package irmin-bench
Irmin benchmarking suite
Install
Dune Dependency
Authors
Maintainers
Sources
irmin-3.11.0.tbz
sha256=09996fbcc2c43e117a9bd8e9028c635e81cccb264d5e02d425ab8b06bbacdbdb
sha512=0391a6bf7b94a1edd50a3a8df9e58961739fa78d7d689d61f56bc87144483bad2ee539df595c33d9d52c29b3458da5dddf3a73b5eb85e49c4667c26d2cd46be1
doc/src/irmin-bench.traces/trace_stat_summary_utils.ml.html
Source file trace_stat_summary_utils.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
(* * Copyright (c) 2018-2022 Tarides <contact@tarides.com> * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. *) type histo = (float * int) list [@@deriving repr] type curve = float list [@@deriving repr] let snap_to_integer ~significant_digits v = if significant_digits < 0 then invalid_arg "significant_digits should be greater or equal to zero."; if not @@ Float.is_finite v then v else if Float.is_integer v then v else (* This scope is about choosing between [v] and [Float.round v]. *) let significant_digits = float_of_int significant_digits in let v' = Float.round v in if v' = 0. then (* Do not snap numbers close to 0. *) v else let round_distance = Float.abs (v -. v') in assert (round_distance <= 0.5); (* The smaller [round_distance], the greater [significant_digits']. *) let significant_digits' = -.Float.log10 round_distance in assert (significant_digits' > 0.); if significant_digits' >= significant_digits then v' else v let pp_six_digits_with_spacer ppf v = let s = Printf.sprintf "%.6f" v in let len = String.length s in let a = String.sub s 0 (len - 3) in let b = String.sub s (len - 3) 3 in Format.fprintf ppf "%s_%s" a b let create_pp_real ?(significant_digits = 7) examples = let examples = List.map (snap_to_integer ~significant_digits) examples in let all_integer = List.for_all (fun v -> Float.is_integer v || not (Float.is_finite v)) examples in let absmax = List.fold_left (fun acc v -> if not @@ Float.is_finite acc then v else if not @@ Float.is_finite v then acc else Float.abs v |> max acc) Float.neg_infinity examples in let finite_pp = if absmax /. 1e12 >= 10. then fun ppf v -> Format.fprintf ppf "%.3f T" (v /. 1e12) else if absmax /. 1e9 >= 10. then fun ppf v -> Format.fprintf ppf "%.3f G" (v /. 1e9) else if absmax /. 1e6 >= 10. then fun ppf v -> Format.fprintf ppf "%.3f M" (v /. 1e6) else if absmax /. 1e3 >= 10. then fun ppf v -> Format.fprintf ppf "%#d" (Float.round v |> int_of_float) else if all_integer then fun ppf v -> Format.fprintf ppf "%#d" (Float.round v |> int_of_float) else if absmax /. 1. >= 10. then fun ppf v -> Format.fprintf ppf "%.3f" v else if absmax /. 1e-3 >= 10. then pp_six_digits_with_spacer else fun ppf v -> Format.fprintf ppf "%.3e" v in fun ppf v -> if Float.is_nan v then Format.fprintf ppf "n/a" else if Float.is_infinite v then Format.fprintf ppf "%f" v else finite_pp ppf v let create_pp_seconds examples = let absmax = List.fold_left (fun acc v -> if not @@ Float.is_finite acc then v else if not @@ Float.is_finite v then acc else Float.abs v |> max acc) Float.neg_infinity examples in let finite_pp = if absmax >= 60. then fun ppf v -> Fmt.uint64_ns_span ppf (Int64.of_float v) else if absmax < 100. *. 1e-12 then fun ppf v -> Format.fprintf ppf "%.3e s" v else if absmax < 100. *. 1e-9 then fun ppf v -> Format.fprintf ppf "%.3f ns" (v *. 1e9) else if absmax < 100. *. 1e-6 then fun ppf v -> Format.fprintf ppf "%.3f \xc2\xb5s" (v *. 1e6) else if absmax < 100. *. 1e-3 then fun ppf v -> Format.fprintf ppf "%.3f ms" (v *. 1e3) else fun ppf v -> Format.fprintf ppf "%.3f s" v in fun ppf v -> if Float.is_nan v then Format.fprintf ppf "n/a" else if Float.is_infinite v then Format.fprintf ppf "%f" v else finite_pp ppf v let pp_percent ppf v = if not @@ Float.is_finite v then Format.fprintf ppf "%4f" v else if v = 0. then Format.fprintf ppf " 0%%" else if v < 10. /. 100. then Format.fprintf ppf "%3.1f%%" (v *. 