package goblint

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file hoareDomain.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
(** Abstract domains with Hoare ordering. *)

module Pretty = GoblintCil.Pretty
open Pretty

exception Unsupported of string
let unsupported s = raise (Unsupported s)

(* Hoare hash set for partial orders: keeps incomparable elements separate
   - All comparable elements must have the same hash so that they land in the same bucket!
   - Pairwise operations like join then only need to be done per bucket.
   - E should throw Lattice.Incomparable if an operation is not defined for two elements.
     In this case the operation will be done on the level of the set instead.
   - Hoare set means that for comparable elements, we only keep the biggest one.
     -> We only need to find the first comparable element for a join etc.
     -> There should only be one element per bucket except for hash collisions.
*)
module HoarePO (E : Lattice.PO) =
struct
  open Batteries
  type bucket = E.t list
  type t = bucket Map.Int.t
  module Map = Map.Int

  module B = struct (* bucket *)
    (* join element e with bucket using op *)
    let rec join op e = function
      | [] -> [e]
      | x::xs -> try op e x :: xs with Lattice.Uncomparable -> x :: join op e xs

    (* widen new(!) element e with old(!) bucket using op *)
    let rec widen op e = function
      | [] -> []
      | x::xs -> try if E.leq x e then [op x e] else widen op e xs with Lattice.Uncomparable -> widen op e xs (* only widen if valid *)

    (* meet element e with bucket using op *)
    let rec meet op e = function
      | [] -> []
      | x::xs -> try [op e x] with Lattice.Uncomparable -> meet op e xs

    (* merge element e into its bucket in m using f, discard bucket if empty *)
    let merge_element f e m =
      let i = E.hash e in
      let b = f e (Map.find_default [] i m) in
      if b = [] then Map.remove i m
      else Map.add i b m
  end

  let elements m = Map.values m |> List.of_enum |> List.flatten

  (* merge elements in x and y by f *)
  (* TODO: unused, remove? *)
  let merge op f x y =
    let g = match op with
      | `Join -> B.join
      | `Meet -> B.meet
    in
    Map.merge (fun i a b -> match a, b with
        | Some a, Some b ->
          let r = List.fold_left (flip (g f)) a b in
          if r = [] then None else Some r
        | Some x, None
        | None, Some x when op = `Join -> Some x
        | _ -> None
      ) x y

  let merge_meet f x y =
    Map.merge (fun i a b -> match a, b with
        | Some a, Some b ->
          let r = List.concat_map (fun x -> B.meet f x a) b in
          if r = [] then None else Some r
        | _ -> None
      ) x y
  let merge_widen f x y =
    Map.merge (fun i a b -> match a, b with
        | Some a, Some b ->
          let r = List.concat_map (fun x -> B.widen f x a) b in
          let r = List.fold_left (fun r x -> B.join E.join x r) r b in (* join b per bucket *)
          if r = [] then None else Some r
        | None, Some b -> Some b (* join b per bucket *)
        | _ -> None
      ) x y

  (* join all elements from the smaller map into their bucket in the other one.
   * this doesn't need to go over all elements of both maps as the general merge above. *)
  let merge_join f x y =
    let x, y = if Map.cardinal x < Map.cardinal y then x, y else y, x in
    List.fold_left (flip (B.merge_element (B.join f))) y (elements x)

  let join   x y = merge_join E.join x y
  let widen  x y = merge_widen E.widen x y
  let meet   x y = merge_meet E.meet x y
  let narrow x y = merge_meet E.narrow x y (* TODO: fix narrow like widen? see Set *)

  (* Set *)
  let of_list_by f es = List.fold_left (flip (B.merge_element (B.join f))) Map.empty es
  let of_list es = of_list_by E.join es
  let singleton e = of_list [e]
  let exists p m = List.exists p (elements m)
  let for_all p m = List.for_all p (elements m)
  let mem e m = exists (E.leq e) m
  let choose m = List.hd (snd (Map.choose m))
  let apply_list f m = of_list (f (elements m))
  let map f m =
    (* Map.map (List.map f) m *)
    (* since hashes might change we need to rebuild: *)
    apply_list (List.map f) m
  let filter f m = apply_list (List.filter f) m (* TODO do something better? unused *)
  let remove x m = (* NB! strong removal *)
    let ngreq x y = not (E.leq y x) in
    B.merge_element (fun _ -> List.filter (ngreq x)) x m
  (* let add e m = if mem e m then m else B.merge List.cons e m *)
  let add e m = if mem e m then m else join (singleton e) m
  let fold f m a = Map.fold (fun _ -> List.fold_right f) m a
  let cardinal m = fold (const succ) m 0
  let diff a b = apply_list (List.filter (fun x -> not (mem x b))) a (* NB! strong removal *)
  let empty () = Map.empty
  let is_empty m = Map.is_empty m
  (* let union x y = merge (B.join keep_apart) x y *)
  let union x y = join x y
  let iter f m = Map.iter (fun _ -> List.iter f) m

