package grenier
Install
Dune Dependency
Authors
Maintainers
Sources
sha256=04831d5c2ea783d4e32b356a8495e5481ce8919aa70f5eecee29baebbf6fa483
sha512=1199122ab70701ecd33bf9c6339a743d163a1ba3ef5d0db189cab6c6712386739031b66002bf48d4740112430a93780f82dc37f56688ee33f99da928186b8205
doc/grenier.valmari/Valmari/Minimize/argument-2-In/index.html
Parameter Minimize.In
include DFA with type label := Label.t
val states : states Strong.Finite.set
The set of DFA nodes
val transitions : transitions Strong.Finite.set
The set of DFA transitions
val label : transitions Strong.Finite.elt -> Label.t
Get the label associated with a transition
val source : transitions Strong.Finite.elt -> states Strong.Finite.elt
Get the source state of the transition
val target : transitions Strong.Finite.elt -> states Strong.Finite.elt
Get the target state of the transition
val initials : (states Strong.Finite.elt -> unit) -> unit
Iterate on initial states
val finals : (states Strong.Finite.elt -> unit) -> unit
Iterate final states
val refinements :
refine:(iter:((states Strong.Finite.elt -> unit) -> unit) -> unit) ->
unit
The minimization algorithms operate on a DFA plus an optional initial refinement (state that must be distinguished, because of some external properties not observable from the labelled transitions alone).
If no refinements are needed, the minimum implementation is just: let refinements ~refine:_ = ()
Otherwise, the refinements
function should invoke the refine
function for each set of equivalent states and call the iter
for each equivalent state.
E.g if our automata has 5 states, and states 2 and 3 have tag A while states 4 and 5 have tag B, we will do:
let refinements ~refine = refine (fun ~iter -> iter 2; 3
); refine (fun ~iter -> iter 4; 5
)