Var.Set.empty ~f:(fun acc name -> Code.Var.Set.add name acc) in assert (Code.Var.Set.cardinal names = List.length all); assert (Code.Var.Set.(is_empty (diff muts fvs))); let old_muts_map = muts_map in let muts_map_l = Code.Var.Set.elements muts |> List.map ~f:(fun x -> ( x , match Code.Var.Map.find_opt x old_muts_map with | None -> Code.Var.fork x | Some x' -> x' )) in let muts_map = List.fold_left muts_map_l ~init:old_muts_map ~f:(fun acc (x, x') -> Var.Map.add x x' acc) in (* Rewrite blocks using well-scoped closure variables *) let ctx = if List.is_empty muts_map_l then ctx else let subst = Subst.from_map muts_map in let p, _visited = List.fold_left pcs ~init:(ctx.blocks, Addr.Set.empty) ~f:(fun (blocks, visited) pc -> Subst.cont' subst pc blocks visited) in { ctx with blocks = p } in let vd kind = function | [] -> [] | l -> [ J.variable_declaration ~kind (List.rev l), J.N ] in (* flush variables part of closures env from the queue *) let bind_fvs, bind_fvs_muts, expr_queue = let expr_queue, vars, lets = Code.Var.Set.fold (fun v (expr_queue, vars, lets) -> assert (not (Code.Var.Set.mem v names)); let (px, cx, locx), expr_queue = access_queue_loc expr_queue v in let flushed = Code.Var.Set.(equal (snd px) (singleton v)) in match ( flushed , Code.Var.Map.find_opt v muts_map , Code.Var.Map.find_opt v old_muts_map ) with | true, None, _ -> expr_queue, vars, lets | (true | false), Some _, Some _ -> expr_queue, vars, lets | (true | false), Some v', None -> let lets = (J.V v', (cx, locx)) :: lets in expr_queue, vars, lets | false, None, _ -> let vars = (J.V v, (cx, locx)) :: vars in expr_queue, vars, lets) (Code.Var.Set.diff fvs names) (expr_queue, [], []) in vars, lets, expr_queue in (* Mutually recursive functions need to be properly scoped. *) let bind_fvs_rec, funs_rev, expr_queue = List.fold_left all ~init:([], [], expr_queue) ~f:(fun (mut_rec, st_rev, expr_queue) i -> let x' = match i with | Let (x', _), _ -> x' | _ -> assert false in let l, expr_queue = translate_instr ctx expr_queue i in if Code.Var.Set.mem x' fvs then let mut_rec = match Code.Var.Map.find_opt x' muts_map with | None -> mut_rec | Some v' -> (J.V v', (J.EVar (J.V x'), J.N)) :: mut_rec in match l with | [ i ] -> mut_rec, i :: st_rev, expr_queue | [] -> let (_px, cx, locx), expr_queue = access_queue_loc expr_queue x' in ( mut_rec , (J.variable_declaration [ J.V x', (cx, locx) ], locx) :: st_rev , expr_queue ) | _ :: _ :: _ -> assert false else mut_rec, List.rev_append l st_rev, expr_queue) in let acc_rev = vd Var bind_fvs @ acc_rev in let acc_rev = vd Let bind_fvs_muts @ acc_rev in let acc_rev = funs_rev @ acc_rev in let acc_rev = vd Let bind_fvs_rec @ acc_rev in translate_instrs_rev ctx expr_queue rem acc_rev muts_map | instr :: rem -> let st, expr_queue = translate_instr ctx expr_queue instr in let acc_rev = List.rev_append st acc_rev in translate_instrs_rev ctx expr_queue rem acc_rev muts_map and translate_instrs (ctx : Ctx.t) expr_queue instrs = let st_rev, expr_queue = translate_instrs_rev (ctx : Ctx.t) expr_queue instrs [] Var.Map.empty in List.rev st_rev, expr_queue (* Compile loops. *) and compile_block st queue (pc : Addr.t) scope_stack ~fall_through = if (not (List.is_empty queue)) && (Structure.is_loop_header st.structure pc || not (Config.Flag.inline ())) then let never, code = compile_block st [] pc scope_stack ~fall_through in never, flush_all queue code else match Structure.is_loop_header st.structure pc with | false -> compile_block_no_loop st queue pc scope_stack ~fall_through | true -> if debug () then Format.eprintf "@[<hv 2>for(;;) {@,"; let never_body, body = let lab = J.Label.fresh () in let lab_used = ref false in let exit_branch_used = ref false in let scope_stack = (pc, (lab, lab_used, Loop)) :: scope_stack in let scope_stack = match fall_through