  (* Lattice *)
  let bot () = Map.empty
  let is_bot = Map.is_empty
  let top () = unsupported "HoarePO.top"
  let is_top _ = false
  let leq x y = (* all elements in x must be leq than the ones in y *)
    for_all (flip mem y) x

  (* Printable *)
  let name () = "Set (" ^ E.name () ^ ")"
  (* let equal x y = try Map.equal (List.for_all2 E.equal) x y with Invalid_argument _ -> false *)
  let equal x y = leq x y && leq y x
  let hash xs = fold (fun v a -> a + E.hash v) xs 0
  let compare x y =
    if equal x y then
      0
    else (
      let caridnality_comp = compare (cardinal x) (cardinal y) in
      if caridnality_comp <> 0 then
        caridnality_comp
      else
        Map.compare (List.compare E.compare) x y
    )
  let show x : string =
    let all_elems : string list = List.map E.show (elements x) in
    Printable.get_short_list "{" "}" all_elems

  let to_yojson x = [%to_yojson: E.t list] (elements x)

  let pretty () x =
    let content = List.map (E.pretty ()) (elements x) in
    let rec separate x =
      match x with
      | [] -> []
      | [x] -> [x]
      | (x::xs) -> x ++ (text ", ") :: separate xs
    in
    let separated = separate content in
    let content = List.fold_left (++) nil separated in
    (text "{") ++ content ++ (text "}")

  let pretty_diff () ((x:t),(y:t)): Pretty.doc =
    Pretty.dprintf "HoarePO: %a not leq %a" pretty x pretty y
  let printXml f x =
    BatPrintf.fprintf f "<value>\n<set>\n";
    List.iter (E.printXml f) (elements x);
    BatPrintf.fprintf f "</set>\n</value>\n"
end
[@@deprecated]


module type SetS =
sig
  include SetDomain.S
  val apply_list: (elt list -> elt list) -> t -> t
end

(** Set of [Lattice.S] elements with Hoare ordering.
    This abstracts a set by its {e maximal} elements.

    Element-wise {!SetDomain.S} operations only observe the maximal elements.

    This has {e extrapolation heuristics} instead of a true [widen],
    i.e. convergence is only guaranteed if the number of maximal
    elements converges.
    Otherwise use {!SetEM}.

    @see <https://doi.org/10.1007/s10009-005-0215-8> Bagnara, R., Hill, P.M. & Zaffanella, E. Widening operators for powerset domains. *)
module Set (B : Lattice.S): SetS with type elt = B.t =
struct
  include SetDomain.Make (B)

  let mem x s = exists (B.leq x) s
  let leq a b = for_all (fun x -> mem x b) a (* mem uses B.leq! *)
  let le x y = B.leq x y && not (B.equal x y) && not (B.leq y x)
  let reduce s = filter (fun x -> not (exists (le x) s)) s
  let product_bot op a b =
    let a,b = elements a, elements b in
    List.concat_map (fun x -> List.map (fun y -> op x y) b) a |> fun x -> reduce (of_list x)
  let product_widen op a b = (* assumes b to be bigger than a *)
    let xs,ys = elements a, elements b in
    List.concat_map (fun x -> List.map (fun y -> op x y) ys) xs |> fun x -> reduce (union b (of_list x))
  let widen = product_widen (fun x y -> if B.leq x y then B.widen x y else B.bot ())
  let narrow = product_bot (fun x y -> if B.leq y x then B.narrow x y else x)

  let add x a = if mem x a then a else add x a (* special mem! *)
  let remove x a = filter (fun y -> not (B.leq y x)) a (* NB! strong removal *)
  let join a b = union a b |> reduce
  let union _ _ = unsupported "Set.union"
  let inter _ _ = unsupported "Set.inter"
  let meet = product_bot B.meet
  let subset _ _ = unsupported "Set.subset"
  let map f a = map f a |> reduce
  let min_elt a = B.bot ()
  let apply_list f s = elements s |> f |> of_list
  let diff a b = apply_list (List.filter (fun x -> not (mem x b))) a (* NB! strong removal *)
  let of_list xs = List.fold_right add xs (empty ()) |> reduce (* TODO: why not use Make's of_list if reduce anyway, right now add also is special *)

