package goblint
Static analysis framework for C
Install
Dune Dependency
Authors
Maintainers
Sources
goblint-2.5.0.tbz
sha256=452d8491527aea21f2cbb11defcc14ba0daf9fdb6bdb9fc0af73e56eac57b916
sha512=1993cd45c4c7fe124ca6e157f07d17ec50fab5611b270a434ed1b7fb2910aa85a8e6eaaa77dad770430710aafb2f6d676c774dd33942d921f23e2f9854486551
doc/src/goblint.domain/disjointDomain.ml.html
Source file disjointDomain.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
(** Abstract domains for collections of elements from disjoint unions of domains. Formally, the elements form a cofibered domain from a discrete category. Elements are grouped into disjoint buckets by a congruence or/and a projection. All operations on elements are performed bucket-wise and must be bucket-closed. Examples of such domains are path-sensitivity and address sets. *) (** {1 Sets} *) (** {2 By projection} *) (** Buckets defined by projection. The module is the image (representative) of the projection function {!of_elt}. *) module type Representative = sig include Printable.S (** @closed *) type elt (** Type of elements, i.e. the domain of the projection function {!of_elt}. *) val of_elt: elt -> t (** Projection function. *) end (** Set of elements [E.t] grouped into buckets by [R], where each bucket is described by the set [B]. Common choices for [B] are {!SetDomain.Joined} and {!HoareDomain.SetEM}. Handles {!Lattice.BotValue} from [B]. *) module ProjectiveSet (E: Printable.S) (B: SetDomain.S with type elt = E.t) (R: Representative with type elt = E.t): sig include SetDomain.S with type elt = E.t val fold_buckets: (R.t -> B.t -> 'a -> 'a) -> t -> 'a -> 'a end = struct type elt = E.t module M = MapDomain.MapBot (R) (B) (** Invariant: no explicit bot buckets. Required for efficient [is_empty], [cardinal] and [choose]. *) let name () = "ProjectiveSet (" ^ B.name () ^ ")" (* explicitly delegate, so we don't accidentally delegate too much *) type t = M.t let equal = M.equal let compare = M.compare let hash = M.hash let tag = M.tag let relift = M.relift let is_bot = M.is_bot let bot = M.bot let is_top = M.is_top let top = M.top let is_empty = M.is_empty let empty = M.empty let cardinal = M.cardinal let leq = M.leq let join = M.join let pretty_diff = M.pretty_diff let fold f m a = M.fold (fun _ e a -> B.fold f e a) m a let iter f m = M.iter (fun _ e -> B.iter f e) m let exists p m = M.exists (fun _ e -> B.exists p e) m let for_all p m = M.for_all (fun _ e -> B.for_all p e) m let singleton e = M.singleton (R.of_elt e) (B.singleton e) let choose m = B.choose (snd (M.choose m)) let mem e m = match M.find_opt (R.of_elt e) m with | Some b -> B.mem e b | None -> false let add e m = let r = R.of_elt e in let b' = match M.find_opt r m with | Some b -> B.add e b | None -> B.singleton e in M.add r b' m let remove e m = let r = R.of_elt e in match M.find_opt r m with | Some b -> begin match B.remove e b with | b' when B.is_bot b' -> M.remove r m (* remove bot bucket to preserve invariant *) | exception Lattice.BotValue -> M.remove r m (* remove bot bucket to preserve invariant *) | b' -> M.add r b' m end | None -> m let diff m1 m2 = M.merge (fun _ b1 b2 -> match b1, b2 with | Some b1, Some b2 -> begin match B.diff b1 b2 with | b' when B.is_bot b' -> None (* remove bot bucket to preserve invariant *) | exception Lattice.BotValue -> None (* remove bot bucket to preserve invariant *) | b' -> Some b' end | Some _, None -> b1 | None, _ -> None ) m1 m2 let of_list es = List.fold_left (fun acc e -> add e acc ) (empty ()) es let elements m = fold List.cons m [] (* no intermediate per-bucket lists *) let map f m = fold (fun e acc -> add (f e) acc ) m (empty ()) (* no intermediate lists *) let widen m1 m2 = Lattice.assert_valid_widen ~leq ~pretty_diff m1 m2; M.widen m1 m2 let meet m1 m2 = M.merge (fun _ b1 b2 -> match b1, b2 with | Some b1, Some b2 -> begin match B.meet b1 b2 with | b' when B.is_bot b' -> None (* remove bot bucket to preserve invariant *) | exception Lattice.BotValue -> None (* remove bot bucket to preserve invariant *) | b' -> Some b' end | _, _ -> None ) m1 m2 let narrow m1 m2 = M.merge (fun _ b1 b2 -> match b1, b2 with | Some b1, Some b2 -> begin match B.narrow b1 b2 with | b' when B.is_bot b' -> None (* remove bot bucket to preserve invariant *) | exception Lattice.BotValue -> None (* remove bot bucket to preserve invariant *) | b' -> Some b' end | _, _ -> None ) m1 m2 let union = join let inter = meet let subset = leq include SetDomain.Print (E) ( struct type nonrec t = t type nonrec elt = elt let elements = elements let iter = iter end ) let arbitrary () = failwith "Projective.arbitrary" let filter p m = SetDomain.unsupported "Projective.filter" let partition p m = SetDomain.unsupported "Projective.partition" let min_elt m = SetDomain.unsupported "Projective.min_elt" let max_elt m = SetDomain.unsupported "Projective.max_elt" let disjoint m1 m2 = is_empty (inter m1 m2) (* TODO: optimize? *) let fold_buckets = M.fold end module type MayEqualSetDomain = sig include SetDomain.S val may_be_equal: elt -> elt -> bool end module ProjectiveSetPairwiseMeet (E: Printable.S) (B: MayEqualSetDomain with type elt = E.t) (R: Representative with type elt = E.t): SetDomain.S with type elt = E.t = struct include ProjectiveSet (E) (B) (R) let meet m1 m2 = let meet_buckets b1 b2 acc = B.fold (fun e1 acc -> B.fold (fun e2 acc -> if B.may_be_equal e1 e2 then add e1 (add e2 acc) else acc ) b2 acc ) b1 acc in fold_buckets (fun _ b1 acc -> fold_buckets (fun _ b2 acc -> meet_buckets b1 b2 acc ) m2 acc ) m1 (empty ()) end (** {2 By congruence} *) (** Buckets defined by congruence. *) module type Congruence = sig type elt (** Type of elements. *) val cong: elt -> elt -> bool (** Congruence relation on elements. *) end (** Set of elements [E.t] grouped into buckets by [C], where each bucket is described by the set [B]. Common choices for [B] are {!SetDomain.Joined} and {!HoareDomain.SetEM}. Handles {!Lattice.BotValue} from [B]. *) module PairwiseSet (E: Printable.S) (B: SetDomain.S with type elt = E.t) (C: Congruence with type elt = E.t): SetDomain.S with type elt = E.t = struct type elt = E.t module S = SetDomain.Make (B) (** Invariant: no explicit bot buckets. Required for efficient [is_empty], [cardinal] and [choose]. *) let name () = "Pairwise (" ^ B.name () ^ ")" (* explicitly delegate, so we don't accidentally delegate too much *) type t = S.t let equal = S.equal let compare = S.compare let hash = S.hash let tag = S.tag let relift = S.relift let is_bot = S.is_bot let bot = S.bot let is_top = S.is_top let top = S.top let is_empty = S.is_empty let empty = S.empty let cardinal = S.cardinal let fold f s a = S.fold (fun b a -> B.fold f b a) s a let iter f s = S.iter (fun b -> B.iter f b) s let exists p s = S.exists (fun b -> B.exists p b) s let for_all p s = S.for_all (fun b -> B.for_all p b) s let singleton e = S.singleton (B.singleton e) let choose s = B.choose (S.choose s) (* based on SetDomain.SensitiveConf *) let mem e s = S.exists (fun b -> C.cong (B.choose b) e && B.mem e b) s let add e s = let (s_match, s_rest) = S.partition (fun b -> C.cong (B.choose b) e) s in let b' = match S.choose s_match with | b -> assert (S.cardinal s_match = 1); B.add e b | exception Not_found -> B.singleton e in S.add b' s_rest let remove e s = let (s_match, s_rest) = S.partition (fun b -> C.cong (B.choose b) e) s in match S.choose s_match with | b -> assert (S.cardinal s_match = 1); begin match B.remove e b with | b' when B.is_bot b' -> s_rest (* remove bot bucket to preserve invariant *) | exception Lattice.BotValue -> s_rest (* remove bot bucket to preserve invariant *) | b' -> S.add b' s end | exception Not_found -> s let diff s1 s2 = let f b2 (s1, acc) = let e2 = B.choose b2 in let (s1_match, s1_rest) = S.partition (fun b1 -> C.cong (B.choose b1) e2) s1 in let acc' = match S.choose s1_match with | b1 -> assert (S.cardinal s1_match = 1); begin match B.diff b1 b2 with | b' when B.is_bot b' -> acc (* remove bot bucket to preserve invariant *) | exception Lattice.BotValue -> acc (* remove bot bucket to preserve invariant *) | b' -> S.add b' acc end | exception Not_found -> acc in (s1_rest, acc') in let (s1', acc) = S.fold f s2 (s1, empty ()) in S.union s1' acc let of_list es = List.fold_left (fun acc e -> add e acc ) (empty ()) es let elements m = fold List.cons m [] (* no intermediate per-bucket lists *) let map f s = fold (fun e acc -> add (f e) acc ) s (empty ()) (* no intermediate lists *) let leq s1 s2 = S.for_all (fun b1 -> let e1 = B.choose b1 in S.exists (fun b2 -> C.cong (B.choose b2) e1 && B.leq b1 b2) s2 ) s1 let pretty_diff () (s1, s2) = (* based on HoareDomain.Set *) let s1_not_leq = S.filter (fun b1 -> let e1 = B.choose b1 in not (S.exists (fun b2 -> C.cong (B.choose b2) e1 && B.leq b1 b2) s2) ) s1 in let b1_not_leq = S.choose s1_not_leq in let e1_not_leq = B.choose b1_not_leq in GoblintCil.Pretty.( dprintf "%a:\n" B.pretty b1_not_leq ++ S.fold (fun b2 acc -> if C.cong (B.choose b2) e1_not_leq then dprintf "not leq %a because %a\n" B.pretty b2 B.pretty_diff (b1_not_leq, b2) ++ acc else dprintf "not cong %a\n" B.pretty b2 ++ acc ) s2 nil ) let join s1 s2 = let f b2 (s1, acc) = let e2 = B.choose b2 in let (s1_match, s1_rest) = S.partition (fun b1 -> C.cong (B.choose b1) e2) s1 in let b' = match S.choose s1_match with | b1 -> assert (S.cardinal s1_match = 1); B.join b1 b2 | exception Not_found -> b2 in (s1_rest, S.add b' acc) in let (s1', acc) = S.fold f s2 (s1, empty ()) in S.union s1' acc let widen s1 s2 = Lattice.assert_valid_widen ~leq ~pretty_diff s1 s2; let f b2 (s1, acc) = let e2 = B.choose b2 in let (s1_match, s1_rest) = S.partition (fun e1 -> C.cong (B.choose e1) e2) s1 in let b' = match S.choose s1_match with | b1 -> assert (S.cardinal s1_match = 1); B.widen b1 b2 | exception Not_found -> b2 in (s1_rest, S.add b' acc) in let (s1', acc) = S.fold f s2 (s1, empty ()) in assert (is_empty s1'); (* since [leq s1 s2], folding over s2 should remove all s1 *) acc (* TODO: extra union s2 needed? *) let meet s1 s2 = let f b2 (s1, acc) = let e2 = B.choose b2 in let (s1_match, s1_rest) = S.partition (fun b1 -> C.cong (B.choose b1) e2) s1 in let acc' = match S.choose s1_match with | b1 -> assert (S.cardinal s1_match = 1); begin match B.meet b1 b2 with | b' when B.is_bot b' -> acc (* remove bot bucket to preserve invariant *) | exception Lattice.BotValue -> acc (* remove bot bucket to preserve invariant *) | b' -> S.add b' acc end | exception Not_found -> acc in (s1_rest, acc') in snd (S.fold f s2 (s1, S.empty ())) let narrow s1 s2 = let f b2 (s1, acc) = let e2 = B.choose b2 in let (s1_match, s1_rest) = S.partition (fun b1 -> C.cong (B.choose b1) e2) s1 in let acc' = match S.choose s1_match with | b1 -> assert (S.cardinal s1_match = 1); begin match B.narrow b1 b2 with | b' when B.is_bot b' -> acc (* remove bot bucket to preserve invariant *) | exception Lattice.BotValue -> acc (* remove bot bucket to preserve invariant *) | b' -> S.add b' acc end | exception Not_found -> acc in (s1_rest, acc') in snd (S.fold f s2 (s1, S.empty ())) let union = join let inter = meet let subset = leq include SetDomain.Print (E) ( struct type nonrec t = t type nonrec elt = elt let elements = elements let iter = iter end ) let arbitrary () = failwith "Pairwise.arbitrary" let filter p s = SetDomain.unsupported "Pairwise.filter" let partition p s = SetDomain.unsupported "Pairwise.partition" let min_elt s = SetDomain.unsupported "Pairwise.min_elt" let max_elt s = SetDomain.unsupported "Pairwise.max_elt" let disjoint s1 s2 = is_empty (inter s1 s2) (* TODO: optimize? *) end (** Buckets defined by a coarse projection and a fine congruence. Congruent elements must have the same representative, but not vice versa ({!Representative} would then suffice). *) module type RepresentativeCongruence = sig include Representative include Congruence with type elt := elt end (** Set of elements [E.t] grouped into buckets by [RC], where each bucket is described by the set [B]. *) module CombinedSet (E: Printable.S) (B: SetDomain.S with type elt = E.t) (RC: RepresentativeCongruence with type elt = E.t) = ProjectiveSet (E) (PairwiseSet (E) (B) (RC)) (RC) (** {1 Maps} Generalization of above sets into maps, whose key set behaves like above sets, but each element can also be associated with a value. *) (** {2 By projection} *) (** Map of keys [E.t] grouped into buckets by [R], where each bucket is described by the map [B] with values [V.t]. Common choice for [B] is {!MapDomain.Joined}. Handles {!Lattice.BotValue} from [B]. *) module ProjectiveMap (E: Printable.S) (V: Printable.S) (B: MapDomain.S with type key = E.t and type value = V.t) (R: Representative with type elt = E.t): MapDomain.S with type key = E.t and type value = B.value = struct type key = E.t type value = B.value module M = MapDomain.MapBot (R) (B) (** Invariant: no explicit bot buckets. Required for efficient [is_empty], [cardinal] and [choose]. *) let name () = "ProjectiveMap (" ^ B.name () ^ ")" (* explicitly delegate, so we don't accidentally delegate too much *) type t = M.t let equal = M.equal let compare = M.compare let hash = M.hash let tag = M.tag let relift = M.relift let is_bot = M.is_bot let bot = M.bot let is_top = M.is_top let top = M.top let is_empty = M.is_empty let empty = M.empty let cardinal = M.cardinal