with | Block fall_through -> (fall_through, (lab, lab_used, Exit_loop exit_branch_used)) :: scope_stack | Return -> scope_stack in let never_body, body = compile_block_no_loop st queue pc scope_stack ~fall_through:(Block pc) in if debug () then Format.eprintf "}@]@,"; let for_loop = ( J.For_statement (J.Left None, None, None, Js_simpl.block body) , source_location st.ctx (Code.location_of_pc pc) ) in let label = if !lab_used then Some lab else None in let for_loop = match label with | None -> for_loop | Some label -> J.Labelled_statement (label, for_loop), J.N in (not !exit_branch_used) && never_body, [ for_loop ] in never_body, body (* Compile block. Loops have already been handled. *) and compile_block_no_loop st queue (pc : Addr.t) ~fall_through scope_stack = if pc < 0 then assert false; if Addr.Set.mem pc !(st.visited_blocks) then ( Format.eprintf "Trying to compile a block twice !!!! %d@." pc; assert false); if debug () then Format.eprintf "Compiling block %d@;" pc; st.visited_blocks := Addr.Set.add pc !(st.visited_blocks); let block = Addr.Map.find pc st.ctx.blocks in let seq, queue = translate_instrs st.ctx queue block.body in let nbbranch = match fst block.branch with | Switch (_, a) -> (* Build an artifical dtree with the correct layout so that [Dtree.nbbranch dtree pc] is correct *) let dtree = DTree.build_switch a in fun pc -> DTree.nbbranch dtree pc | Cond (_, a, b) -> let dtree = DTree.build_if a b in fun pc -> DTree.nbbranch dtree pc | _ -> fun _pc -> 0 in let new_scopes = Structure.get_edges st.dom pc |> Addr.Set.elements |> List.filter ~f:(fun pc' -> nbbranch pc' >= 2 || Structure.is_merge_node st.structure pc') |> Structure.sort_in_post_order st.structure in let rec loop ~scope_stack ~fall_through l = match l with | [] -> compile_conditional st queue ~fall_through block.branch scope_stack | x :: xs -> ( let l = J.Label.fresh () in let used = ref false in let scope_stack = (x, (l, used, Forward)) :: scope_stack in let _never_inner, inner = loop ~scope_stack ~fall_through:(Block x) xs in let never, code = compile_block st [] x scope_stack ~fall_through in match !used with | true -> never, [ J.Labelled_statement (l, (J.Block inner, J.N)), J.N ] @ code | false -> never, inner @ code) in let never_after, after = loop ~scope_stack ~fall_through (List.rev new_scopes) in never_after, seq @ after and compile_decision_tree kind st scope_stack loc cx dtree ~fall_through = (* Some changes here may require corresponding changes in function [DTree.fold_cont] above. *) let rec loop cx scope_stack : _ -> bool * _ = function | DTree.Branch (l, cont) -> if debug () then Format.eprintf "@[<hv 2>case %s(%a) {@;" kind Format.( pp_print_list ~pp_sep:(fun fmt () -> Format.pp_print_string fmt ", ") (fun fmt pc -> Format.fprintf fmt "%d" pc)) l; let never, code = compile_branch st [] cont scope_stack ~fall_through in if debug () then Format.eprintf "}@]@;"; never, code | DTree.If (cond, cont1, cont2) -> let never1, iftrue = loop cx scope_stack cont1 in let never2, iffalse = loop cx scope_stack cont2 in let e' = match cond with | IsTrue -> cx | CEq n -> J.EBin (J.EqEqEq, int32 n, cx) | CLt n -> J.EBin (J.LtInt, int32 n, cx) | CLe n -> J.EBin (J.LeInt, int32 n, cx) in ( never1 && never2 , Js_simpl.if_statement e' loc (Js_simpl.block iftrue) never1 (Js_simpl.block iffalse) never2 ) | DTree.Switch a -> let all_never = ref true in let len = Array.length a in let last_index = len - 1 in let lab = J.Label.fresh () in let label_used = ref false in let exit_branch_used = ref false in let scope_stack = match fall_through with | Block fall_through -> (fall_through, (lab, label_used, Exit_switch exit_branch_used)) :: scope_stack | Return -> scope_stack in let last = let case = a.