  (* Copied from Make *)
  let arbitrary () = QCheck.map ~rev:elements of_list @@ QCheck.small_list (B.arbitrary ())

  let pretty_diff () ((s1:t),(s2:t)): Pretty.doc =
    if leq s1 s2 then dprintf "%s (%d and %d paths): These are fine!" (name ()) (cardinal s1) (cardinal s2) else begin
      try
        let p t = not (mem t s2) in
        let evil = choose (filter p s1) in
        dprintf "%a:\n" B.pretty evil
        ++
        if is_empty s2 then
          text "empty set s2"
        else
          fold (fun other acc ->
              (dprintf "not leq %a because %a\n" B.pretty other B.pretty_diff (evil, other)) ++ acc
            ) s2 nil
      with Not_found ->
        dprintf "choose failed b/c of empty set s1: %d s2: %d"
          (cardinal s1)
          (cardinal s2)
    end
end


module Set_LiftTop (B : Lattice.S) (N: SetDomain.ToppedSetNames): SetS with type elt = B.t =
struct
  module S = Set (B)
  include SetDomain.LiftTop (S) (N)

  let min_elt a = B.bot ()
  let apply_list f = function
    | `Top -> `Top
    | `Lifted s -> `Lifted (S.apply_list f s)
end


(* TODO: weaken R to Lattice.S ? *)
module MapBot (SpecD:Lattice.S) (R:SetDomain.S) =
struct
  include MapDomain.MapBot (SpecD) (R)

  (* TODO: get rid of these value-ignoring set-mimicing hacks *)
  let choose' = choose
  let choose (s: t): SpecD.t = fst (choose' s)
  let filter' = filter
  let filter (p: key -> bool) (s: t): t = filter (fun x _ -> p x) s
  let iter' = iter
  let for_all' = for_all
  let exists' = exists
  let exists (p: key -> bool) (s: t): bool = exists (fun x _ -> p x) s
  let fold' = fold
  let fold (f: key -> 'a -> 'a) (s: t) (acc: 'a): 'a = fold (fun x _ acc -> f x acc) s acc
  let add (x: key) (r: R.t) (s: t): t = add x (R.join r (find x s)) s
  let map (f: key -> key) (s: t): t = fold' (fun x v acc -> add (f x) v acc) s (empty ())
  (* TODO: reducing map, like HoareSet *)

  let elements (s: t): (key * R.t) list = bindings s
  let of_list (l: (key * R.t) list): t = List.fold_left (fun acc (x, r) -> add x r acc) (empty ()) l
  let union = long_map2 R.union


  (* copied & modified from SetDomain.Hoare_NoTop *)
  let mem x xr s = R.for_all (fun vie -> exists' (fun y yr -> SpecD.leq x y && R.mem vie yr) s) xr
  let leq a b = for_all' (fun x xr -> mem x xr b) a (* mem uses B.leq! *)

  let le x y = SpecD.leq x y && not (SpecD.equal x y) && not (SpecD.leq y x)
  let reduce (s: t): t =
    (* get map with just maximal keys and their ranges *)
    let maximals = filter (fun x -> not (exists (le x) s)) s in
    (* join le ranges also *)
    let maximals =
      mapi (fun x xr ->
          fold' (fun y yr acc ->
              if le y x then
                R.join acc yr
              else
                acc
            ) s xr
        ) maximals
    in
    maximals
  let product_bot op op2 a b =
    let a,b = elements a, elements b in
    List.concat_map (fun (x,xr) -> List.map (fun (y,yr) -> (op x y, op2 xr yr)) b) a |> fun x -> reduce (of_list x)
  let product_bot2 op2 a b =
    let a,b = elements a, elements b in
    List.concat_map (fun (x,xr) -> List.map (fun (y,yr) -> op2 (x, xr) (y, yr)) b) a |> fun x -> reduce (of_list x)
  (* why are type annotations needed for product_widen? *)
  (* TODO: unused now *)
  let product_widen op op2 (a:t) (b:t): t = (* assumes b to be bigger than a *)
    let xs,ys = elements a, elements b in
    List.concat_map (fun (x,xr) -> List.map (fun (y,yr) -> (op x y, op2 xr yr)) ys) xs |> fun x -> reduce (join b (of_list x)) (* join instead of union because R is HoareDomain.Set for witness generation *)
  let product_widen2 op2 (a:t) (b:t): t = (* assumes b to be bigger than a *)
    let xs,ys = elements a, elements b in
    List.concat_map (fun (x,xr) -> List.map (fun (y,yr) -> op2 (x, xr) (y, yr)) ys) xs |> fun x -> reduce (join b (of_list x)) (* join instead of union because R is HoareDomain.Set for witness generation *)
  let join a b = join a b |> reduce
  let meet = product_bot SpecD.meet R.inter
  (* let narrow = product_bot (fun x y -> if SpecD.leq y x then SpecD.narrow x y else x) R.narrow *)
  (* TODO: move PathSensitive3-specific narrow out of HoareMap *)
  let narrow = product_bot2 (fun (x, xr) (y, yr) -> if SpecD.leq y x then (SpecD.narrow x y, yr) else (x, xr))
  (* let widen = product_widen (fun x y -> if SpecD.leq x y then SpecD.widen x y else SpecD.bot ()) R.widen *)
  (* TODO: move PathSensitive3-specific widen out of HoareMap *)
  let widen = product_widen2 (fun (x, xr) (y, yr) -> if SpecD.leq x y then (SpecD.widen x y, yr) else (y, yr)) (* TODO: is this right now? *)

