package incremental
Library for incremental computations
Install
Dune Dependency
Authors
Maintainers
Sources
v0.17.0.tar.gz
sha256=bcd6da0c70d9f0b0d528b16d8faf800dd92cd45dca817f4b750628921671e8e0
doc/src/incremental/incremental_intf.ml.html
Source file incremental_intf.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
(** For expressing a computation that depends on variables and that can automatically incrementally recompute after the values of some of the variables change. {1 Incremental in a nutshell} Incremental is used to define a collection of interdependent values, some of which are "variables" set by user code and others that are defined via functions (in the mathematical and programming senses) of other incremental values. Incremental automatically tracks all the dependencies between incremental values and can, on demand, propagate changed variables and recompute the incremental values that depend on them. To use incremental, one first creates a new instance via: {[ module Inc : Incremental.S = Incremental.Make () ]} The functor application creates data structures that will be shared throughout the lifetime of all incremental values used with this instance. Since [Incremental.Make] is a generative functor, the type system enforces that different applications of the functor deal with disjoint sets of incrementals. For the remainder of this comment, we assume a particular [Inc] is [open]: {[ open Inc ]} As an example of a simple computation, suppose we have integer variables [x] and [y] and want to keep an incremental value [z] defined by [z = x + y]. We could do this with: {[ let x = Var.create 13 let y = Var.create 17 let z = map2 (Var.watch x) (Var.watch y) ~f:(fun x y -> x + y) ]} With this, as [x] and [y] change, incremental can recompute [z = x + y] on demand. Incremental only recomputes values that are being "observed", which one indicates by calling the [observe] function to get an "observer", e.g.: {[ let z_o = observe z ]} Incremental doesn't compute [z] every time [x] and [y] change. Rather, one must explicitly tell incremental when one wants [z] (and all other observed values) to be brought up to date, by calling [stabilize]: {[ stabilize (); ]} At this point, the value of [z] is [30], which we can verify by: {[ assert (Observer.value_exn z_o = 30); ]} If we change the value of [x] and then tell incremental to recompute observed values, then the value of [z] will change appropriately: {[ Var.set x 19; stabilize (); assert (Observer.value_exn z_o = 36); ]} Another way to observe values is to use [Observer.on_update_exn], which attaches an "on-update handler" to an observer -- the handler will be run after each stabilization in which the observer's value changed (or was initialized) during stabilization. User functions given to incremental should never raise any exceptions: doing so will cause all future calls to [stabilize] to raise. {1 The incremental DAG} One can think of incrementals as forming a directed acyclic graph (DAG), where nodes correspond to incremental values and there is an edge from node [n1] to node [n2] if the value of [n2] depends on the value of [n1]. For example, the DAG for the above example has an edge from [x] to [z] and from [y] to [z]. The graph must be acyclic in order for the computation to be well defined. The graph is a DAG rather than a tree because incremental values can be shared. Extending the above example, we might have: {[ let w = map2 (Var.watch y) z ~f:(fun y z -> y - z) ]} Both the node for [y] and the node for [z] are shared. We will use "node" to mean "incremental value" when we want to emphasize some aspect of the DAG. Say that a node is "observed" if there is an observer for it (created via [observe]). Say that a node is "necessary" if there is a path from that node to an observed node. [stabilize] ensures that all necessary nodes have correct values; it will not compute unnecessary nodes. An unobserved node becomes necessary by a call to [observe] or by being used to compute an observed node; this will cause the appropriate DAG edges to be added. A necessary node will become unnecessary if its observer (if any) becomes unused and if the node is no longer used to compute any observed nodes. This will cause the appropriate DAG edges to be removed. Incremental does not know whether user-supplied functions (e.g. functions supplied to [bind] or [map]) are side effecting, and will not evaluate them for side effect. If the resulting incrementals are not necessary then the function will not be called. {1 Stabilization} [stabilize] traverses the DAG in topological order starting at variables that changed since the last stabilization and recomputing their dependents. This is done by using a "recompute heap" to visit the nodes in non-decreasing order of "height", which is a over-approximation of the longest path from a variable to that node. To ensure that each node is computed at most once and that its children are stabilized before it is computed, nodes satisfy the property that if there is an edge from n1 to n2, then the height of n1 is less than the height of n2. [stabilize] repeats the following steps until the heap becomes empty: 1. remove from the recompute heap a node with the smallest height 2. recompute that node 3. if the node's value changes, then add its parents to the heap. The definition of "changes" in step (3) is configurable by user code. By default, a node is considered to change if its new value is not [phys_equal] to the previous value. One can use [set_cutoff] on a node to change its cutoff function, e.g. for [floats] one could cutoff propagation if the old value and new value are closer than some threshold. If [stabilize] ever raises due to an error, then the incremental system becomes unusable, and all future calls to [stabilize] will immediately raise. Stabilization uses a heap implemented with an array whose length is the max height, so for good performance, the height of nodes must be small. There is an upper bound on the height of nodes, [max_height_allowed], which defaults to 128. An attempt to create a node with larger height will raise. One can dynamically increase [max_height_allowed]; however, one should be wary of doing so, for performance reasons. {1 Bind} Much of the power of incremental comes from [bind], also written [>>=]. As a reminder, [bind] has this type: {[ val bind : 'a t -> f:('a -> 'b t) -> 'b t ]} [bind ta ~f] returns an incremental [tb] that behaves like [f a], where [a] is the most recent value of [ta]. The implementation only calls [f] when the value of [ta] changes. Thinking in terms of the DAG, [bind ta ~f] returns a node [tb] such that whenever the value of [ta] changes, the implementation calls [f] to obtain a node (possibly with an arbitrary DAG below it) that defines the value of [tb]. [bind] can be used to transition existing parts of the graph between necessary and unnecessary. E.g.: {[ val if_ : bool t -> a t -> a t -> a t let if_ a b c = bind a ~f:(fun a -> if a then b else c) ]} With [let t = if_ a b c], when [a] is [true], if [t] is necessary, then [b] will be necessary, but [c] will not. And vice-versa when [a] is [false]. Even more, [bind] allows one to dynamically create an arbitrary graph based on the value of some other incremental, and to "hide" that dynamism behind an ordinary incremental value. One common way to use this is for dynamic reconfiguration, e.g.: {[ let config_var = Var.create config in bind (Var.watch config_var) ~f:(fun config -> ... ) ]} Then, whenever one wants to reconfigure the system, one does [Var.set config_var] and then [stabilize], which will construct a new DAG according to the new config. Bind nodes introduce special height constraints, so that stabilization is guaranteed to recompute the left-hand side of a bind before recomputing any node created by the right-hand side [f]. This avoids recomputing nodes created on the right-hand side that would then become unnecessary when the left-hand side changes. More precisely, in [t >>= f], any node created by [f] is made to have a height larger than [t]. This rule applies also to bind nodes created by [f], so that ultimately the height of every node is greater than the height of all the left-hand sides of the binds that were involved in its creation. The height requirement does not apply to nodes