100.) else if v < 1000. /. 100. then Format.fprintf ppf "%3.0f%%" (v *. 100.) else if v < 1000. then Format.fprintf ppf "%3.0fx" v else if v < 9.5e9 then ( let long_repr = Printf.sprintf "%.0e" v in assert (String.length long_repr = 5); Format.fprintf ppf "%ce%cx" long_repr.[0] long_repr.[4]) else Format.fprintf ppf "++++" let weekly_stats = Tezos_history_metrics.weekly_stats let approx_value_count_of_block_count value_of_row ?(first_block_idx = 0) wished_block_count = let end_block_idx = first_block_idx + wished_block_count in let blocks_of_row (_, _, _, v) = v in let fold (week_block0_idx, acc_value, acc_blocks) row = let week_blocks = blocks_of_row row in let week_value = value_of_row row in assert (acc_blocks <= wished_block_count); let nextweek_block0_idx = week_block0_idx + week_blocks in let kept_block_count = let left = if first_block_idx >= nextweek_block0_idx then `After else if first_block_idx <= week_block0_idx then `Before else `Inside in let right = if end_block_idx >= nextweek_block0_idx then `After else if end_block_idx <= week_block0_idx then `Before else `Inside in match (left, right) with | `After, `After -> 0 | `Before, `Before -> 0 | `Before, `After -> week_blocks | `Inside, `After -> first_block_idx - week_block0_idx | `Inside, `Inside -> end_block_idx - first_block_idx | `Before, `Inside -> wished_block_count - acc_blocks | `Inside, `Before -> assert false | `After, (`Before | `Inside) -> assert false in assert (kept_block_count >= 0); assert (kept_block_count <= week_blocks); let kept_tx_count = let f = float_of_int in f week_value /. f week_blocks *. f kept_block_count |> Float.round |> int_of_float in assert (kept_tx_count >= 0); assert (kept_tx_count <= week_value); let acc_blocks' = acc_blocks + kept_block_count in let acc_value' = acc_value + kept_tx_count in (nextweek_block0_idx, acc_value', acc_blocks') in let _, acc_value, acc_blocks = List.fold_left fold (0, 0, 0) weekly_stats in assert (acc_blocks <= wished_block_count); if acc_blocks = wished_block_count then acc_value else (* Extrapolate for the following weeks *) let latest_weeks_tx_count, latest_weeks_block_count = match List.rev weekly_stats with | rowa :: rowb :: rowc :: _ -> let value = List.map value_of_row [ rowa; rowb; rowc ] |> List.fold_left ( + ) 0 in let blocks = List.map blocks_of_row [ rowa; rowb; rowc ] |> List.fold_left ( + ) 0 in (value, blocks) | _ -> assert false in let missing_blocks = wished_block_count - acc_blocks in let missing_value = let f = float_of_int in f latest_weeks_tx_count /. f latest_weeks_block_count *. f missing_blocks |> Float.round |> int_of_float in acc_value + missing_value let approx_transaction_count_of_block_count = approx_value_count_of_block_count (fun (_, txs, _, _) -> txs) let approx_operation_count_of_block_count = approx_value_count_of_block_count (fun (_, _, ops, _) -> ops) module Exponential_moving_average = struct type t = { momentum : float; relevance_threshold : float; opp_momentum : float; hidden_state : float; void_fraction : float; } let create ?(relevance_threshold = 1.) momentum = if momentum < 0. || momentum >= 1. then invalid_arg "Wrong momentum"; if relevance_threshold < 0. || relevance_threshold > 1. then invalid_arg "Wrong relevance_threshold"; { momentum; relevance_threshold; opp_momentum = 1. -. momentum; hidden_state = 0.; void_fraction = 1.; } let from_half_life ?relevance_threshold hl = if hl < 0. then invalid_arg "Wrong half life"; create ?relevance_threshold (if hl = 0. then 0. else log 0.5 /. hl |> exp) let from_half_life_ratio ?relevance_threshold hl_ratio step_count = if hl_ratio < 0. then invalid_arg "Wrong half life ratio"; if step_count < 0. then invalid_arg "Wront step count"; step_count *. hl_ratio |> from_half_life ?relevance_threshold let momentum ema = ema.momentum let ema = ema.hidden_state