(last_index) in let never, code = loop cx scope_stack (Branch case) in if not never then all_never := false; code in let rec loop_cases pos acc = let ((ints, _cont) as case) = a.(pos) in let never, code = loop cx scope_stack (Branch case) in if not never then all_never := false; let _, acc = List.fold_right ints ~init:(true, acc) ~f:(fun i (first, acc) -> ( false , ( int i , if first then if not never then code @ [ Break_statement None, J.N ] else code else [] ) :: acc )) in if pos = 0 then acc else loop_cases (pred pos) acc in let l = loop_cases (last_index - 1) [] in let code = if !label_used then [ ( J.Labelled_statement (lab, (J.Switch_statement (cx, l, Some last, []), loc)) , loc ) ] else [ J.Switch_statement (cx, l, Some last, []), loc ] in (not !exit_branch_used) && !all_never, code in let cx, binds = match cx with | (J.EVar _ | _) when DTree.nbcomp dtree <= 1 -> cx, [] | _ -> let v = J.V (Code.Var.fresh ()) in J.EVar v, [ J.variable_declaration [ v, (cx, J.N) ], J.N ] in let never, code = loop cx scope_stack dtree in never, binds @ code and compile_conditional st queue ~fall_through last scope_stack : _ * _ = let last, pc = last in (if debug () then match last with | Branch _ | Poptrap _ -> () | Pushtrap _ -> Format.eprintf "@[<hv 2>try {@;" | Return _ -> Format.eprintf "ret;@;" | Raise _ -> Format.eprintf "raise;@;" | Stop -> Format.eprintf "stop;@;" | Cond (x, _, _) -> Format.eprintf "@[<hv 2>cond(%a){@;" Code.Var.print x | Switch (x, _) -> Format.eprintf "@[<hv 2>switch(%a){@;" Code.Var.print x); let loc = source_location st.ctx pc in let res = match last with | Return x -> let (_px, cx), queue = access_queue queue x in let return_expr = if Var.equal st.ctx.deadcode_sentinal x then None else Some cx in true, flush_all queue [ J.Return_statement return_expr, loc ] | Raise (x, k) -> let (_px, cx), queue = access_queue queue x in true, flush_all queue (throw_statement st.ctx cx k loc) | Stop -> let e_opt = if st.ctx.Ctx.should_export then Some (s_var Constant.exports) else None in true, flush_all queue [ J.Return_statement e_opt, loc ] | Branch cont -> compile_branch st queue cont scope_stack ~fall_through | Pushtrap (c1, x, e1) -> let never_body, body = compile_branch st [] c1 scope_stack ~fall_through in if debug () then Format.eprintf "@,}@]@,@[<hv 2>catch {@;"; let never_handler, handler = compile_branch st [] e1 scope_stack ~fall_through in let exn_var, handler = assert (not (List.mem x ~set:(snd e1))); let wrap_exn x = J.call (Share.get_prim (runtime_fun st.ctx) "caml_wrap_exception" st.ctx.Ctx.share) [ J.EVar (J.V x) ] J.N in match st.ctx.Ctx.live.(Var.idx x) with | 0 -> x, handler | _ -> let handler_var = Code.Var.fork x in ( handler_var , (J.variable_declaration [ J.V x, (wrap_exn handler_var, J.N) ], J.N) :: handler ) in ( never_body && never_handler , flush_all queue [ ( J.Try_statement (body, Some (Some (J.param' (J.V exn_var)), handler), None) , loc ) ] ) | Poptrap cont -> let never, code = compile_branch st [] cont scope_stack ~fall_through in never, flush_all queue code | Cond (x, c1, c2) -> let (_px, cx), queue = access_queue queue x in let never, b = compile_decision_tree "Bool" st scope_stack ~fall_through loc cx (DTree.build_if c1 c2) in never, flush_all queue b | Switch (x, a1) -> let (_px, cx), queue = access_queue queue x in let never, code = compile_decision_tree "Int" st scope_stack ~fall_through loc cx (DTree.build_switch a1) in never, flush_all queue code in (if debug () then match last with | Branch _ | Poptrap _ | Return _ | Raise _ | Stop -> () | Switch _ | Cond _ | Pushtrap _ -> Format.eprintf "}@]@;"); res and compile_argument_passing ctx queue (pc, args) back_edge continuation = if List.is_empty args then continuation queue else let block = Addr.Map.find pc ctx.Ctx.blocks in parallel_renaming back_edge block.params args continuation queue and compile_branch st queue ((pc, _) as cont) scope_stack ~fall_through : bool * _ = let scope = List.assoc_opt pc scope_stack in let back_edge = List.exists ~f:(function | pc', (_, _, Loop) when pc' = pc -> true | _ -> false) scope_stack in compile_argument_passing st.ctx queue cont back_edge (fun queue -> if match fall_through with | Block pc' -> pc' = pc | Return -> false then false, flush_all queue [] else match scope with | Some (l, used, Loop) -> (* Loop back to the beginning of the loop using continue. We can skip the label if we're not inside a nested loop. *) let rec can_skip_label scope_stack = match scope_stack with | [] -> assert false | (_, (_, _, (Forward | Exit_switch _))) :: rem -> can_skip_label rem | (pc', (l', _, (Loop | Exit_loop _))) :: rem -> Poly.(l' = l) && (pc = pc' || can_skip_label rem) in let label = if can_skip_label scope_stack then None else ( used := true; Some l) in if debug () then if Option.is_none label then Format.eprintf "continue;@," else Format.eprintf "continue (%d);@," pc; true, flush_all queue [ J.Continue_statement label, J.N ] | Some (l, used, (Exit_loop branch_used | Exit_switch branch_used)) -> (* Break out of a loop or switch (using Break) We can skip the label if we're not inside a nested loop or switch. *) branch_used := true; let rec can_skip_label scope_stack = match scope_stack with | [] -> assert false | (_, (_, _, Forward)) :: rem -> can_skip_label rem | (pc', (l', _, (Loop | Exit_loop _ | Exit_switch _))) :: rem -> Poly.(l' = l) && (pc = pc' || can_skip_label rem) in let label = if can_skip_label scope_stack then None else ( used := true; Some l) in if debug () then if Option.is_none label then Format.eprintf "break;@," else Format.eprintf "break (%d);@," pc; true, flush_all queue [ J.Break_statement label, J.N ] | Some (l, used, Forward) -> (* break outside a labelled statement. The label is mandatory in this case. *) if debug () then Format.eprintf "(br %d)@;" pc; used := true; true, flush_all queue [ J.Break_statement (Some l), J.N ] | None -> compile_block st queue pc scope_stack ~fall_through) and compile_closure ctx (pc, args) = let st = build_graph ctx pc in let current_blocks = Structure.get_nodes st.structure in if debug () then Format.eprintf "@[<hv 2>closure {@;"; let scope_stack = [] in let _never, res = compile_branch st [] (pc, args) scope_stack ~fall_through:Return in if Addr.Set.cardinal !(st.visited_blocks) <> Addr.Set.cardinal current_blocks then ( let missing = Addr.Set.diff current_blocks !(st.visited_blocks) in Format.eprintf "Some blocks not compiled %s!@." (string_of_set missing); assert false); if debug () then Format.eprintf "}@]@;"; res and collect_closures l = match l with | ((Let (x, Closure (_, (pc, _))), _loc) as i) :: rem -> let names', pcs', i', rem' = collect_closures rem in x :: names', pc :: pcs', i :: i', rem' | _ -> [], [], [], l let ctx = let strings = ( J.variable_declaration ((match ctx.Ctx.exported_runtime with | None -> [] | Some (_, { contents = false }) -> [] | Some (v, _) -> [ ( J.V v , ( J.dot (s_var Constant.global_object) (Utf8_string.of_string_exn "jsoo_runtime") , J.N ) ) ]) @ List.map (StringMap.bindings ctx.Ctx.share.Share.vars.Share.byte_strings) ~f:(fun (s, v) -> v, (str_js_byte s, J.N)) @ List.map (StringMap.bindings ctx.Ctx.share.Share.vars.Share.utf_strings) ~f:(fun (s, v) -> v, (str_js_utf8 s, J.N)) @ List.map (StringMap.bindings ctx.Ctx.share.Share.vars.Share.prims) ~f:(fun (s, v) -> v, (runtime_fun ctx s, J.N))) , J.U ) in if not (Config.Flag.inline_callgen ()) then let applies = List.map (Share.AppMap.bindings ctx.Ctx.share.Share.vars.Share.applies) ~f:(fun (desc, v) -> match generate_apply_fun ctx desc with | J.EFun (_, decl) -> J.Function_declaration (v, decl), J.U | _ -> assert false) in strings :: applies else [ strings ] let compile_program