returned by [f] but not created by [f] -- such nodes depend on the bind in effect when they were created, but have no dependence on [t]. When the left-hand side of a bind node changes, stabilization "invalidates" all the nodes that depend on it (because they may use an old value of the left-hand side). For example, consider: {[ let t1 = map ... in bind t2 ~f:(fun _ -> let t3 = map ... in map2 t1 t3 ~f:(...)) ]} In this example, [t1] is created outside of [bind t2], whereas [t3] is created by the right-hand side of [bind t2]. So, [t3] depends on [t2] (and has a greater height), whereas [t1] does not. And, in a stabilization in which [t2] changes, we are guaranteed to not recompute the old [t3], but we have no such guarantee about [t1]. Furthermore, when [t2] changes, the old [t3] will be invalidated, whereas [t1] will not. Since [bind] essentially allows one to add arbitrary edges to the DAG, one can use it to construct a cycle. [stabilize] will detect such cycles and raise. {1 Garbage collection} Incremental maintains three kinds of pointers: - from nodes to their children (nodes they depend on). - from necessary nodes to their necessary parents (nodes that depend on them). - from observers to the nodes they observe. So, all necessary nodes are kept alive, from the perspective of the garbage collector. If an observer has no on-update handlers and user code no longer holds on to it, incremental (via a finalizer on the observer), detects this and disallows future use of the observer, making the node it observed unnecessary if it is not necessary for another reason. One can eagerly remove an observer by calling [disallow_future_use]. Because finalizers may be called much later than when an observer actually becomes unreachable, it is preferable to disable observers using [disallow_future_use] to avoid useless propagation during stabilizations. If an observer has on-update handlers, calling [disallow_future_use] is the only way to have it removed. {1 The implementation} The key type in the implementation is [Node.t], which represents one node in the incremental DAG. The node type is in fact the same as [Incremental.t], although this type equivalence is not exposed. A node is a record with many fields (> 20). In particular a node holds: - kind -- the kind of node it is (const, var, map, bind, snapshot, etc.). - value -- the node's current value. - recompute id -- the stabilization number at which it was last recomputed. - change id -- the stabilization number at which its value last changed. - height -- the height of the node in the DAG. - parents -- the necessary nodes that depend on it. - children -- the nodes that it depends on. - created_in -- the scope in which it was created. Say that a node is "stale" if it has never been computed or if its recompute id is less than the change id of one of its children. A node should be recomputed if it is both necessary and stale. The [State.t] type holds all the mutable data used to implement stabilization. In particular, the incremental state contains: - the current stabilization number - the set of observers - a recompute heap -- nodes that need to be recomputed, ordered by height. - an adjust-heights heap -- nodes whose height needs increasing, ordered by height. The goals of stabilization are to: - compute all necessary nodes that need to be recomputed. - only compute necessary nodes. - compute each node at most once. - only compute a node after ensuring its children are up to date. To do this, incremental maintains the following invariants: - [p] is in [c]'s parents iff ([c] is in [p]'s children && [p] is necessary) - [p] is in the recompute heap iff [p] is necessary and stale. - if [p] is a parent of [c], then [p]'s height is greater than [c]'s height. The first invariant ensures that when a node's value changes, we can reach from it all necessary nodes (and only the necessary nodes) that depend on it. The second invariant ensures that that stabilization only computes necessary nodes. The third invariant, combined with the fact that stabilization always recomputes a node from the recompute-heap that has minimum height, ensures that we only compute a node after all its children are stable, and that we compute each node at most once. Finally, at the end of stabilization, the recompute heap is empty, so the invariant implies that there are no necessary nodes that are stale, i.e. stabilization has computed all necessary nodes that need to be recomputed. {1 Maintaining the parent invariant} Maintaining the invariant that a node has edges only to necessary parents requires traversing a node's descendants when it transitions between necessary and unnecessary, in order to add or remove parents as appropriate. For example, when an observer is first added to an unnecessary node, the implementation visits all its descendants to add parents. This is essentially a form of ref-counting, in which the counter is the number of parents that a node has. There is no problem with cycles because the DAG requirement on the graph is enforced. {1 Maintaining the height invariant and checking for cycles} Maintaining the invariant that a necessary node's height is larger than all of its children requires adjusting heights when an edge is added to the DAG (e.g. when a bind left-hand side changes). This is done using the "adjust-heights" heap. When an edge is added, if the child's height is greater than or equal to the parent's height, then the adjust-heights heap increases the height of the parent and all of the parent's ancestors as necessary in order to restore the height invariant. This is done by visiting ancestors in topological order, in increasing order of pre-adjusted height. If during that traversal, the child of the original edge is visited, then there is a cycle in the graph, and stabilization raises. In pathological situations, the implementation will raise due to a cyclic graph even though subsequent graph operations would eliminate the cycle. This is because the cyclicity check happens after each edge is added, rather than waiting until a batch of graph changes. {1 Bind, scopes, and invalidation} Much of the complexity of the implementation comes from [bind]. In [t >>= f], when [f] is applied to the value of [t], all of the nodes that are created depend on that value. If the value of [t] changes, then those nodes no longer make sense because they depend on a stale value. It would be both wasteful and wrong to recompute any of those "invalid" nodes. So, the implementation maintains the invariant that the height of a necessary node is greater than the height of the left-hand side of the nearest enclosing bind. That guarantees that stabilization will stabilize the left-hand side before recomputing any nodes created on the right-hand side. Furthermore, if the left-hand side's value changes, stabilization marks all the nodes on the right-hand side as invalid. Such invalid nodes will typically be unnecessary, but there are pathological cases where they remain necessary. The bind height invariant is accomplished using a special "bind-lhs-change" node, which is a parent of the bind-lhs and a child of the bind result. The incremental state maintains the "current scope", which is the bind whose right-hand side is currently being evaluated, or a special "top" scope if there is no bind in effect. Each node has a [created_in] field set to the scope in effect when the node is created. The implementation keeps for each scope, a singly-linked list of all nodes created in that scope. Invalidation traverses this list, and recurs on bind nodes in it to traverse their scopes as well. [if_] and [join] are special cases of [bind] that manipulate the graph; however they do not create new scopes. They use a similar lhs-change node to detect changes and perform graph manipulation. {1 Debugging} For performance reasons, [Incremental] is built with debugging asserts disabled. [Incremental_debug] is a library that uses the same code as [Incremental], but has debugging asserts enabled (via an [IFDEF]). [Incremental_debug] is significantly slower than [Incremental], but may detect a bug in the Incremental library that would otherwise remain undetected by [Incremental]. {1 Reading guide} Here's a breakdown of the modules in roughly dependency order. {ul {li [Import] -- imports from other libraries, and