package hardcaml_verify
Hardcaml Verification Tools
Install
Dune Dependency
Authors
Maintainers
Sources
v0.17.0.tar.gz
sha256=a09a904776ad848f685afb4ebe85e0d449acb81f6f2425fccc52a3c5b76be629
doc/src/hardcaml_verify.kernel/nusmv.ml.html
Source file nusmv.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
open Base open Hardcaml open Signal type property = | LTL of Property.LTL.path | CTL of Property.CTL.state [@@deriving sexp_of] type t = { circuit : Circuit.t ; properties : property list ; atomic_propositions_map : Signal.t Map.M(Signal.Uid).t } [@@deriving sexp_of, fields ~getters] let create ?(outputs = []) ~name properties = let module Signal_compare = struct module T = struct type t = Signal.t [@@deriving sexp_of] let compare a b = Uid.compare (uid a) (uid b) end include T include Comparable.Make (T) end in let atomic_propositions = List.fold properties ~init:(Set.empty (module Signal_compare)) ~f:(fun set prop -> let ap = match prop with | LTL prop -> Property.LTL.atomic_propositions prop | CTL prop -> Property.CTL.atomic_propositions prop in List.fold_left ap ~init:set ~f:(fun set ap -> Set.add set ap)) in let atomic_propositions = let count = ref 0 in let prop_name s = "__ap_" ^ match Signal.names s with | name :: _ -> name | [] -> Int.incr count; Int.to_string !count in Set.elements atomic_propositions |> List.map ~f:(fun ap -> Signal.uid ap, Signal.output (prop_name ap) ap) in { circuit = Circuit.create_exn ~name (List.concat [ List.map atomic_propositions ~f:snd; outputs ]) ; properties ; atomic_propositions_map = (match Map.of_alist (module Signal.Uid) atomic_propositions with | `Duplicate_key _ -> raise_s [%message "Failed to construct atomic propositions output map"] | `Ok m -> m) } ;; let of_circuit ?(outputs = false) circuit properties = create ~outputs:(if outputs then Circuit.outputs circuit else []) ~name:(Circuit.name circuit) properties ;; let write chan { circuit = circ; properties = props; atomic_propositions_map } = let os = Stdio.Out_channel.output_string chan in let inputs, outputs = Circuit.inputs circ, Circuit.outputs circ in let is_internal s = (not (Circuit.is_input circ s)) && (not (Circuit.is_output circ s)) && not (Signal.equal s empty) in let internal_signals = Signal_graph.filter (Circuit.signal_graph circ) ~f:is_internal in let internal_signals, registers = List.partition_tf internal_signals ~f:(function | Reg _ -> false | _ -> true) in let name s = match List.hd (names s) with | Some x -> x | None -> "_" ^ Signal.Uid.to_string (uid s) in let word_spec s = "unsigned word [" ^ Int.to_string (width s) ^ "]" in let const' w s = "0h" ^ Int.to_string w ^ "_" ^ (Constant.of_binary_string s |> Constant.to_hex_string ~signedness:Unsigned) in let const s = const' (width s) (Type.const_value s |> Bits.to_bstr) in let consti w i = const' w (Constant.of_int ~width:w i |> Constant.to_binary_string) in let sel s h l = name s ^ "[" ^ Int.to_string h ^ ":" ^ Int.to_string l ^ "]" in let define s x = os "DEFINE "; os (name s); os " := "; os x; os ";\n" in os "MODULE main\n"; os "\n-- inputs\n"; List.iter inputs ~f:(fun s -> os ("VAR " ^ name s ^ " : " ^ word_spec s ^ ";\n")); os "\n-- registers\n"; List.iter registers ~f:(fun s -> os ("VAR " ^ name s ^ " : " ^ word_spec s ^ ";\n")); (* os ("-- memories\n"); *) (* simple naming *) os "\n-- combinatorial logic\n"; let define s = match s with | Type.Empty -> failwith "NuSMV - unexpected empty signal" | Inst _ -> failwith "NuSMV - instantiation not supported" | Reg _ | Multiport_mem _ | Mem_read_port _ -> failwith "NuSMV error - reg or mem not expected here" | Const _ -> define s (const s) | Wire { driver; _ } -> define s (name !driver) | Select { arg; high; low; _ } -> define s (sel arg high low) | Not { arg; _ } -> let not_ _ = "!" ^ name arg in define s (not_ s) | Cat { args; _ } -> let cat = String.concat ~sep:"::" (List.map args ~f:name) in define s cat | Mux { select; cases; _ } -> let mux _ = os "DEFINE "; os (name s); os " := \n"; os " case\n"; let nsel = name select in let rec f n = function | [] -> () | [ a ] -> os " TRUE: "; os (name a); os ";\n" | h :: t -> let w = width select in os " "; os nsel; os "="; os (consti w n); os ": "; os (name h); os ";\n"; f (n + 1) t in f 0 cases; os " esac;\n" in mux s | Op2 { op; arg_a; arg_b; _ } -> let op2 op _ = name arg_a ^ op ^ name arg_b in let wrap s t = s ^ "(" ^ t ^ ")" in let signed, unsigned = wrap "signed", wrap "unsigned" in let extend n s = wrap "extend" (s ^ ", " ^ Int.to_string n) in let _, word1 = wrap "bool", wrap "word1" in let mop2 sgn op _ = let a, b = arg_a, arg_b in let w = width a + width b in let ewa, ewb = w - width a, w - width b in let signed, unsigned = (if sgn then signed else fun s -> s), if sgn then unsigned else fun s -> s in let arg w a = unsigned @@ extend w @@ signed @@ name a in arg ewa a ^ op ^ arg ewb b in let comp op s = word1 (op2 op s) in (match op with | Signal_add -> define s (op2 " + " s) | Signal_sub -> define s (op2 " - " s) | Signal_mulu -> define s (mop2 false " * " s) | Signal_muls -> define s (mop2 true " * " s) | Signal_and -> define s (op2 " & " s) | Signal_or -> define s (op2 " | " s) | Signal_xor -> define s (op2 " xor " s) | Signal_eq -> define s (comp " = " s) | Signal_lt -> define s (comp " < " s)) in List.iter internal_signals ~f:define; os "\n-- register updates\n"; List.iter registers ~f:(fun s -> match s with | Reg { register = r; d = din; _ } -> let next s = let mux2 s t f = "(bool(" ^ s ^ ")?" ^ t ^ ":" ^ f ^ ")" in let mux2e s t f = if Signal.is_empty s || Signal.is_vdd s then t else if Signal.is_gnd s then f else mux2 (name s) t f in let mux2_edge s (e : Edge.t) t f = if Signal.is_empty s then f else ( match e with | Rising -> mux2 (name s) t f | Falling -> mux2 (name s) f t) in let mux2_level s (l : Level.t) t f = if Signal.is_empty s then f else ( match l with | High -> mux2 (name s) t f | Low -> mux2 (name s) f t) in let nxt = mux2e r.reg_enable (name din) (name s) in let nxt = mux2_level r.reg_clear r.reg_clear_level (name r.reg_clear_value) nxt in let nxt = mux2_edge r.reg_reset r.reg_reset_edge (name r.reg_reset_value) nxt in nxt in let init s = if Signal.is_empty r.reg_reset then if Signal.is_empty r.reg_reset_value then consti (width s) 0 (* default to zero *) else const r.reg_reset_value (* treat as a default value *) else const r.reg_reset_value in os ("ASSIGN init(" ^ name s ^ ") := " ^ init s ^ ";\n"); os ("ASSIGN next(" ^ name s ^ ") := " ^ next s ^ ";\n") | _ -> failwith "NuSMV - expecting a register"); os "\n-- outputs\n"; List.iter outputs ~f:define; os "\n-- SPECS\n"; List.iter props ~f:(fun spec -> let rewrite s = match Map.find atomic_propositions_map (Signal.uid s) with | None -> raise_s [%message "failed to rewrite atomic proposition"] | Some s -> s in match spec with | CTL prop -> os ("CTLSPEC " ^ Property.CTL.(to_string (map_atomic_propositions prop ~f:rewrite)) ^ ";\n") | LTL prop -> os ("LTLSPEC " ^ Property.LTL.(to_string (map_atomic_propositions prop ~f:rewrite)) ^ ";\n")) ;; module Counter_example_trace = struct type t = { states : (string * Bits.t) list list } [@@deriving sexp_of] let to_trace t = t.states end module Proof_result = struct type t = | Tautology | Exists_counter_example of Counter_example_trace.t [@@deriving sexp_of] end module Output_parser = struct let assignment_re = Re.Perl.(re " ([\\w]+) = ((?:-\\s+)?\\S+)\\s*" |> compile) let specification_re = Re.Perl.(re "-- specification .* is (true|false)\\s*" |> compile) let word_constant_re = Re.Perl.(re "^((?:-\\s+)?)0([us]?)([bodh])(\\d*)_([0-9a-fA-F]+)$" |> compile) ;; let re_exec_exn re str = try Re.exec re str with | e -> raise_s [%message "failed to parse regular expression" (str : string) (e : exn)] ;; let parse_word_constant word_constant = let matches = re_exec_exn word_constant_re word_constant in let is_negated = String.equal (Re.Group.get matches 1) "" |> not in let _is_signed = String.equal (Re.Group.get matches 2) "s" in let base = Re.Group.get matches 3 in let width_str = Re.Group.get matches 4 in let value_str = Re.Group.get matches 5 in let bits_wrong_size = match base with | "b" -> Bits.of_bit_string value_str | "o" -> Bits.of_octal ~width:(String.length value_str * 3) value_str | "d" -> Bits.of_decimal_string ~width:(String.length value_str * 4) value_str | "h" -> Bits.of_hex ~width:(String.length value_str * 4) value_str | _ -> raise_s [%message "Unrecognised base" word_constant] in let bits_resized = match width_str, base with | "", "d" -> raise_s [%message "Decimal word constants must specify a size" word_constant] | "", _ -> bits_wrong_size | _, _ -> (* Check specified width can represent the value *) let specified_width = Int.of_string width_str in let num_leading_zeroes = Int.max 0 (Bits.width bits_wrong_size - specified_width) in let fits_within_size = if num_leading_zeroes = 0 then true else ( let leading_zeroes = Bits.sel_top bits_wrong_size num_leading_zeroes in Bits.