let leq = M.leq let join = M.join let pretty_diff = M.pretty_diff let fold f m a = M.fold (fun _ e a -> B.fold f e a) m a let iter f m = M.iter (fun _ e -> B.iter f e) m let exists p m = M.exists (fun _ e -> B.exists p e) m let for_all p m = M.for_all (fun _ e -> B.for_all p e) m let singleton e v = M.singleton (R.of_elt e) (B.singleton e v) let choose m = B.choose (snd (M.choose m)) let mem e m = match M.find_opt (R.of_elt e) m with | Some b -> B.mem e b | None -> false let find e m = let r = R.of_elt e in let b = M.find r m in (* raises Not_found *) B.find e b (* raises Not_found *) let find_opt e m = let r = R.of_elt e in match M.find_opt r m with | Some b -> B.find_opt e b | None -> None let add e v m = let r = R.of_elt e in let b' = match M.find_opt r m with | Some b -> B.add e v b | None -> B.singleton e v in M.add r b' m let remove e m = let r = R.of_elt e in match M.find_opt r m with | Some b -> begin match B.remove e b with | b' when B.is_bot b' -> M.remove r m (* remove bot bucket to preserve invariant *) | exception Lattice.BotValue -> M.remove r m (* remove bot bucket to preserve invariant *) | b' -> M.add r b' m end | None -> m let add_list evs m = List.fold_left (fun acc (e, v) -> add e v acc ) m evs let add_list_set es v m = List.fold_left (fun acc e -> add e v acc ) m es let add_list_fun es f m = List.fold_left (fun acc e -> add e (f e) acc ) m es let bindings m = fold (fun e v acc -> (e, v) :: acc) m [] (* no intermediate per-bucket lists *) let map f m = M.map (fun b -> B.map f b ) m let mapi f m = M.map (fun b -> B.mapi f b ) m let long_map2 f m1 m2 = M.long_map2 (fun b1 b2 -> B.long_map2 f b1 b2 ) m1 m2 let map2 f m1 m2 = M.map2 (fun b1 b2 -> B.map2 f b1 b2 ) m1 m2 let merge f m1 m2 = failwith "ProjectiveMap.merge" (* TODO: ? *) let widen m1 m2 = Lattice.assert_valid_widen ~leq ~pretty_diff m1 m2; M.widen m1 m2 let meet m1 m2 = M.merge (fun _ b1 b2 -> match b1, b2 with | Some b1, Some b2 -> begin match B.meet b1 b2 with | b' when B.is_bot b' -> None (* remove bot bucket to preserve invariant *) | exception Lattice.BotValue -> None (* remove bot bucket to preserve invariant *) | b' -> Some b' end | _, _ -> None ) m1 m2 let narrow m1 m2 = M.merge (fun _ b1 b2 -> match b1, b2 with | Some b1, Some b2 -> begin match B.narrow b1 b2 with | b' when B.is_bot b' -> None (* remove bot bucket to preserve invariant *) | exception Lattice.BotValue -> None (* remove bot bucket to preserve invariant *) | b' -> Some b' end | _, _ -> None ) m1 m2 include MapDomain.Print (E) (V) ( struct type nonrec t = t type nonrec key = key type nonrec value = value let fold = fold let iter = iter end ) let arbitrary () = failwith "ProjectiveMap.arbitrary" let filter p m = failwith "ProjectiveMap.filter" let leq_with_fct _ _ _ = failwith "ProjectiveMap.leq_with_fct" let join_with_fct _ _ _ = failwith "ProjectiveMap.join_with_fct" let widen_with_fct _ _ _ = failwith "ProjectiveMap.widen_with_fct" end (** {2 By congruence} *) (** Map of keys [E.t] grouped into buckets by [C], where each bucket is described by the map [B] with values [R.t]. Common choice for [B] is {!MapDomain.Joined}. Handles {!Lattice.BotValue} from [B]. *) module PairwiseMap (E: Printable.S) (R: Printable.S) (B: MapDomain.S with type key = E.t and type value = R.t) (C: Congruence with type elt = E.t): MapDomain.S