commonly used functions } {li Basic types. - [Cutoff] -- a cutoff function - [On_update_handler] -- a function to run when a node's value changes - [Node_id] -- an integer unique id for nodes - [Raised_exn] -- a wrapper around [exn] that keeps a backtrace. - [Sexp_of] -- interfaces for types that have [with sexp_of]. - [Stabilization_num] -- an abstract [int option], used to express the stabilization cycle when something happens. } {li [Types] -- mutually recursive types. Many of the types used in the implementation are mutually recursive. They are all defined in [Types]. Each type is then later defined in its own module, along with [with fields, sexp]. } {li [Kind] -- the variant with one constructor for each kind of node, plus a special constructor for invalidated nodes. Many of the value-carrying variants also have a module for its argument type: - [Array_fold] - [At] - [At_intervals] - [Bind] - [Freeze] - [If_then_else] - [Join] - [Snapshot] - [Step_function_node] - [Unordered_array_fold] - [Var] } {li [Scope] -- a packed bind. } {li [Node] -- the main node type. } {li [Internal_observer] } {li [Observer] -- a [ref] wrapper around [Internal_observer], used so a finalizer can detect when user code is done with an observer. } {li [Recompute_heap] } {li [Adjust_heights_heap] } {li [Alarm_value] -- values stored in the timing wheel, for time-based nodes. } {li [State] -- the record type will all data structures used for stabilization, and the implementation of all the [Incremental] functions. } {li [Incremental], the main functor, mostly a wrapper around [State]. } {li [Incremental_unit_tests]. } } *) open Core open! Import module type Map_n_gen = sig type ('a, 'w) t val map2 : ('a1, 'w) t -> ('a2, 'w) t -> f:('a1 -> 'a2 -> 'b) -> ('b, 'w) t val map3 : ('a1, 'w) t -> ('a2, 'w) t -> ('a3, 'w) t -> f:('a1 -> 'a2 -> 'a3 -> 'b) -> ('b, 'w) t val map4 : ('a1, 'w) t -> ('a2, 'w) t -> ('a3, 'w) t -> ('a4, 'w) t -> f:('a1 -> 'a2 -> 'a3 -> 'a4 -> 'b) -> ('b, 'w) t val map5 : ('a1, 'w) t -> ('a2, 'w) t -> ('a3, 'w) t -> ('a4, 'w) t -> ('a5, 'w) t -> f:('a1 -> 'a2 -> 'a3 -> 'a4 -> 'a5 -> 'b) -> ('b, 'w) t val map6 : ('a1, 'w) t -> ('a2, 'w) t -> ('a3, 'w) t -> ('a4, 'w) t -> ('a5, 'w) t -> ('a6, 'w) t -> f:('a1 -> 'a2 -> 'a3 -> 'a4 -> 'a5 -> 'a6 -> 'b) -> ('b, 'w) t val map7 : ('a1, 'w) t -> ('a2, 'w) t -> ('a3, 'w) t -> ('a4, 'w) t -> ('a5, 'w) t -> ('a6, 'w) t -> ('a7, 'w) t -> f:('a1 -> 'a2 -> 'a3 -> 'a4 -> 'a5 -> 'a6 -> 'a7 -> 'b) -> ('b, 'w) t val map8 : ('a1, 'w) t -> ('a2, 'w) t -> ('a3, 'w) t -> ('a4, 'w) t -> ('a5, 'w) t -> ('a6, 'w) t -> ('a7, 'w) t -> ('a8, 'w) t -> f:('a1 -> 'a2 -> 'a3 -> 'a4 -> 'a5 -> 'a6 -> 'a7 -> 'a8 -> 'b) -> ('b, 'w) t val map9 : ('a1, 'w) t -> ('a2, 'w) t -> ('a3, 'w) t -> ('a4, 'w) t -> ('a5, 'w) t -> ('a6, 'w) t -> ('a7, 'w) t -> ('a8, 'w) t -> ('a9, 'w) t -> f:('a1 -> 'a2 -> 'a3 -> 'a4 -> 'a5 -> 'a6 -> 'a7 -> 'a8 -> 'a9 -> 'b) -> ('b, 'w) t val map10 : ('a1, 'w) t -> ('a2, 'w) t -> ('a3, 'w) t -> ('a4, 'w) t -> ('a5, 'w) t -> ('a6, 'w) t -> ('a7, 'w) t -> ('a8, 'w) t -> ('a9, 'w) t -> ('a10, 'w) t -> f:('a1 -> 'a2 -> 'a3 -> 'a4 -> 'a5 -> 'a6 -> 'a7 -> 'a8 -> 'a9 -> 'a10 -> 'b) -> ('b, 'w) t val map11 : ('a1, 'w) t -> ('a2, 'w) t -> ('a3, 'w) t -> ('a4, 'w) t -> ('a5, 'w) t -> ('a6, 'w) t -> ('a7, 'w) t -> ('a8, 'w) t -> ('a9, 'w) t -> ('a10, 'w) t -> ('a11, 'w) t -> f: ('a1 -> 'a2 -> 'a3 -> 'a4 -> 'a5 -> 'a6 -> 'a7 -> 'a8 -> 'a9 -> 'a10 -> 'a11 -> 'b) -> ('b, 'w) t val map12 : ('a1, 'w) t -> ('a2, 'w) t -> ('a3, 'w) t -> ('a4, 'w) t -> ('a5, 'w) t -> ('a6, 'w) t -> ('a7, 'w) t -> ('a8, 'w) t -> ('a9, 'w) t -> ('a10, 'w) t -> ('a11, 'w) t -> ('a12, 'w) t -> f: ('a1 -> 'a2 -> 'a3 -> 'a4 -> 'a5 -> 'a6 -> 'a7 -> 'a8 -> 'a9 -> 'a10 -> 'a11 -> 'a12 -> 'b) -> ('b, 'w) t val map13 : ('a1, 'w) t -> ('a2, 'w) t -> ('a3, 'w) t -> ('a4, 'w) t -> ('a5, 'w) t -> ('a6, 'w) t -> ('a7, 'w) t -> ('a8, 'w) t -> ('a9, 'w) t -> ('a10, 'w) t -> ('a11, 'w) t -> ('a12, 'w) t -> ('a13, 'w) t -> f: ('a1 -> 'a2 -> 'a3 -> 'a4 -> 'a5 -> 'a6 -> 'a7 -> 'a8 -> 'a9 -> 'a10 -> 'a11 -> 'a12 -> 'a13 -> 'b) -> ('b, 'w) t val map14 : ('a1, 'w) t -> ('a2, 'w) t -> ('a3, 'w) t -> ('a4, 'w) t -> ('a5, 'w) t -> ('a6, 'w) t -> ('a7, 'w) t -> ('a8, 'w) t -> ('a9, 'w) t -> ('a10, 'w) t -> ('a11, 'w) t -> ('a12, 'w) t -> ('a13, 'w) t -> ('a14, 'w) t -> f: ('a1 -> 'a2 -> 'a3 -> 'a4 -> 'a5 -> 'a6 -> 'a7 -> 'a8 -> 'a9 -> 'a10 -> 'a11 -> 'a12 -> 'a13 -> 'a14 -> 'b) -> ('b, 'w) t val map15 : ('a1, 'w) t -> ('a2, 'w) t -> ('a3, 'w) t -> ('a4, 'w) t -> ('a5, 'w) t -> ('a6, 'w) t -> ('a7, 'w) t -> ('a8, 'w) t -> ('a9, 'w) t -> ('a10, 'w) t -> ('a11, 'w) t -> ('a12, 'w) t -> ('a13, 'w) t -> ('a14, 'w) t -> ('a15, 'w) t -> f: ('a1 -> 'a2 -> 'a3 -> 'a4 -> 'a5 -> 'a6 -> 'a7 -> 'a8 -> 'a9 -> 'a10 -> 'a11 -> 'a12 -> 'a13 -> 'a14 -> 'a15 -> 'b) -> ('b, 'w) t end module type Map_n = sig type 'a t include Map_n_gen with type ('a, 'w) t := 'a t end module type Bind_n_gen = sig type ('a, 'w) t val bind2 : ('a1, 'w) t -> ('a2, 'w) t -> f:('a1 -> 'a2 -> ('b, 'w) t) -> ('b, 'w) t val bind3 : ('a1, 'w) t -> ('a2, 'w) t -> ('a3, 'w) t -> f:('a1 -> 'a2 -> 'a3 -> ('b, 'w) t) -> ('b, 'w) t val bind4 : ('a1, 'w) t -> ('a2, 'w) t -> ('a3, 'w) t -> ('a4, 'w) t -> f:('a1 -> 'a2 -> 'a3 -> 'a4 -> ('b, 'w) t) -> ('b, 'w) t end module type Bind_n = sig type 'a t include Bind_n_gen with type ('a, 'w) t := 'a t end (** [S_gen] is the type of the module returned by [Incremental.Make]. It is a specialization of the interface of [Incremental], with: - the ['w] state_witness type parameter removed - the [State.t] argument removed The comments for components of [S_gen] are in [module type Incremental] below. *) module type S_gen = sig module State : sig type t [@@deriving sexp_of] include Invariant.S with type t := t (** [t] is the shared state for a call to [Incremental.Make]. *) val t : t val keep_node_creation_backtrace : t -> bool val set_keep_node_creation_backtrace : t -> bool -> unit val max_height_allowed : t -> int val set_max_height_allowed : t -> int -> unit val num_active_observers : t -> int val max_height_seen : t -> int val num_nodes_became_necessary : t -> int val num_nodes_became_unnecessary : t -> int val num_nodes_changed : t -> int val num_nodes_created : t -> int val num_nodes_invalidated : t -> int val num_nodes_recomputed : t -> int val num_nodes_recomputed_directly_because_one_child : t -> int val num_nodes_recomputed_directly_because_min_height : t -> int val num_stabilizes : t -> int val num_var_sets : t -> int module Stats : sig type t [@@deriving sexp_of] end val stats : t -> Stats.t end type 'a t [@@deriving sexp_of] type 'a incremental := 'a t include Invariant.S1 with type 'a t := 'a t val is_const : _ t -> bool val is_valid : _ t -> bool val is_necessary : _ t -> bool val const : 'a -> 'a t val return : 'a -> 'a t val map : 'a t -> f:('a -> 'b) -> 'b t val ( >>| ) : 'a t -> ('a -> 'b) -> 'b t include Map_n with type 'a t := 'a t val bind : 'a t -> f:('a -> 'b t) -> 'b t val ( >>= ) : 'a t -> ('a -> 'b t) -> 'b t include Bind_n with type 'a t := 'a t module Infix : sig val ( >>| ) : 'a t -> ('a -> 'b) -> 'b t val ( >>= ) : 'a t -> ('a -> 'b t) -> 'b t end val join : 'a t t -> 'a t val if_ : bool t -> then_:'a t -> else_:'a t -> 'a t val freeze : ?when_:('a -> bool) -> 'a t -> 'a t val depend_on : 'a t -> depend_on:_ t -> 'a t val necessary_if_alive : 'a t -> 'a t val for_all : bool t array -> bool t val exists : bool t array -> bool t val all : 'a t list -> 'a list t val both : 'a t -> 'b t -> ('a * 'b) t val array_fold : 'a t array -> init:'b -> f:('b -> 'a -> 'b) -> 'b t val reduce_balanced : 'a t array -> f:('a -> 'b) -> reduce:('b -> 'b -> 'b) -> 'b t option module Unordered_array_fold_update : sig type ('a, 'b) t = | F_inverse of ('b -> 'a -> 'b) | Update of ('b -> old_value:'a -> new_value:'a -> 'b) end val unordered_array_fold : ?full_compute_every_n_changes:int -> 'a t array -> init:'b -> f:('b -> 'a -> 'b) -> update:('a, 'b) Unordered_array_fold_update.t -> 'b t val opt_unordered_array_fold : ?full_compute_every_n_changes:int -> 'a option t array -> init:'b -> f:('b -> 'a -> 'b) -> f_inverse:('b -> 'a -> 'b) -> 'b option t val sum : ?full_compute_every_n_changes:int -> 'a t array -> zero:'a -> add:('a -> 'a -> 'a) -> sub:('a -> 'a -> 'a) -> 'a t val opt_sum : ?full_compute_every_n_changes:int -> 'a option t