package hack_parallel
Parallel and shared memory library
Install
Dune Dependency
Authors
Maintainers
Sources
1.0.1.tar.gz
md5=ba7c72bc207e326b72e294fc76f6ad2c
sha512=5020d47f97bea2f88e2a40411894d03232a7f2282606926c93c7d4c96d72e94a966be852897a9b16f7e0893ba376512045abb9d93020a7c03c3def4f3d918f8e
doc/src/hack_parallel.hack_core/hack_monad.ml.html
Source file hack_monad.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
module type Basic = sig type 'a t val bind : 'a t -> ('a -> 'b t) -> 'b t val return : 'a -> 'a t (* The [map] argument to [Monad.Make] says how to implement the monad's [map] function. [`Define_using_bind] means to define [map t ~f = bind t (fun a -> return (f a))]. [`Custom] overrides the default implementation, presumably with something more efficient. Some other functions returned by [Monad.Make] are defined in terms of [map], so passing in a more efficient [map] will improve their efficiency as well. *) val map : [ `Define_using_bind | `Custom of ('a t -> f:('a -> 'b) -> 'b t) ] end module type Infix = sig type 'a t (** [t >>= f] returns a computation that sequences the computations represented by two monad elements. The resulting computation first does [t] to yield a value [v], and then runs the computation returned by [f v]. *) val (>>=) : 'a t -> ('a -> 'b t) -> 'b t (** [t >>| f] is [t >>= (fun a -> return (f a))]. *) val (>>|) : 'a t -> ('a -> 'b) -> 'b t end module type S = sig (** A monad is an abstraction of the concept of sequencing of computations. A value of type 'a monad represents a computation that returns a value of type 'a. *) include Infix module Monad_infix : Infix with type 'a t := 'a t (** [bind t f] = [t >>= f] *) val bind : 'a t -> ('a -> 'b t) -> 'b t (** [return v] returns the (trivial) computation that returns v. *) val return : 'a -> 'a t (** [map t ~f] is t >>| f. *) val map : 'a t -> f:('a -> 'b) -> 'b t (** [join t] is [t >>= (fun t' -> t')]. *) val join : 'a t t -> 'a t (** [ignore t] = map t ~f:(fun _ -> ()). *) val ignore : 'a t -> unit t val all : 'a t list -> 'a list t val all_ignore : unit t list -> unit t end module Make (M : Basic) : S with type 'a t := 'a M.t = struct let bind = M.bind let return = M.return let map_via_bind ma ~f = M.bind ma (fun a -> M.return (f a)) let map = match M.map with | `Define_using_bind -> map_via_bind | `Custom x -> x module Monad_infix = struct let (>>=) = bind let (>>|) t f = map t ~f end include Monad_infix let join t = t >>= fun t' -> t' let ignore t = map t ~f:(fun _ -> ()) let all = let rec loop vs = function | [] -> return (List.rev vs) | t :: ts -> t >>= fun v -> loop (v :: vs) ts in fun ts -> loop [] ts let rec all_ignore = function | [] -> return () | t :: ts -> t >>= fun () -> all_ignore ts end (** Multi parameter monad. The second parameter get unified across all the computation. This is used to encode monads working on a multi parameter data structure like ([('a,'b result)]). *) module type Basic2 = sig type ('a, 'd) t val bind : ('a, 'd) t -> ('a -> ('b, 'd) t) -> ('b, 'd) t val map : [ `Define_using_bind | `Custom of (('a, 'd) t -> f:('a -> 'b) -> ('b, 'd) t) ] val return : 'a -> ('a, _) t end (** Same as Infix, except the monad type has two arguments. The second is always just passed through. *) module type Infix2 = sig type ('a, 'd) t val (>>=) : ('a, 'd) t -> ('a -> ('b, 'd) t) -> ('b, 'd) t val (>>|) : ('a, 'd) t -> ('a -> 'b) -> ('b, 'd) t end (** The same as S except the monad type has two arguments. The second is always just passed through. *) module type S2 = sig include Infix2 module Monad_infix : Infix2 with type ('a, 'd) t := ('a, 'd) t val bind : ('a, 'd) t -> ('a -> ('b, 'd) t) -> ('b, 'd) t val return : 'a -> ('a, _) t val map : ('a, 'd) t -> f:('a -> 'b) -> ('b, 'd) t val join : (('a, 'd) t, 'd) t -> ('a, 'd) t val ignore : (_, 'd) t -> (unit, 'd) t val all : ('a, 'd) t list -> ('a list, 'd) t val all_ignore : (unit, 'd) t list -> (unit, 'd) t end module Check_S2_refines_S (X : S) : (S2 with type ('a, 'd) t = 'a X.t) = struct type ('a, 'd) t = 'a X.t include struct open X let (>>=) = (>>=) let (>>|) = (>>|) let bind = bind let return = return let map = map let join = join let ignore = ignore let all = all let all_ignore = all_ignore end module Monad_infix = struct open X.Monad_infix let (>>=) = (>>=) let (>>|) = (>>|) end end module Make2 (M : Basic2) : S2 with type ('a, 'd) t := ('a, 'd) M.t = struct let bind = M.bind let return = M.return let map_via_bind ma ~f = M.bind ma (fun a -> M.return (f a)) let map = match M.map with | `Define_using_bind -> map_via_bind | `Custom x -> x module Monad_infix = struct let (>>=) = bind let (>>|) t f = map t ~f end include Monad_infix let join t = t >>= fun t' -> t' let ignore t = map t ~f:(fun _ -> ()) let all = let rec loop vs = function | [] -> return (List.rev vs) | t :: ts -> t >>= fun v -> loop (v :: vs) ts in fun ts -> loop [] ts let rec all_ignore = function | [] -> return () | t :: ts -> t >>= fun () -> all_ignore ts end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>