(leading_zeroes ==:. 0) |> Bits.to_bool) in if fits_within_size then Bits.uresize bits_wrong_size (Int.of_string width_str) else raise_s [%message "Parsed word constant is wider than its specified width" word_constant] in if is_negated then Bits.negate bits_resized else bits_resized ;; let parse_one_state lines = let lines = List.drop lines 1 in let assign_lines, lines = List.split_while lines ~f:(String.is_prefix ~prefix:" ") in let assignments = List.map assign_lines ~f:(fun line -> let matches = re_exec_exn assignment_re line in let var_name = Re.Group.get matches 1 in let word_constant = Re.Group.get matches 2 in let bits = parse_word_constant word_constant in var_name, bits) in assignments, lines ;; let rec parse_states ~acc:states = function | [] -> List.rev states | ls -> let state, ls' = parse_one_state ls in parse_states ~acc:(state :: states) ls' ;; let parse_counterexample lines = match lines with | hd :: tl -> let lines = if String.is_prefix hd ~prefix:" -- Loop starts here" then tl else hd :: tl in let states = parse_states ~acc:[] lines in { Counter_example_trace.states } | _ -> raise_s [%message "Unexpected end of input" (lines : string list)] ;; let parse_one_proof lines = let outcome, lines = match lines with | spec_is_ :: lines -> let matches = re_exec_exn specification_re spec_is_ in let outcome = Bool.of_string (Re.Group.get matches 1) in outcome, lines | _ -> raise_s [%message "Unexpected end of input"] in match outcome, lines with | false, _as_demonstrated :: _trace_desc :: trace_type :: lines -> if String.is_prefix trace_type ~prefix:"Trace Type: Counterexample" then ( let counter_lines, lines = List.split_while lines ~f:(String.is_prefix ~prefix:" ") in let counter = parse_counterexample counter_lines in Proof_result.Exists_counter_example counter, lines) else raise_s [%message "Unsupported trace type" trace_type] | true, lines -> Proof_result.Tautology, lines | _ -> raise_s [%message "Unexpected end of input" (lines : string list)] ;; let parse = let rec loop ~acc = function | [] -> List.rev acc | lines -> let proof, lines = parse_one_proof lines in loop ~acc:(proof :: acc) lines in fun lines -> loop ~acc:[] lines ;; end let nusmv_path = Config.nusmv let run (t : t) = let tmp_file = Stdlib.Filename.temp_file "hardcaml_verify_nusmv" "txt" in let oc = Stdio.Out_channel.create tmp_file in write oc t; Stdio.Out_channel.close oc; let command = [ nusmv_path ; (* [-quiet] is a secret command line argument that suppresses the initial banner's printing. *) "-quiet" ; tmp_file ] |> String.concat ~sep:" " in let cmd_output = Unix.open_process_in command in let lines = Stdio.In_channel.input_lines cmd_output in Output_parser.parse lines ;; module Circuit_properties = struct type ('i, 'o) t = { inputs : 'i ; outputs : 'o } [@@deriving fields ~getters] end module With_interface (I : Hardcaml.Interface.S) (O : Hardcaml.Interface.S) = struct type t = { inputs : Signal.t I.t ; outputs : Signal.t O.t ; circuit : Circuit.t } let name_exn signal = match Signal.names signal with | [ hd ] -> hd | _ -> assert false ;; let to_alist signals = List.map signals ~f:(fun s -> name_exn s, s) let create ~name create = let module C = Hardcaml.Circuit.With_interface (I) (O) in let circuit = C.create_exn ~name create in let inputs = I.Unsafe_assoc_by_port_name.of_alist (to_alist (Hardcaml.Circuit.inputs circuit)) in let outputs = O.Unsafe_assoc_by_port_name.of_alist (to_alist (Hardcaml.Circuit.outputs circuit)) in { inputs; outputs; circuit } ;; let ltl t = let p signal = Signal.bits_lsb signal |> List.map ~f:Property.LTL.p |> Array.of_list in { Circuit_properties.inputs = I.map t.inputs ~f:p; outputs = O.map t.outputs ~f:p } ;; let ctl t = let p signal = Signal.bits_lsb signal |> List.map ~f:Property.CTL.p |> Array.of_list in { Circuit_properties.inputs = I.map t.inputs ~f:p; outputs = O.map t.outputs ~f:p } ;; let create_specification (t : t) properties = of_circuit ~outputs:true t.circuit properties ;; end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>