array -> zero:'a -> add:('a -> 'a -> 'a) -> sub:('a -> 'a -> 'a) -> 'a option t val sum_int : int t array -> int t val sum_float : float t array -> float t module Scope : sig type t val top : t val current : unit -> t val within : t -> f:(unit -> 'a) -> 'a val is_top : t -> bool end module Var : sig type 'a t [@@deriving sexp_of] val create : ?use_current_scope:bool -> 'a -> 'a t val set : 'a t -> 'a -> unit val watch : 'a t -> 'a incremental val value : 'a t -> 'a val latest_value : 'a t -> 'a val replace : 'a t -> f:('a -> 'a) -> unit end module Observer : sig type 'a t [@@deriving sexp_of] include Invariant.S1 with type 'a t := 'a t val observing : 'a t -> 'a incremental val use_is_allowed : _ t -> bool val value : 'a t -> 'a Or_error.t val value_exn : 'a t -> 'a module Update : sig type 'a t = | Initialized of 'a | Changed of 'a * 'a | Invalidated [@@deriving compare, sexp_of] end val on_update_exn : 'a t -> f:('a Update.t -> unit) -> unit val disallow_future_use : _ t -> unit end val observe : ?should_finalize:bool -> 'a t -> 'a Observer.t module Update : sig type 'a t = | Necessary of 'a | Changed of 'a * 'a | Invalidated | Unnecessary [@@deriving compare, sexp_of] end val on_update : 'a t -> f:('a Update.t -> unit) -> unit val stabilize : unit -> unit val am_stabilizing : unit -> bool module Cutoff : sig type 'a t [@@deriving sexp_of] include Invariant.S1 with type 'a t := 'a t val create : (old_value:'a -> new_value:'a -> bool) -> 'a t val of_compare : ('a -> 'a -> int) -> 'a t val of_equal : ('a -> 'a -> bool) -> 'a t val always : _ t val never : _ t val phys_equal : _ t val poly_equal : _ t val should_cutoff : 'a t -> old_value:'a -> new_value:'a -> bool val equal : 'a t -> 'a t -> bool end val set_cutoff : 'a t -> 'a Cutoff.t -> unit val get_cutoff : 'a t -> 'a Cutoff.t val lazy_from_fun : (unit -> 'a) -> 'a Lazy.t val default_hash_table_initial_size : int val memoize_fun : ?initial_size:int -> 'a Base.Hashtbl.Key.t -> ('a -> 'b) -> ('a -> 'b) Staged.t val memoize_fun_by_key : ?initial_size:int -> 'key Base.Hashtbl.Key.t -> ('a -> 'key) -> ('a -> 'b) -> ('a -> 'b) Staged.t val weak_memoize_fun : ?initial_size:int -> 'a Base.Hashtbl.Key.t -> ('a -> 'b Heap_block.t) -> ('a -> 'b Heap_block.t) Staged.t val weak_memoize_fun_by_key : ?initial_size:int -> 'key Base.Hashtbl.Key.t -> ('a -> 'key) -> ('a -> 'b Heap_block.t) -> ('a -> 'b Heap_block.t) Staged.t val user_info : _ t -> Info.t option val set_user_info : _ t -> Info.t option -> unit val append_user_info_graphviz : _ t -> label:string list -> attrs:string String.Map.t -> unit module Node_value : sig type 'a t = | Invalid | Necessary_maybe_stale of 'a option | Unnecessary_maybe_stale of 'a option [@@deriving sexp_of] end (** [node_value t] returns whatever value [t] happens to have in it, regardless of whether [t] is valid, necessary, or stale. One should use [observe] for a more sensible semantics, reserving [node_value] for debugging. *) val node_value : 'a t -> 'a Node_value.t module Packed : sig type t val save_dot : ?emit_bind_edges:bool -> Out_channel.t -> t list -> unit val save_dot_to_file : ?emit_bind_edges:bool -> string -> t list -> unit val append_user_info_graphviz : t -> label:string list -> attrs:string String.Map.t -> unit end val pack : _ t -> Packed.t val save_dot : ?emit_bind_edges:bool -> Out_channel.t -> unit val save_dot_to_file : ?emit_bind_edges:bool -> string -> unit module Let_syntax : sig val return : 'a -> 'a t val ( >>| ) : 'a t -> ('a -> 'b) -> 'b t val ( >>= ) : 'a t -> ('a -> 'b t) -> 'b t module Let_syntax : sig val bind : 'a t -> f:('a -> 'b t) -> 'b t val return : 'a -> 'a t include Bind_n with type 'a t := 'a t val map : 'a t -> f:('a -> 'b) -> 'b t include Map_n with type 'a t := 'a t val both : 'a t -> 'b t -> ('a * 'b) t module Open_on_rhs : sig val watch : 'a Var.t -> 'a t end end end module Before_or_after : sig type t = | Before | After [@@deriving sexp_of] end module Step_function = Step_function module Clock : sig type t [@@deriving sexp_of] val default_timing_wheel_config : Timing_wheel.Config.t val create : ?timing_wheel_config:Timing_wheel.Config.t -> start:Time_ns.t -> unit -> t val alarm_precision : t -> Time_ns.Span.t val timing_wheel_length : t -> int val now : t -> Time_ns.t val watch_now : t -> Time_ns.t incremental val advance_clock : t -> to_:Time_ns.t -> unit val advance_clock_by : t -> Time_ns.Span.t -> unit val at : t -> Time_ns.t -> Before_or_after.t incremental val after : t -> Time_ns.Span.t -> Before_or_after.t incremental val at_intervals : t -> Time_ns.Span.t -> unit incremental val step_function : t -> init:'a -> (Time_ns.t * 'a) list -> 'a incremental val incremental_step_function : t -> 'a Step_function.t incremental -> 'a incremental val snapshot : t -> 'a incremental -> at:Time_ns.t -> before:'a -> 'a incremental Or_error.t end module Expert : sig module Dependency : sig type 'a t [@@deriving sexp_of] val create : ?on_change:('a -> unit) -> 'a incremental -> 'a t val value : 'a t -> 'a end module Node : sig type 'a t [@@deriving sexp_of] val create : ?on_observability_change:(is_now_observable:bool -> unit) -> (unit -> 'a) -> 'a t val watch : 'a t -> 'a incremental val make_stale : _ t -> unit val invalidate : _ t -> unit val add_dependency : _ t -> _ Dependency.t -> unit val remove_dependency : _ t -> _ Dependency.t -> unit end module Step_result : sig type t = | Keep_going | Done [@@deriving sexp_of] end val do_one_step_of_stabilize : unit -> Step_result.t end end module type Incremental = sig (** A [State.t] holds shared state used by all the incremental functions. *) module State : sig type 'w t [@@deriving sexp_of] module type S = sig type state_witness [@@deriving sexp_of] val t : state_witness t end val create : ?max_height_allowed:int (** default is 128 *) -> unit -> (module S) (** If [keep_node_creation_backtrace], then whenever a new node is created, incremental will call [Backtrace.get] and store the result in the node. The backtrace will then appear in subsequent error messages when the node is pretty printed. *) val keep_node_creation_backtrace : _ t -> bool val set_keep_node_creation_backtrace : _ t -> bool -> unit val max_height_allowed : _ t -> int (** [set_max_height_allowed t height] sets the maximum allowed height of nodes. [set_max_height_allowed] raises if called during stabilization, or if [height < max_height_seen t]. *) val set_max_height_allowed : _ t -> int -> unit (** [num_active_observers] returns (in constant time) the number of observers that have been created and not yet disallowed (either explicitly or via finalization). *) val num_active_observers : _ t -> int (** {2 constant-time stats} These are counters that are constant time to read, and that are automatically updated in the ordinary course. *) val max_height_seen : _ t -> int val num_nodes_became_necessary : _ t -> int val num_nodes_became_unnecessary : _ t -> int (** Number of times a node has seen its value changed, the determination of which depends on the choice of cutoff. *) val num_nodes_changed : _ t -> int val num_nodes_created : _ t -> int val num_nodes_invalidated : _ t -> int val num_nodes_recomputed : _ t -> int val num_nodes_recomputed_directly_because_one_child : _ t -> int val num_nodes_recomputed_directly_because_min_height : _ t -> int val num_stabilizes : _ t -> int val num_var_sets : _ t -> int (** [Stats] contains information about the DAG intended for human consumption. [stats] takes time proportional to the number of necessary nodes. *) module Stats : sig type t [@@deriving sexp_of] end val stats : _ t -> Stats.t end (** [type ('a,'w) t] is the type of incrementals that have a value of type ['a], with a state witness of type ['w]. Incrementals are not covariant, i.e. we do not have [(+'a, _) t] -- consider, e.g. [set_cutoff] and [get_cutoff]. However, if you have types [a1] and [a2] where [a1] is a subtype of [a2], and a value [t1 : a1 t], then the following builds an incremental value of type [a2 t]: {[ let t2 : a2 t = t1 >>| fun a1 -> (a1 : a1 :> a2) ]} *) type ('a, 'w) t [@@deriving sexp_of] type ('a, 'w) incremental := ('a, 'w) t include Invariant.S2 with type ('a, 'w) t := ('a, 'w) t val state : (_, 'w) t -> 'w State.t (** If [is_const t] then [t] is a constant-valued incremental. [is_const (const a)] is true. *) val is_const : _ t -> bool val is_valid : _ t -> bool val is_necessary : _ t -> bool (** {1 Creating incrementals} *) (** [const state a] returns an incremental whose value never changes. It is the same as [return], but reads more clearly in many situations because it serves as a nice reminder that the incremental won't change (except possibly be invalidated). *) val const : 'w State.t -> 'a -> ('a, 'w) t val return : 'w State.t -> 'a -> ('a, 'w) t (** [map t1 ~f] returns an incremental [t] that maintains its value as [f a], where [a] is the value of [t1]. [map2], [map3], ..., [map9] are the generalizations to more arguments. If you need map<N> for some N > 9, it can easily be added, but also see [array_fold] and [unordered_array_fold]. [f] should not create incremental nodes but this behavior is not checked; if you want to create incremental nodes, use [bind]. The invalidation machinery that is used with [bind] is not used with [map]. *) val map : ('a, 'w) t -> f:('a -> 'b) -> ('b, 'w) t val ( >>| ) : ('a, 'w) t -> ('a -> 'b) -> ('b, 'w) t include Map_n_gen with type ('a, 'w) t := ('a, 'w) t (** [bind t1 ~f] returns an incremental [t2] that behaves like [f v], where [v] is the value of [t1]. If [t1]'s value changes, then incremental applies [f] to that new value and [t2] behaves like the resulting incremental. [bind] can be significantly more expensive than [map] during stabilization, because, when its left-hand side changes, it requires modification of the incremental DAG, while [map] simply flows values along the DAG. Thus it is preferable to use [map] (and its n-ary variants above) instead of [bind] unless one actually needs [bind]'s power. [bind2 t1 t2 ~f] is: {[ bind (map2 t1 t2 ~f:(fun v1 v2 -> (v1, v2))) ~f:(fun (v1, v2) -> f v1 v2) ]} This is equivalent to [bind t1 ~f:(fun v1 -> bind t2 ~f:(fun v2 -> f v1 v2))] but more efficient due to using one bind node rather than two. The other [bind<N>] functions are generalize to more arguments. *) val bind : ('a, 'w) t -> f:('a -> ('b, 'w) t) -> ('b, 'w) t val ( >>= ) : ('a, 'w) t -> ('a -> ('b, 'w) t) -> ('b, 'w) t include Bind_n_gen with type ('a, 'w) t := ('a, 'w) t module Infix : sig val ( >>| ) : ('a, 'w) t -> ('a -> 'b) -> ('b, 'w) t val ( >>= ) : ('a, 'w) t -> ('a -> ('b, 'w) t) -> ('b, 'w) t end (** [join t] returns an incremental that behaves like the incremental that [t] currently holds. *) val join : (('a, 'w) t, 'w) t -> ('a, 'w) t (** [if_ tb ~then_ ~else_] returns an incremental [t] that holds the value of [then_] if [tb] is true, the value of [else_] if [tb] is false. Note that [t] only depends on one of [then_] or [else_] at a time, i.e. [if_ tb ~then_ ~else] is like: {[ bind b ~f:(fun b -> if b then then_ else else_) ]} which is not the same as: {[ map3 b then_ else_ ~f:(fun b then_ else_ -> if b then then_ else else_) ]} *) val if_ : (bool, 'w) t -> then_:('a, 'w) t -> else_:('a, 'w) t -> ('a, 'w) t (** [freeze ?when_ t] returns an incremental whose value is [t]'s value [v] until the first stabilization in which [when_ v] holds, at which point the freeze node's value becomes constant and never changes again. Calling [freeze t] forces [t] to be necessary until it freezes regardless of whether the freeze node is necessary, but not thereafter (although of course [t] could remain necessary for other reasons). The result of [freeze t], once frozen, will never be invalidated, even if [t] is invalidated, and even if the scope in which the freeze is created is invalidated. However, prior to [when_ v] becoming true, [freeze t] can be invalidated. *) val freeze : ?when_:('a -> bool) -> ('a, 'w) t -> ('a, 'w) t (** [depend_on input ~depend_on] returns an [output] whose value is the same as [input]'s value, such that [depend_on] is necessary so long as [output] is necessary. It is like: {[ map2 input depend_on ~f:(fun a _ -> a) ]} but with a cutoff such that [output]'s value only changes when [input]'s value changes. *) val depend_on : ('a, 'w) t -> depend_on:(_, 'w) t -> ('a, 'w) t (** [necessary_if_alive input] returns [output] that has the same value and cutoff as [input], such that as long as [output] is alive, [input] is necessary. *) val necessary_if_alive : ('a, 'w) t -> ('a, 'w) t (** [for_all ts] returns an incremental that is [true] iff all [ts] are [true]. *) val for_all : 'w State.t -> (bool, 'w) t array -> (bool, 'w) t (** [exists ts] returns an incremental that is [true] iff at least one of the [ts] is [true]. *) val exists : 'w State.t -> (bool, 'w) t array -> (bool, 'w) t (** [all ts] returns an incremental whose value is a list of the values of all of the [ts]. In any stabilization where any of the [ts] changes, the entire list is recreated (once all of the [ts] have stabilized). This essentially an [array_fold] over the [ts]. *) val all : 'w State.t -> ('a, 'w) t list -> ('a list, 'w) t (** [both t1 t2] returns an incremental whose value is pair of values of [t1] and [t2]. Both [map (both t1 t2) ~f] and [map2 t1 t2 ~f:(fun a1 a2 -> f (a1, a2))] return an incremental with the same behavior, but the [map2] version is more efficient, because it creates a single node, whereas the [both] version creates two nodes. *) val both : ('a, 'w) t -> ('b, 'w) t -> ('a * 'b, 'w) t (** {1 Array folds and sums} *) (** [array_fold ts ~init ~f] creates an incremental [t] whose value is: {[ Array.fold ts ~init ~f:(fun ac t -> f ac (value t)) ]} In a stabilization during which any of the [ts] changes, the entire fold will be computed once all of the [ts] have been computed. *) val array_fold : 'w State.t -> ('a, 'w) t array -> init:'b -> f:('b -> 'a -> 'b) -> ('b, 'w) t (** [reduce_balanced ts ~f ~reduce] does a fold-like operation over [ts]. Unlike [array_fold], the operation will be computed in [O(min(n, k * log(n)))] time, where [n] is the size of [ts] and [k] is the number of elements of [ts] that have changed since the last stabilization. Generally, if most or all of [ts] are changing between stabilizations, using [array_fold] will have better constant factors. The [reduce] argument must be an associative operation: [reduce a (reduce b c) = (reduce (reduce a b) c)]. [None] is returned upon supplying an empty array. *) val reduce_balanced : 'w State.t -> ('a, 'w) t array -> f:('a -> 'b) -> reduce:('b -> 'b -> 'b) -> ('b, 'w) t option module Unordered_array_fold_update : sig type ('a, 'b) t = | F_inverse of ('b -> 'a -> 'b) | Update of ('b -> old_value:'a -> new_value:'a -> 'b) end (** [unordered_array_fold ts ~init ~f ~update] folds over the [ts]. Unlike [array_fold], the fold will be computed in time proportional to the number of [ts] that change rather than the number of [ts]. In a stabilization, for each [t] in [ts] that changes from [old_value] to [new_value], the value of the unordered-array fold, [b], will change depending on [update]: - [F_inverse f_inverse]: from [b] to [f (f_inverse b old_value) new_value] - [Update update]: from [b] to [update b ~old_value ~new_value] The [t]'s that change may take effect in any order. If repeated changes might accumulate error, one can cause the fold to be fully computed after every [full_compute_every_n_changes] changes. If you do not supply [full_compute_every_n_changes], then full computes will never happen after the initial one. *) val unordered_array_fold : 'w State.t -> ?full_compute_every_n_changes:int -> ('a, 'w) t array -> init:'b -> f:('b -> 'a -> 'b) -> update:('a, 'b) Unordered_array_fold_update.t -> ('b, 'w) t (** [opt_unordered_array_fold] is like [unordered_array_fold], except that its result is [Some] iff all its inputs are [Some]. *) val opt_unordered_array_fold : 'w State.t -> ?full_compute_every_n_changes:int -> ('a option, 'w) t array -> init:'b -> f:('b -> 'a -> 'b) -> f_inverse:('b -> 'a -> 'b) -> ('b option, 'w) t (** [sum ts ~zero ~add ~sub ?full_compute_every_n_changes] returns an incremental that maintains the sum of the [ts]. It uses [unordered_array_fold] so that the work required to maintain the sum is proportional to the number of [ts] that change (i.e. one [sub] and one [add] per change). [opt_sum] is like [sum], except that its result is [Some] iff all its inputs are [Some]. *) val sum : 'w State.t -> ?full_compute_every_n_changes:int -> ('a, 'w) t array -> zero:'a -> add:('a -> 'a -> 'a) -> sub:('a -> 'a -> 'a) -> ('a, 'w) t val opt_sum : 'w State.t -> ?full_compute_every_n_changes:int -> ('a