with type key = E.t and type value = B.value = struct type key = E.t type value = B.value module S = SetDomain.Make (B) (** Invariant: no explicit bot buckets. Required for efficient [is_empty], [cardinal] and [choose]. *) let name () = "PairwiseMap (" ^ B.name () ^ ")" (* explicitly delegate, so we don't accidentally delegate too much *) type t = S.t let equal = S.equal let compare = S.compare let hash = S.hash let tag = S.tag let relift = S.relift let is_bot = S.is_bot let bot = S.bot let is_top = S.is_top let top = S.top let is_empty = S.is_empty let empty = S.empty let cardinal = S.cardinal let fold f s a = S.fold (fun b a -> B.fold f b a) s a let iter f s = S.iter (fun b -> B.iter f b) s let exists p s = S.exists (fun b -> B.exists p b) s let for_all p s = S.for_all (fun b -> B.for_all p b) s let singleton e r = S.singleton (B.singleton e r) let choose s = B.choose (S.choose s) (* based on SetDomain.SensitiveConf *) let mem e s = S.exists (fun b -> C.cong (fst (B.choose b)) e && B.mem e b) s let find e s = let (s_match, s_rest) = S.partition (fun b -> C.cong (fst (B.choose b)) e) s in let b = S.choose s_match in (* raises Not_found *) assert (S.cardinal s_match = 1); B.find e b (* raises Not_found *) let find_opt e s = let (s_match, s_rest) = S.partition (fun b -> C.cong (fst (B.choose b)) e) s in match S.choose s_match with | b -> assert (S.cardinal s_match = 1); B.find_opt e b | exception Not_found -> None let add e r s = let (s_match, s_rest) = S.partition (fun b -> C.cong (fst (B.choose b)) e) s in let b' = match S.choose s_match with | b -> assert (S.cardinal s_match = 1); B.add e r b | exception Not_found -> B.singleton e r in S.add b' s_rest let remove e s = let (s_match, s_rest) = S.partition (fun b -> C.cong (fst (B.choose b)) e) s in match S.choose s_match with | b -> assert (S.cardinal s_match = 1); begin match B.remove e b with | b' when B.is_bot b' -> s_rest (* remove bot bucket to preserve invariant *) | exception Lattice.BotValue -> s_rest (* remove bot bucket to preserve invariant *) | b' -> S.add b' s end | exception Not_found -> s let add_list ers m = List.fold_left (fun acc (e, r) -> add e r acc ) m ers let add_list_set es r m = List.fold_left (fun acc e -> add e r acc ) m es let add_list_fun es f m = List.fold_left (fun acc e -> add e (f e) acc ) m es let bindings m = fold (fun e r acc -> (e, r) :: acc) m [] (* no intermediate per-bucket lists *) let map f m = S.map (fun b -> B.map f b ) m let mapi f m = S.map (fun b -> B.mapi f b ) m let long_map2 f s1 s2 = let f b2 (s1, acc) = let e2 = fst (B.choose b2) in let (s1_match, s1_rest) = S.partition (fun b1 -> C.cong (fst (B.choose b1)) e2) s1 in let b' = match S.choose s1_match with | b1 -> assert (S.cardinal s1_match = 1); B.long_map2 f b1 b2 | exception Not_found -> b2 in (s1_rest, S.add b' acc) in let (s1', acc) = S.fold f s2 (s1, empty ()) in S.union s1' acc let map2 f s1 s2 = let f b2 (s1, acc) = let e2 = fst (B.choose b2) in let (s1_match, s1_rest) = S.partition (fun b1 -> C.cong (fst (B.choose b1)) e2) s1 in let acc' = match S.choose s1_match with | b1 -> assert (S.cardinal s1_match = 1); begin match B.map2 f b1 b2 with | b' when B.is_bot b' -> acc (* remove bot bucket to preserve invariant *) | exception Lattice.BotValue -> acc (* remove bot bucket to preserve invariant *) | b' -> S.add