package hardcaml_step_testbench
Hardcaml Testbench Monad
Install
Dune Dependency
Authors
Maintainers
Sources
v0.17.0.tar.gz
sha256=a21b13cf03b84f06471e7c31ecbac8df1b08f8ac1156d0f3a41d2250ea293b2f
doc/src/hardcaml_step_testbench.digital_components/component.ml.html
Source file component.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
open! Base include Component_intf module Make (Input_monad : Monad.S) = struct module Input_monad = Input_monad type ('i, 'o) t_module = (module Module.S with type Input.t = 'i and type Output.t = 'o) type ('i, 'o) t_ = ('i, 'o) t_module type ('i, 'o) t = T of ('i, 'o) t_ let create t = T t module Combinational = Combinational let create_combinational (type i o) ((module T) : (i, o) Combinational.t) = create (module struct include T let update_state ?prune:_ _ _ = () let prune_children _ = () let has_children _ = false end) ;; let input_module (type i o) (T (module T) : (i, o) t) : i Data.t = (module T.Input) let output_module (type i o) (T (module T) : (i, o) t) : o Data.t = (module T.Output) let sexp_of_input (type i o) (T (module T) : (i, o) t) = T.Input.sexp_of_t let sexp_of_output (type i o) (T (module T) : (i, o) t) = T.Output.sexp_of_t let sexp_of_t (type i o) _ _ (T (module T) : (i, o) t) = [%message "" ~_:(T.created_at : Source_code_position.t) ~_:(T.t : T.t)] ;; let output (type i o) (T (module T) : (i, o) t) input = T.(output t) input let update_state ?prune (type i o) (T (module T) : (i, o) t) input = T.update_state ?prune T.t input ;; let prune_children (type i o) (T (module T) : (i, o) t) = T.(prune_children t) let has_children (type i o) (T (module T) : (i, o) t) = T.(has_children t) let run_with_inputs t is = List.fold is ~init:[] ~f:(fun os i -> update_state t i; (i, output t i) :: os) |> List.rev ;; module Next_input = struct type 'i t = | Finished | Input of 'i [@@deriving sexp_of] end let run_until_finished ?(show_steps = false) t ~first_input ~(next_input : _ -> _ Next_input.t Input_monad.t) = let step_number = ref 0 in let rec loop input = if show_steps then Stdio.print_s [%message "" ~step_number:(!step_number : int)]; Int.incr step_number; update_state ~prune:(!step_number % 1000 = 0) t input; let output = output t input in let%bind.Input_monad next_input = next_input output in match next_input with | Finished -> Input_monad.return () | Input i -> loop i in loop first_input ;; let sequence (type a b c) (T (module T1) as t1 : (a, b) t) (T (module T2) as t2 : (b, c) t) : (a, c) t = T (module struct module Input = T1.Input module Output = T2.Output type nonrec t = (T1.Input.t, T1.Output.t) t * (T2.Input.t, T2.Output.t) t [@@deriving sexp_of] let t = t1, t2 let created_at = [%here] let update_state ?prune ((t1, t2) : t) input = let b = output t1 input in update_state ?prune t1 input; update_state ?prune t2 b ;; let output (t1, t2) input = output t2 (output t1 input) let prune_children (t1, t2) = prune_children t1; prune_children t2 ;; let has_children (t1, t2) = has_children t1 || has_children t2 end) ;; let map_input (type i1 i2 o) (T (module T) : (i2, o) t) (module Input : Data.S with type t = i1) ~f = T (module struct module Input = Input module Output = T.Output type t = T.t [@@deriving sexp_of] let t = T.t let created_at = [%here] let output t i1 = T.output t (f i1) let update_state ?prune t i1 = T.update_state ?prune t (f i1) let prune_children t = T.prune_children t let has_children t = T.has_children t end) ;; let map_output (type i o1 o2) (T (module T) : (i, o1) t) (module Output : Data.S with type t = o2) ~f = T (module struct module Input = T.Input module Output = Output type t = T.t [@@deriving sexp_of] let t = T.t let created_at = [%here] let output t i = f (T.output t i) let update_state ?prune t i = T.update_state ?prune t i let prune_children t = T.prune_children t let has_children t = T.has_children t end) ;; let create_binary_bool sexp f = create_combinational (module struct module Input = Data.Pair (Data.Bool) (Data.Bool) module Output = Data.Bool type t = unit let sexp_of_t () = sexp let created_at = [%here] let t = () let output () (b1, b2) = f b1 b2 end) ;; let and_ = create_binary_bool [%message "and"] (fun b1 b2 -> b1 && b2) let or_ = create_binary_bool [%message "or"] (fun b1 b2 -> b1 || b2) let create_unary_bool sexp f = create_combinational (module struct module Input = Data.Bool module Output = Data.Bool type t = unit let sexp_of_t () = sexp let created_at = [%here] let t = () let output () b = f b end) ;; let not_ = create_unary_bool [%message "not"] (fun b -> not b) let flip_flop () = create (module struct module Input = Data.Bool module Output = Data.Bool type t = bool ref [@@deriving sexp_of] let sexp_of_t t = [%message "Flip_flop" ~_:(t : t)] let t = ref Output.undefined let created_at = [%here] let output t _ = !t let update_state ?prune:_ t b = t := b let prune_children _ = () let has_children _ = false end) ;; module Flip_flop_with_load_enable = struct module Input = struct type t = { input : bool ; load_enable : bool } [@@deriving compare, sexp_of] let equal = [%compare.equal: t] let undefined = { input = Data.Bool.undefined; load_enable = Data.Bool.undefined } end module Output = Data.Bool let create () = create (module struct module Input = Input module Output = Output type t = bool ref [@@deriving sexp_of] let t = ref Output.undefined let sexp_of_t t = [%message "Flip_flop_with_load_enable" ~_:(t : t)] let created_at = [%here] let output t _ = !t let update_state ?prune:_ t { Input.input; load_enable } = if load_enable then t := input ;; let prune_children _ = () let has_children _ = false end) ;; end module Flip_flop_with_load_enable_and_reset = struct module Input = struct type t = { input : bool ; load_enable : bool ; reset : bool } [@@deriving compare, sexp_of] let equal = [%compare.equal: t] let undefined = { input = Data.Bool.undefined ; load_enable = Data.Bool.undefined ; reset = Data.Bool.undefined } ;; end module Output = Data.Bool let create () = create (module struct module Input = Input module Output = Output type t = bool ref [@@deriving sexp_of] let t = ref Output.undefined let sexp_of_t t = [%message "Flip_flop_with_load_enable_and_reset" ~_:(t : t)] let created_at = [%here] let output t _ = !t let update_state ?prune:_ t { Input.input; load_enable; reset } = if reset then t := false else if load_enable then t := input ;; let prune_children _ = () let has_children _ = false end) ;; end end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>