option, 'w) t array -> zero:'a -> add:('a -> 'a -> 'a) -> sub:('a -> 'a -> 'a) -> ('a option, 'w) t (** [sum_int ts] = [sum ts ~zero:0 ~add:(+) ~sub:(-)] *) val sum_int : 'w State.t -> (int, 'w) t array -> (int, 'w) t (** [sum_float ts] is: {[ sum ts ~zero:0.0 ~add:(+.) ~sub:(-.) ~full_compute_every_n_changes:(Array.length ts) ]} This uses [sum] for fast update, with a full recompute every [length ts] changes to cut down on floating-point error. *) val sum_float : 'w State.t -> (float, 'w) t array -> (float, 'w) t (** The stack of bind left-hand sides currently in effect is the current "scope". In order to create a function in one scope and apply it in a different scope, one must manually save and restore the scope. Essentially, the scope should be part of every closure that constructs incrementals. For example: {[ bind t1 ~f:(fun i1 -> let f t2 = map t2 ~f:(fun i2 -> i1 + i2) in bind t3 ~f:(fun i -> ... f ...); bind t4 ~f:(fun i -> ... f ...)); ]} In the above code, the calls to [f] will create a map node that unnecessarily depends on the left-hand side of the most recent bind ([t3] or [t4]). To eliminate the unnecessary dependence, one should save and restore the scope for [f]: {[ bind t1 ~f:(fun i1 -> let scope = Scope.current state in let f t2 = Scope.within state scope ~f:(fun () -> map t2 ~f:(fun i2 -> i1 + i2)) in bind t3 ~f:(fun i -> ... f ...); bind t4 ~f:(fun i -> ... f ...)) ]} [lazy_from_fun] and [memoize_fun] capture some common situations in which one would otherwise need to use [Scope.within]. *) module Scope : sig type 'w t (** [top] is the toplevel scope. *) val top : _ t (** [current ()] returns the scope in which a node would be created right now. *) val current : 'w State.t -> unit -> 'w t (** [within t f] runs [f] in scope [t], which causes all nodes created by [f] to be in scope [t]. An exception raised by [f] will be raised by [within] in the usual way. *) val within : 'w State.t -> 'w t -> f:(unit -> 'a) -> 'a (** [is_scope t] returns [true] iff [t] is the toplevel scope. *) val is_top : _ t -> bool end module Var : sig type ('a, 'w) t [@@deriving sexp_of] (** By default, a variable is created in [Scope.top], on the theory that its value depends on external stimuli (via [Var.set]), not on the current scope. However, in some situations it is useful to supply [~use_current_scope:true] to create a variable that is invalidated when the current scope is invalidated, e.g. if one wants to use [on_update (watch var) ~f:(function Invalidated -> ... | ...)] to remove the external stimulus that was setting [var]. It is allowed to do [let t = create a] during stabilization; for that stabilization, [watch t] will have value [a]. *) val create : 'w State.t -> ?use_current_scope:bool (** default is [false] *) -> 'a -> ('a, 'w) t (** [set t a] sets the value of [t] to [a]. Outside of stabilization, subsequent calls to [Var.value t] will see [a], but the [set] will not have any effect on incrementals until the next stabilization, at which point [watch t] will take on whatever [value t] was at the start of stabilization, causing incremental recomputation as usual. During a stabilization, calling [set] will behave as if [set] was called after stabilization finished: the new value will not be seen (by [value v] or [watch v]) until after the stabilization finishes. *) val set : ('a, _) t -> 'a -> unit (** [watch t] returns an incremental that tracks the value of [t]. For a given [t], all calls to [watch t] return the same incremental. *) val watch : ('a, 'w) t -> ('a, 'w) incremental (** [value t] returns the value most recently [set] for [t] outside of stabilization. *) val value : ('a, _) t -> 'a (** [latest_value t] returns the value most recently [set] for [t]. It can differ from [value t] only during stabilization. *) val latest_value : ('a, _) t -> 'a (** [replace t ~f] = [set t (f (latest_value t))] *) val replace : ('a, _) t -> f:('a -> 'a) -> unit end module Observer : sig type ('a, 'w) t [@@deriving sexp_of] include Invariant.S2 with type ('a, 'b) t := ('a, 'b) t val observing : ('a, 'w) t -> ('a, 'w) incremental val use_is_allowed : _ t -> bool (** [value t] returns the current value of [t], or [Error] if [t] does not currently have a stable value. In particular, [value t] will return [Error] in the following situations: - in the middle of stabilization. - if [stabilize] has not been called since [t] was created. - if [disallow_future_use t] has been called. - if [observing t] is invalid. Rather than using [value] in a function that runs during stabilization, one should use [map] or [bind] to express the dependence of an incremental computation on an incremental. *) val value : ('a, _) t -> 'a Or_error.t val value_exn : ('a, _) t -> 'a module Update : sig type 'a t = | Initialized of 'a | Changed of 'a * 'a (** [Changed (old_value, new_value)] *) | Invalidated [@@deriving compare, sexp_of] end (** [on_update_exn t ~f] calls [f] after the current stabilization and after each subsequent stabilization in which [t] changes, until [disallow_future_use t] is called. [f] will be called at most once per stabilization. Here is a state diagram for the allowable sequences of [Update.t]'s that can be supplied to a particular [f]: {v /-----------------------------------------------------\ | / | | | v Start ------> Initialized ------> Changed ------> Invalidated ^ | \--/ v} [on_update_exn] raises if [disallow_future_use t] was previously called. *) val on_update_exn : ('a, _) t -> f:('a Update.t -> unit) -> unit (** After [disallow_future_use t]: - [on_update_exn t] and [value_exn t] will raise, and [value t] will return [Error]. - [t]'s on-update handlers will never run again. - At the next call to [stabilize], before recomputing nodes, incremental will mark [t] as unobserved, and mark as unnecessary all nodes that were necessary only to maintain [t]. *) val disallow_future_use : _ t -> unit end (** [observe t] returns a new observer for [t]. By default, an observer has a finalizer that calls [disallow_future_use] when the observer is no longer referenced. One can use [~should_finalize:false] to cause the finalizer to not be created, in which case the observer will live until [disallow_future_use] is explicitly called. *) val observe : ?should_finalize:bool (** default is [true] *) -> ('a, 'w) t -> ('a, 'w) Observer.t module Update : sig type 'a t = | Necessary of 'a | Changed of 'a * 'a (** [Changed (old_value, new_value)] *) | Invalidated | Unnecessary [@@deriving compare, sexp_of] end (** [on_update t ~f] is similar to [Observer.on_update_exn], but it does not cause [t] to be necessary. Instead of the [Initialized] update, there are updates for when a node becomes [Necessary] or [Unnecessary]. Here is a state diagram for the allowable sequences of [Update.t]'s that can be supplied to a particular [f]: {v /-----------------------------------------------------\ | / | | | v Start ------> Necessary ----------> Changed ------> Invalidated | | ^ | ^ | ^ | | | /---------/ \--/ | | v | v | \----------> Unnecessary -----------------------------/ v} If [t] gets a new value during a stabilization but is unnecessary at the end of it, [f] will _not_ be called with [Changed], but with [Unnecessary] if allowed by the transition diagram. I.e. if the prior call to [f] was with [Necessary] or [Changed], [f] will be called with [Unnecessary]. If the prior call to [f] was with [Invalidated] or [Unnecessary], then [f] will not be called. One should typically use [Observer.on_update_exn], unless the [Unnecessary] updates are needed. *) val on_update : ('a, _) t -> f:('a Update.t -> unit) -> unit (** {1 Stabilization} *) (** [stabilize ()] recomputes all incrementals that are necessary and stale. I.e. it propagates changes from variables that have been set to the necessary incrementals that depend on them, stopping propagation as per cutoffs. *) val stabilize : _ State.t -> unit val am_stabilizing : _ State.t -> bool (** {1 Cutoffs} *) (** An ['a Cutoff.t] is a function that returns [true] if propagation of changes should be cutoff at a node based on the old value and the (possible) new value of the node. *) module Cutoff : sig type 'a t [@@deriving sexp_of] include Invariant.S1 with type 'a t := 'a t val create : (old_value:'a -> new_value:'a -> bool) -> 'a t val of_compare : ('a -> 'a -> int) -> 'a t val of_equal : ('a -> 'a -> bool) -> 'a t val always : _ t val never : _ t val phys_equal : _ t val poly_equal : _ t val should_cutoff : 'a t -> old_value:'a -> new_value:'a -> bool (** One can use [equal] in combination with [get_cutoff] to check if a node has a particular cutoff function. [equal] uses [Core.phys_equal] for functional values supplied to [create] and [of_compare]. *) val equal : 'a t -> 'a t -> bool end (** [set_cutoff t cutoff] replaces the current cutoff function for [t] with [cutoff]. [cutoff] will be called any time [t] is recomputed, with [old_value] being the value of [t] before the recomputation and [new_value] being the value that just recomputed. If [cutoff ~old_value ~new_value], then [t]'s value will remain as [old_value] ([new_value] is discarded) and anything depending on [t] will not be recomputed (at least not because of [t]). If [not (cutoff ~old_value ~new_value)], then [t]'s value will become [new_value], and all nodes depending on [t] will recomputed. A reasonable choice for [cutoff] is an equality function on ['a]. The default cutoff for every node is [phys_equal]. For example, this means that a [unit incremental] would only fire once; to disable this, use [set_cutoff t Cutoff.never]. *) val set_cutoff : ('a, _) t -> 'a Cutoff.t -> unit val get_cutoff : ('a, _) t -> 'a Cutoff.t (** [lazy_from_fun f] is like [Lazy.from_fun f], except that the nodes created by [f] will be created in the scope in which [lazy_from_fun] was called, rather than in the scope of the piece of code that first forces the resulting lazy. Not using this function when defining lazy values is likely to result in exceptions being thrown by incremental. As a rule of thumb, all [lazy e] that might create incremental nodes should be replaced by [lazy_from_fun (fun () -> e)]. As usual with [Lazy], if [f] raises, then that exception will be raised when calling [Lazy.force]. *) val lazy_from_fun : _ State.t -> (unit -> 'a) -> 'a Lazy.t val default_hash_table_initial_size : int (** [memoize_fun f hashable] returns a function [m] that is a memoized version of [f] that will run [f a] on each distinct [a] that [m] is applied to, memoize the result (in a hash table), and thereafter for [a], [m] will return the memoized result. When [m] is called, it uses [Scope.within] to run [f] in the scope that was in effect when [memoize_fun f] was called. This is essential to correctly capture the dependence of nodes that [f] creates on values that [f] is closed over, which may in turn depend on the left-hand sides of binds in the scope in effect when [memoize_fun f] was called. Furthermore, nodes that [f] creates do not depend on the scope in effect when [m] is called. [memoize_fun_by_key] is a generalization that allows one to memoize over values that contain a uniquely identifying key, but also have other data. *) val memoize_fun : ?initial_size:int (** default is [4]. *) -> _ State.t -> 'a Base.Hashtbl.Key.t -> ('a -> 'b) -> ('a -> 'b) Staged.t val memoize_fun_by_key : ?initial_size:int (** default is [4]. *) -> _ State.t -> 'key Base.Hashtbl.Key.t -> ('a -> 'key) -> ('a -> 'b) -> ('a -> 'b) Staged.t (** The weak versions of the memoization functions use a {!Weak_hashtbl} for the memo table. This keeps a weak pointer to each result, and so the garbage collector automatically removes unused results. Furthermore, [stabilize] removes the table entries whose result is unused. *) val weak_memoize_fun : ?initial_size:int (** default is [4]. *) -> _ State.t -> 'a Base.Hashtbl.Key.t -> ('a -> 'b Heap_block.t) -> ('a -> 'b Heap_block.t) Staged.t val weak_memoize_fun_by_key : ?initial_size:int (** default is [4]. *) -> _ State.t -> 'key Base.Hashtbl.Key.t -> ('a -> 'key) -> ('a -> 'b Heap_block.t) -> ('a -> 'b Heap_block.t) Staged.t (** For debugging purposes, one can store an arbitrary [Info.t] in a node. This will be displayed as part of a node in error messages. *) val user_info : _ t -> Info.t option val set_user_info : _ t -> Info.t option -> unit (** [append_user_info_graphviz] also modifies the [user_info] field on the node, but in a way that allows the caller to set the label and the properties on the node when a graphviz graph is produced by calling [save_dot] or [save_dot_to_file]. *) val append_user_info_graphviz : _ t -> label:string list -> attrs:string String.Map.t -> unit module Node_value : sig type 'a t = | Invalid | Necessary_maybe_stale of 'a option | Unnecessary_maybe_stale of 'a option [@@deriving sexp_of] end val node_value : ('a, _) t -> 'a Node_value.t module Packed : sig type t (** [save_dot out_channel ts] outputs to [out_channel] the DAG of nodes in [ts] and all their descendants, in dot format. *) val save_dot : ?emit_bind_edges:bool -> Out_channel.t -> t list -> unit val save_dot_to_file : ?emit_bind_edges:bool -> string -> t list -> unit end val pack : _ t -> Packed.t (** [save_dot file] outputs to [file] the DAG of all necessary nodes, in dot format. *) val save_dot : ?emit_bind_edges:bool -> _ State.t -> Out_channel.t -> unit val save_dot_to_file : ?emit_bind_edges:bool -> _ State.t -> string -> unit (** This [Let_syntax] allows you to write expressions like {[ let open Incr.Let_syntax in let%map_open some_incr = watch some_variable and another_incr = ... and ... in ...expression involving some_incr, another_incr, etc... ]} Note that this is less efficient than using [map3], [map4], etc., as the latter produces fewer intermediate nodes. You can also use [let%mapn] syntax to use n-ary map functions efficiently. *) module Let_syntax : sig val ( >>| ) : ('a, 'w) t -> ('a -> 'b) -> ('b, 'w) t val ( >>= ) : ('a, 'w) t -> ('a -> ('b, 'w) t) -> ('b, 'w) t module Let_syntax : sig val bind : ('a, 'w) t -> f:('a -> ('b, 'w) t) -> ('b, 'w) t include Bind_n_gen with type ('a, 'w) t := ('a, 'w) t val map : ('a, 'w) t -> f:('a -> 'b) -> ('b, 'w) t include Map_n_gen with type ('a, 'w) t := ('a, 'w) t val both : ('a, 'w) t -> ('b, 'w) t -> ('a * 'b, 'w) t module Open_on_rhs : sig (** This is [Var.watch]. *) val watch : ('a, 'w) Var.t -> ('a, 'w) t end end end module Before_or_after : sig type t = | Before | After [@@deriving sexp_of] end module Step_function = Step_function (** Incremental has a timing-wheel-based clock, and lets one build incremental values that change as its time passes. One must explicitly call [advance_clock] to change incremental's clock; there is no implicit call based on the passage of time. *) module Clock : sig type 'w t [@@deriving sexp_of] (** The default timing-wheel configuration, with one millisecond precision, and alarms allowed arbitrarily far in the future. *) val default_timing_wheel_config : Timing_wheel.Config.t val create : 'w State.t -> ?timing_wheel_config:Timing_wheel.Config.t -> start:Time_ns.t -> unit -> 'w t (** The [alarm_precision] of the underlying timing wheel. *) val alarm_precision : _ t -> Time_ns.Span.t val state : 'w t -> 'w State.t val timing_wheel_length : _ t -> int (** [now t] returns the current time of incremental's clock. *) val now : _ t -> Time_ns.t (** [watch_now t] returns an incremental that tracks the current time. *) val watch_now : 'w t -> (Time_ns.t, 'w) incremental (** [advance_clock t ~to_] moves incremental's clock forward to [to_]. [advance_clock] is a no-op if [to_ < now t]. As with [Var.set], the effect of [advance_clock] is not seen on incremental values until the next stabilization. Unlike [Var.set], calling [advance_clock] during stabilization raises. In certain pathological cases, [advance_clock] can raise due to it detecting a cycle in the incremental graph. *) val advance_clock : _ t -> to_:Time_ns.t -> unit (** [advance_clock_by t span = advance_clock t ~to_:(Time_ns.add (now t) span)] *) val advance_clock_by : _ t -> Time_ns.Span.t -> unit (** [at t time] returns an incremental that is [Before] when [now t < time] and [After] when [now t >= time]. *) val at : 'w t -> Time_ns.t -> (Before_or_after.t, 'w) incremental (** [after t span] is [at t (Time_ns.add (now t) span)]. *) val after : 'w t -> Time_ns.Span.t -> (Before_or_after.t, 'w) incremental (** [at_intervals t interval] returns an incremental whose value changes at time intervals of the form: {[ Time_ns.next_multiple ~base ~after ~interval ]} where [base] is [now t] when [at_intervals] was called and [after] is the current [now t]. [at_intervals] raises if [interval < alarm_precision]. The [unit t] that [at_intervals] returns has its cutoff set to [Cutoff.never], so that although its value is always [()], incrementals that depend on it will refire each time it is set. The result of [at_intervals] remains alive and is updated until the left-hand side of its defining bind changes, at which point it becomes invalid. *) val at_intervals : 'w t -> Time_ns.Span.t -> (unit, 'w) incremental (** [step_function t ~init [(t1, v1); ...; (tn, vn)]] returns an incremental whose initial value is [init] and takes on the values [v1], ..., [vn] in sequence taking on the value [vi] when [now t >= ti]. It is possible for [vi] to be skipped if time advances from [t(i-1)] to some time greater than [t(i+1)]. The times must be in nondecreasing order, i.e. [step_function] raises if for some [i < j], [ti > tj]. *) val step_function : 'w t -> init:'a -> (Time_ns.t * 'a) list -> ('a, 'w) incremental (** [incremental_step_function t i] returns an incremental whose value is [Step_function.value f ~at:(now t)], where [f] is the value of [i]. *) val incremental_step_function : 'w t -> ('a Step_function.t, 'w) incremental -> ('a, 'w) incremental (** [snapshot t value_at ~at ~before] returns an incremental whose value is [before] before [at] and whose value is frozen to the value of [value_at] during the first stabilization in which the time passes [at]. [snapshot] causes [value_at] to be necessary during that stabilization even if the [snapshot] node itself is not necessary, but not thereafter (although of course [value_at] could remain necessary for other reaspons). The result of [snapshot] will only be invalidated if [value_at] is invalid at the moment of the snapshot. [snapshot] returns [Error] if [at < now t], because it is impossible to take the snapshot because the time has already passed. *) val snapshot : 'w t -> ('a, 'w) incremental -> at:Time_ns.t -> before:'a -> ('a, 'w) incremental Or_error.t end (** A low-level, experimental interface to incremental. This is useful when you need more control over the dependency graph, for performance reasons. It comes at the cost that it's much harder to use right. Specifically, here is what you can do with an expert node: - learn when any child changes, so the expert node can update itself incrementally, rather than having to look at the value of all its children. - incrementally update its set of parents. - select which parents should fire. If you use this interface, you are most definitely advised to test carefully, and in particular you should try it out using [incremental_debug], which is going to check most pre-conditions. *) module Expert : sig module Dependency : sig (** A [t] represents the edge from a child incremental to a parent expert node. A [t] is stateful, you cannot use the same [t] to link one child node to multiple parents at the same time. *) type ('a, 'w) t [@@deriving sexp_of] (** When calling [create ?on_change child], nothing happens until the [t] is linked to a parent. see [Node.add_dependency] for documentation of [on_change]. *) val create : ?on_change:('a -> unit) -> ('a, 'w) incremental -> ('a, 'w) t (** [value t] reads the value of the child incremental. It can only be used from the callback of the [Expert.Node.t] that has [t] in its set of dependencies. *) val value : ('a, _) t -> 'a end module Node : sig type ('a, 'w) t [@@deriving sexp_of] (** [let t = create ?on_observability_change callback] creates a new expert node. [on_observability_change], if given, is called whenever the node becomes observable or unobservable (with alternating value for [is_now_observable], starting at [true] the first time the node becomes observable). This callback could run multiple times per stabilization. It should not change the incremental graph. [callback] is called if any dependency of [t] has changed since it was last called, or if the set of dependencies has changed. The callback will only run when all the dependencies are up-to-date, and inside the callback, you can safely call [Dependency.value] on your dependencies, as well as call all the functions below on the parent nodes. Any behavior that works on all incremental nodes (cutoff, invalidation, debug info etc) also work on [t]. *) val create : 'w State.t -> ?on_observability_change:(is_now_observable:bool -> unit) -> (unit -> 'a) -> ('a, 'w) t (** [watch t] allows you to plug [t] in the rest of the incremental graph, but it's also useful to set a cutoff function, debug info etc. *) val watch : ('a, 'w) t -> ('a, 'w) incremental (** Calling [make_stale t] ensures that incremental will recompute [t] before anyone reads its value. [t] may not fire though, if it never becomes necessary. This is intended to be called only from a child of [t]. Along with a well chosen cutoff function, it allows to choose which parents should fire. *) val make_stale : _ t -> unit (** [invalidate t] makes [t] invalid, as if its surrounding bind had changed. This is intended to be called only from a child of [t]. *) val invalidate : _ t -> unit (** [add_dependency t dep] makes [t] depend on the child incremental in the [dep]. If [dep] is already used to link the child incremental to another parent, an exception is raised. This is intended to be called either outside of stabilization, or right after creating [t], or from a child of [t]. The [on_change] callback of [dep] will be fired when [t] becomes observable, or immediately, or whenever the child changes as long as [t] is observable. When this function is called due to observability changes, the callback may fire several times in the same stabilization, so it should be idempotent. The callback must not change the incremental graph, particularly not the dependencies of [t]. All the [on_change] callbacks are guaranteed to be run before the callback of [create] is run. *) val add_dependency : (_, 'w) t -> (_, 'w) Dependency.t -> unit (** [remove_dependency t dep] can only be called from a child of [t]. *) val remove_dependency : (_, 'w) t -> (_, 'w) Dependency.t -> unit end module Step_result : sig type t = | Keep_going | Done [@@deriving sexp_of] end (** [do_one_step_of_stabilize state] runs a part of stabilization. This can be used as a replacement for [stabilize], to split up potentially long calls to [stabilize]. A stabilization is ongoing until [do_one_step_of_stabilize] returns [Done]. During such a stabilization, behavior is the same as during a regular stabilization. Calling [do_one_step_of_stabilize] during a call to [do_one_step_of_stabilize] or [stabilize] is a programming error but it is not detected. Behavior is undefined. *) val do_one_step_of_stabilize : _ State.t -> Step_result.t end module type S_gen = S_gen module type S = sig type state_witness [@@deriving sexp_of] include S_gen with type 'a t = ('a, state_witness) incremental with type Before_or_after.t = Before_or_after.t with type Clock.t = state_witness Clock.t with type 'a Cutoff.t = 'a Cutoff.t with type 'a Expert.Dependency.t = ('a, state_witness) Expert.Dependency.t with type 'a Expert.Node.t = ('a, state_witness) Expert.Node.t with type Expert.Step_result.t = Expert.Step_result.t with type 'a Observer.t = ('a, state_witness) Observer.t with type 'a Observer.Update.t = 'a Observer.Update.t with type Packed.t = Packed.t with type Scope.t = state_witness Scope.t with type State.t = state_witness State.t with type State.Stats.t = State.Stats.t with type ('a, 'b) Unordered_array_fold_update.t = ('a, 'b) Unordered_array_fold_update.t with type 'a Update.t = 'a Update.t with type 'a Var.t = ('a, state_witness) Var.t end (** [Make] returns a new incremental implementation. [Make] uses [Config.Default ()]. *) module Make () : S module Config : Config_intf.Config module type Incremental_config = Config.Incremental_config module Make_with_config (C : Incremental_config) () : S (*_ See the Jane Street Style Guide for an explanation of [Private] submodules: https://opensource.janestreet.com/standards/#private-submodules *) module Private : sig val debug : bool end (** Exposes the [traverse] function, which takes a callback to crawl the list of [Incr] nodes (and their descendants) provided, used for analyzing [Incr] graphs **) module For_analyzer : For_analyzer_intf.S with type packed_node := Packed.t and type 'a state := 'a State.t end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>