b' acc end | exception Not_found -> acc in (s1_rest, acc') in snd (S.fold f s2 (s1, S.empty ())) let merge f m1 m2 = failwith "PairwiseMap.merge" (* TODO: ? *) let leq s1 s2 = S.for_all (fun b1 -> let e1 = fst (B.choose b1) in S.exists (fun b2 -> C.cong (fst (B.choose b2)) e1 && B.leq b1 b2) s2 ) s1 let pretty_diff () (s1, s2) = (* based on PairwiseSet *) let s1_not_leq = S.filter (fun b1 -> let e1 = fst (B.choose b1) in not (S.exists (fun b2 -> C.cong (fst (B.choose b2)) e1 && B.leq b1 b2) s2) ) s1 in let b1_not_leq = S.choose s1_not_leq in let e1_not_leq = fst (B.choose b1_not_leq) in GoblintCil.Pretty.( dprintf "%a:\n" B.pretty b1_not_leq ++ S.fold (fun b2 acc -> if C.cong (fst (B.choose b2)) e1_not_leq then dprintf "not leq %a because %a\n" B.pretty b2 B.pretty_diff (b1_not_leq, b2) ++ acc else dprintf "not cong %a\n" B.pretty b2 ++ acc ) s2 nil ) let join s1 s2 = let f b2 (s1, acc) = let e2 = fst (B.choose b2) in let (s1_match, s1_rest) = S.partition (fun b1 -> C.cong (fst (B.choose b1)) e2) s1 in let b' = match S.choose s1_match with | b1 -> assert (S.cardinal s1_match = 1); B.join b1 b2 | exception Not_found -> b2 in (s1_rest, S.add b' acc) in let (s1', acc) = S.fold f s2 (s1, empty ()) in S.union s1' acc let widen s1 s2 = Lattice.assert_valid_widen ~leq ~pretty_diff s1 s2; let f b2 (s1, acc) = let e2 = fst (B.choose b2) in let (s1_match, s1_rest) = S.partition (fun e1 -> C.cong (fst (B.choose e1)) e2) s1 in let b' = match S.choose s1_match with | b1 -> assert (S.cardinal s1_match = 1); B.widen b1 b2 | exception Not_found -> b2 in (s1_rest, S.add b' acc) in let (s1', acc) = S.fold f s2 (s1, empty ()) in assert (is_empty s1'); (* since [leq s1 s2], folding over s2 should remove all s1 *) acc (* TODO: extra union s2 needed? *) let meet s1 s2 = let f b2 (s1, acc) = let e2 = fst (B.choose b2) in let (s1_match, s1_rest) = S.partition (fun b1 -> C.cong (fst (B.choose b1)) e2) s1 in let acc' = match S.choose s1_match with | b1 -> assert (S.cardinal s1_match = 1); begin match B.meet b1 b2 with | b' when B.is_bot b' -> acc (* remove bot bucket to preserve invariant *) | exception Lattice.BotValue -> acc (* remove bot bucket to preserve invariant *) | b' -> S.add b' acc end | exception Not_found -> acc in (s1_rest, acc') in snd (S.fold f s2 (s1, S.empty ())) let narrow s1 s2 = let f b2 (s1, acc) = let e2 = fst (B.choose b2) in let (s1_match, s1_rest) = S.partition (fun b1 -> C.cong (fst (B.choose b1)) e2) s1 in let acc' = match S.choose s1_match with | b1 -> assert (S.cardinal s1_match = 1); begin match B.narrow b1 b2 with | b' when B.is_bot b' -> acc (* remove bot bucket to preserve invariant *) | exception Lattice.BotValue -> acc (* remove bot bucket to preserve invariant *) | b' -> S.add b' acc end | exception Not_found -> acc in (s1_rest, acc') in snd (S.fold f s2 (s1, S.empty ())) include MapDomain.Print (E) (R) ( struct type nonrec t = t type nonrec key = key type nonrec value = value let fold = fold let iter = iter end ) let arbitrary () = failwith "PairwiseMap.arbitrary" let filter p s = failwith "PairwiseMap.filter" let leq_with_fct _ _ _ = failwith "PairwiseMap.leq_with_fct" let join_with_fct _ _ _ = failwith "PairwiseMap.join_with_fct" let widen_with_fct _ _ _ = failwith "PairwiseMap.widen_with_fct" end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>