let void_fraction ema = ema.void_fraction let is_relevant ema = ema.void_fraction < ema.relevance_threshold let peek_exn ema = if is_relevant ema then ema.hidden_state /. (1. -. ema.void_fraction) else failwith "Can't peek an irrelevant EMA" let peek_or_nan ema = if is_relevant ema then ema.hidden_state /. (1. -. ema.void_fraction) else Float.nan let update ema sample = let = (* The first term is the "forget" term, the second one is the "remember" term. *) (ema.momentum *. ema.hidden_state) +. (ema.opp_momentum *. sample) in let void_fraction = (* [update] decreases the quantity of "void". *) ema.momentum *. ema.void_fraction in { ema with hidden_state; void_fraction } let update_batch ema sample sample_size = if sample_size <= 0. then invalid_arg "Wrong sample_size"; let momentum = ema.momentum ** sample_size in let opp_momentum = 1. -. momentum in (* From this point, the code is identical to [update]. *) let = (ema.hidden_state *. momentum) +. (sample *. opp_momentum) in let void_fraction = ema.void_fraction *. momentum in { ema with hidden_state; void_fraction } (** [peek ema] is equal to [forget ema |> peek]. Modulo floating point imprecisions and relevance changes. Proof: {v v0 = hs0 / (1 - vf0) v1 = hs1 / (1 - vf1) hs1 = mom * hs0 vf1 = mom * vf0 + (1 - mom) hs0 / (1 - vf0) = hs1 / (1 - vf1) hs0 / (1 - vf0) = (mom * hs0) / (1 - (mom * vf0 + (1 - mom))) hs0 / (1 - vf0) = (mom * hs0) / (1 - (mom * vf0 + 1 - mom)) hs0 / (1 - vf0) = (mom * hs0) / (1 + (-mom * vf0 - 1 + mom)) hs0 / (1 - vf0) = (mom * hs0) / (1 - mom * vf0 - 1 + mom) hs0 / (1 - vf0) = (mom * hs0) / ( -mom * vf0 + mom) hs0 / (1 - vf0) = (hs0) / ( -1 * vf0 + 1) hs0 / (1 - vf0) = hs0 / (1 - vf0) v0 = v1 v} *) let forget ema = let = ema.momentum *. ema.hidden_state in let void_fraction = (* [forget] increases the quantity of "void". Where [update] does: [ema.m * ema.vf + ema.opp_m * 0], [forget] does: [ema.m * ema.vf + ema.opp_m * 1]. *) (ema.momentum *. ema.void_fraction) +. ema.opp_momentum in { ema with hidden_state; void_fraction } let forget_batch ema sample_size = if sample_size <= 0. then invalid_arg "Wrong sample_size"; let momentum = ema.momentum ** sample_size in let opp_momentum = 1. -. momentum in (* From this point, the code is identical to [forget]. *) let = ema.hidden_state *. momentum in let void_fraction = (ema.void_fraction *. momentum) +. opp_momentum in { ema with hidden_state; void_fraction } let map ?relevance_threshold momentum vec0 = List.fold_left (fun (ema, rev_result) v0 -> let ema = update ema v0 in let v1 = peek_or_nan ema in (ema, v1 :: rev_result)) (create ?relevance_threshold momentum, []) vec0 |> snd |> List.rev end module Resample = struct let should_sample ~i0 ~len0 ~i1 ~len1 = assert (len0 >= 2); assert (len1 >= 2); assert (i0 < len0); assert (i0 >= 0); assert (i1 >= 0); if i1 >= len1 then `Out_of_bounds else let i0 = float_of_int i0 in let len0 = float_of_int len0 in let i1 = float_of_int i1 in let len1 = float_of_int len1 in let progress0_left = (i0 -. 1.) /. (len0 -. 1.) in let progress0_right = i0 /. (len0 -. 1.) in let progress1 = i1 /. (len1 -. 1.) in if progress1 <= progress0_left then `Before else if progress1 <= progress0_right then ( let where_in_interval = (progress1 -. progress0_left) /. (progress0_right -. progress0_left) in assert (where_in_interval > 0.); assert (where_in_interval <= 1.); `Inside where_in_interval) else `After type acc = { mode : [ `Interpolate | `Next_neighbor ]; len0 : int; len1 : int; i0 : int; i1 : int; prev_v0 : float; rev_samples : curve; } let create_acc mode ~len0 ~len1 ~v00 = let mode = (mode :> [ `Interpolate | `Next_neighbor ]) in if len0 < 2 then invalid_arg "Can't resample curves below 2 points"; if len1 < 2 then invalid_arg "Can't resample curves below 2 points"; { mode; len0; len1; i0 = 1; i1 = 1; prev_v0 = v00; rev_samples = [ v00 ] } let accumulate ({ mode; len0; len1; i0; i1; prev_v0; rev_samples } as acc) v0 = assert (i0 >= 1); assert (i1 >= 1); if i0 >= len0 then failwith "Accumulate called to much"; if i1 >= len1 then failwith "Accumulate called to much"; let rec aux i1 rev_samples = match should_sample ~len1 ~i0 ~len0 ~i1 with | `Inside where_inside -> if i1 = len1 - 1 then ( assert (i0 = len0 - 1); assert (where_inside = 1.)); let v1 = match mode with | `Next_neighbor -> v0 | `Interpolate when where_inside = 1. -> (* Optimisation in case of nan *) v0 | `Interpolate -> prev_v0 +. (where_inside *. (v0 -. prev_v0)) in aux (i1 + 1) (v1 :: rev_samples) | `After -> (i1, rev_samples) | `Before -> assert false | `Out_of_bounds -> assert (i0 = len0 - 1); assert (i1 = len1); (i1, rev_samples) in let i1, rev_samples = aux i1 rev_samples in { acc with i0 = i0 + 1; i1; prev_v0 = v0; rev_samples } let finalise { len1; rev_samples; _ } = if List.length rev_samples <> len1 then failwith "Finalise called too soon"; List.rev rev_samples let resample_vector mode vec0 len1 = let len0 = List.length vec0 in if len0 < 2 then invalid_arg "Can't resample curves below 2 points"; let v00, vec0 = match vec0 with hd :: tl -> (hd, tl) | _ -> assert false in let acc = create_acc mode ~len0 ~len1 ~v00 in List.fold_left accumulate acc vec0 |> finalise end module Variable_summary = struct type t = { max_value : float * int; min_value : float * int; mean : float; diff : float; distribution : histo; evolution : curve; } [@@deriving repr] type acc = { (* Accumulators *) first_value : float; last_value : float; max_value : float * int; min_value : float * int; sum_value : float; value_count : int; distribution : Bentov.histogram; rev_evolution : curve; ma : Exponential_moving_average.t; next_in_idx : int; next_out_idx : int; (* Constants *) in_period_count : int; out_sample_count : int; evolution_resampling_mode : [ `Interpolate | `Prev_neighbor | `Next_neighbor ]; scale : [ `Linear | `Log ]; } let create_acc ~evolution_smoothing ~evolution_resampling_mode ~distribution_bin_count ~scale ~in_period_count ~out_sample_count = if in_period_count < 2 then invalid_arg "in_period_count should be greater than 1"; if out_sample_count < 2 then invalid_arg "out_sample_count should be greater than 1"; { first_value = Float.nan; last_value = Float.nan; max_value = (Float.nan, 0); min_value = (Float.nan, 0); sum_value = 0.; value_count = 0; distribution = Bentov.create distribution_bin_count; rev_evolution = []; ma = (match evolution_smoothing with | `None -> Exponential_moving_average.create 0. | `Ema (half_life_ratio, relevance_threshold) -> Exponential_moving_average.from_half_life_ratio ~relevance_threshold half_life_ratio (float_of_int in_period_count)); next_in_idx = 0; next_out_idx = 0; in_period_count; out_sample_count; evolution_resampling_mode; scale; } let accumulate acc occurences_of_variable_in_period = let xs = occurences_of_variable_in_period in let xs = List.filter (fun v -> not (Float.is_nan v)) xs in let i = acc.next_in_idx in let sample_count = List.length xs |> float_of_int in assert (i < acc.in_period_count); let accumulate_in_sample (first, last, ((topv, _) as top), ((botv, _) as bot), histo, ma) v = let first = if Float.is_nan first then v else first in let last = if Float.is_nan v then last else v in let top = if Float.is_nan topv || topv < v then (v, i) else top in let bot = if Float.is_nan botv || botv > v then (v, i) else bot in let v = match acc.scale with | `Linear -> v | `Log -> if Float.is_infinite v then v else if v <= 0. then failwith "Input samples to a Variable_summary should be > 0. when \ scale=`Log." else Float.log v in let histo = Bentov.add v histo in let ma = Exponential_moving_average.update_batch ma v (1. /. sample_count) in (first, last, top, bot, histo, ma) in let first_value, last_value, max_value, min_value, distribution, ma = List.fold_left accumulate_in_sample ( acc.first_value, acc.last_value, acc.max_value, acc.min_value, acc.distribution, acc.ma ) xs in let ma = if sample_count = 0. then Exponential_moving_average.forget ma else ma in let rev_evolution, next_out_idx = let rec aux rev_samples next_out_idx = match Resample.should_sample ~i0:i ~len0:acc.in_period_count ~i1:next_out_idx ~len1:acc.out_sample_count with | `Before -> assert false | `Inside where_in_block -> let out_sample = let v_after = Exponential_moving_average.peek_or_nan ma in if where_in_block = 1. then v_after else ( assert (where_in_block > 0.); assert (next_out_idx > 0); let v_before = Exponential_moving_average.peek_or_nan acc.ma in match acc.evolution_resampling_mode with | `Prev_neighbor -> v_before | `Next_neighbor -> v_after | `Interpolate -> v_before +. ((v_after -. v_before) *. where_in_block)) in aux (out_sample :: rev_samples) (next_out_idx + 1) | `After | `Out_of_bounds -> (rev_samples, next_out_idx) in aux acc.rev_evolution acc.next_out_idx in { acc with first_value; last_value; max_value; min_value; sum_value = List.fold_left ( +. ) acc.sum_value xs; value_count = acc.value_count + List.length xs; distribution; rev_evolution; ma; next_in_idx = acc.next_in_idx + 1; next_out_idx; } let finalise acc = assert (acc.next_out_idx = acc.out_sample_count); assert (acc.next_out_idx = List.length acc.rev_evolution); assert (acc.next_in_idx = acc.in_period_count); let f = match acc.scale with `Linear -> Fun.id | `Log -> Float.exp in let distribution = let open Bentov in bins acc.distribution |> List.map (fun b -> (f b.center, b.count)) in let evolution = List.rev_map f acc.rev_evolution in { max_value = acc.max_value; min_value = acc.min_value; mean = acc.sum_value /. float_of_int acc.value_count; diff = acc.last_value -. acc.first_value; distribution; evolution; } end module Parallel_folders = struct type ('row, 'acc, 'v) folder = { acc : 'acc; accumulate : 'acc -> 'row -> 'acc; finalise : 'acc -> 'v; } let folder acc accumulate finalise = { acc; accumulate; finalise } type ('res, 'row, 'v) folders = | F0 : ('res, 'row, 'res) folders | F1 : ('row, 'acc, 'v) folder * ('res, 'row, 'rest) folders -> ('res, 'row, 'v -> 'rest) folders type ('res, 'row, 'f, 'rest) open_t = ('res, 'row, 'rest) folders -> 'f * ('res, 'row, 'f) folders let open_ : 'f -> ('res, 'row, 'f, 'f) open_t = fun constructor folders -> (constructor, folders) let app : type res f v rest acc row. (res, row, f, v -> rest) open_t -> (row, acc, v) folder -> (res, row, f, rest) open_t = fun open_t folder folders -> open_t (F1 (folder, folders)) let ( |+ ) = app type ('res, 'row) t = T : 'f * ('res, 'row, 'f) folders -> ('res, 'row) t let seal : type res row f. (res, row, f, res) open_t -> (res, row) t = fun open_t -> let constructor, folders = open_t F0 in T (constructor, folders) let accumulate : type res row. (res, row) t -> row -> (res, row) t = fun (T (constructor, folders)) row -> let rec aux : type v. (res, row, v) folders -> (res, row, v) folders = function | F0 -> F0 | F1 (folder, t) as f -> ( let acc = folder.acc in let acc' = folder.accumulate acc row in let t' = aux t in (* Avoid reallocating [F1] and [folder] when possible. *) match (acc == acc', t == t') with | true, true -> f | true, false -> F1 (folder, t') | false, (true | false) -> F1 ({ folder with acc = acc' }, t')) in let folders = aux folders in T (constructor, folders) let finalise : type res row. (res, row) t -> res = let rec aux : type c. (res, row, c) folders -> c -> res = function | F0 -> Fun.id | F1 (f, fs) -> fun constructor -> let v = f.finalise f.acc in let finalise_remaining = aux fs in let constructor = constructor v in finalise_remaining constructor in fun (T (constructor, folders)) -> aux folders constructor end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>