ctx pc = if debug () then Format.eprintf "@[<v 2>"; let res = compile_closure ctx (pc, []) in let res = generate_shared_value ctx @ res in if debug () then Format.eprintf "@]@."; res let f (p : Code.program) ~exported_runtime ~live_vars ~cps_calls ~should_export ~warn_on_unhandled_effect ~deadcode_sentinal debug = let t' = Timer.make () in let = Share.get ~cps_calls ~alias_prims:exported_runtime p in let exported_runtime = if exported_runtime then Some (Code.Var.fresh_n "runtime", ref false) else None in let mutated_vars = Freevars.f_mutable p in let freevars = Freevars.f p in let ctx = Ctx.initial ~warn_on_unhandled_effect ~exported_runtime ~should_export ~deadcode_sentinal ~mutated_vars ~freevars p.blocks live_vars cps_calls share debug in let p = compile_program ctx p.start in if times () then Format.eprintf " code gen.: %a@." Timer.print t'; p let init () = List.iter ~f:(fun (nm, nm') -> Primitive.alias nm nm') [ "%int_mul", "caml_mul" ; "%int_div", "caml_div" ; "%int_mod", "caml_mod" ; "caml_int32_neg", "%int_neg" ; "caml_int32_add", "%int_add" ; "caml_int32_sub", "%int_sub" ; "caml_int32_mul", "%int_mul" ; "caml_int32_div", "%int_div" ; "caml_int32_mod", "%int_mod" ; "caml_int32_and", "%int_and" ; "caml_int32_or", "%int_or" ; "caml_int32_xor", "%int_xor" ; "caml_int32_shift_left", "%int_lsl" ; "caml_int32_shift_right", "%int_asr" ; "caml_int32_shift_right_unsigned", "%int_lsr" ; "caml_int32_of_int", "%identity" ; "caml_int32_to_int", "%identity" ; "caml_int32_of_float", "caml_int_of_float" ; "caml_int32_to_float", "%identity" ; "caml_int32_format", "caml_format_int" ; "caml_int32_of_string", "caml_int_of_string" ; "caml_int32_compare", "caml_int_compare" ; "caml_nativeint_neg", "%int_neg" ; "caml_nativeint_add", "%int_add" ; "caml_nativeint_sub", "%int_sub" ; "caml_nativeint_mul", "%int_mul" ; "caml_nativeint_div", "%int_div" ; "caml_nativeint_mod", "%int_mod" ; "caml_nativeint_and", "%int_and" ; "caml_nativeint_or", "%int_or" ; "caml_nativeint_xor", "%int_xor" ; "caml_nativeint_shift_left", "%int_lsl" ; "caml_nativeint_shift_right", "%int_asr" ; "caml_nativeint_shift_right_unsigned", "%int_lsr" ; "caml_nativeint_of_int", "%identity" ; "caml_nativeint_to_int", "%identity" ; "caml_nativeint_of_float", "caml_int_of_float" ; "caml_nativeint_to_float", "%identity" ; "caml_nativeint_of_int32", "%identity" ; "caml_nativeint_to_int32", "%identity" ; "caml_nativeint_format", "caml_format_int" ; "caml_nativeint_of_string", "caml_int_of_string" ; "caml_nativeint_compare", "caml_int_compare" ; "caml_nativeint_bswap", "caml_int32_bswap" ; "caml_int64_of_int", "caml_int64_of_int32" ; "caml_int64_to_int", "caml_int64_to_int32" ; "caml_int64_of_nativeint", "caml_int64_of_int32" ; "caml_int64_to_nativeint", "caml_int64_to_int32" ; "caml_float_of_int", "%identity" ; "caml_array_get_float", "caml_array_get" ; "caml_floatarray_get", "caml_array_get" ; "caml_array_get_addr", "caml_array_get" ; "caml_array_set_float", "caml_array_set" ; "caml_floatarray_set", "caml_array_set" ; "caml_array_set_addr", "caml_array_set" ; "caml_array_unsafe_get_float", "caml_array_unsafe_get" ; "caml_floatarray_unsafe_get", "caml_array_unsafe_get" ; "caml_array_unsafe_set_float", "caml_array_unsafe_set" ; "caml_floatarray_unsafe_set", "caml_array_unsafe_set" ; "caml_alloc_dummy_float", "caml_alloc_dummy" ; "caml_make_array", "%identity" ; "caml_ensure_stack_capacity", "%identity" ; "caml_js_from_float", "%identity" ; "caml_js_to_float", "%identity" ; "caml_js_from_int32", "%identity" ; "caml_js_from_nativeint", "%identity" ; "caml_js_to_int32", "caml_int_of_float" ; "caml_js_to_nativeint", "caml_int_of_float" ]; Hashtbl.iter (fun name (k, _) -> Primitive.register name k None None) internal_primitives let () = init ()
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>