  (* TODO: shouldn't this also reduce? *)
  let apply_list f s = elements s |> f |> of_list

  let pretty_diff () ((s1:t),(s2:t)): Pretty.doc =
    if leq s1 s2 then dprintf "%s (%d and %d paths): These are fine!" (name ()) (cardinal s1) (cardinal s2) else begin
      try
        let p t tr = not (mem t tr s2) in
        let (evil, evilr) = choose' (filter' p s1) in
        let evilr' = R.choose evilr in
        dprintf "%a -> %a:\n" SpecD.pretty evil R.pretty (R.singleton evilr')
        ++
        if is_empty s2 then
          text "empty set s2"
        else
          fold' (fun other otherr acc ->
              (dprintf "not leq %a because %a\nand not mem %a because %a\n" SpecD.pretty other SpecD.pretty_diff (evil, other) R.pretty otherr R.pretty_diff (R.singleton evilr', otherr)) ++ acc
            ) s2 nil
      with Not_found ->
        dprintf "choose failed b/c of empty set s1: %d s2: %d"
          (cardinal s1)
          (cardinal s2)
    end
end
[@@deprecated]

(** Set of [Lattice.S] elements with Hoare ordering.
    This abstracts a set by its {e maximal} elements.

    Element-wise {!SetDomain.S} operations only observe the maximal elements.

    This has a true [widen] using the trivial Egli-Milner connector,
    i.e. convergence is even guaranteed if the number of maximal
    elements does not converge.
    Otherwise {!Set} is sufficient.

    @see <https://doi.org/10.1007/s10009-005-0215-8> Bagnara, R., Hill, P.M. & Zaffanella, E. Widening operators for powerset domains. *)
module SetEM (E: Lattice.S): SetDomain.S with type elt = E.t =
struct
  module H = Set (E)
  include H

  (* version of widen which doesn't use E.bot *)
  (* TODO: move to Set above? *)
  let product_widen (op: elt -> elt -> elt option) a b = (* assumes b to be bigger than a *)
    let xs,ys = elements a, elements b in
    List.concat_map (fun x -> List.filter_map (fun y -> op x y) ys) xs |> fun x -> join b (of_list x)
  let widen = product_widen (fun x y -> if E.leq x y then Some (E.widen x y) else None)

  (* above widen is actually extrapolation operator, so define connector-based widening instead *)

  (** Egli-Milner partial order relation.
      See Bagnara, Section 3. *)
  let leq_em s1 s2 =
    is_bot s1 || leq s1 s2 && for_all (fun e2 -> exists (fun e1 -> E.leq e1 e2) s1) s2

  (** Egli-Milner connector, i.e. {e any} upper bound operator for {!leq_em}.
      Trivial connector, which joins all elements to a singleton set.
      See Bagnara, Section 3. *)
  let join_em s1 s2 =
    join s1 s2
    |> elements
    |> BatList.reduce E.join
    |> singleton

  (** Connector-based widening.
      See Bagnara, Section 6. *)
  let widen s1 s2 =
    assert (leq s1 s2);
    let s2' =
      if leq_em s1 s2 then
        s2
      else
        join_em s1 s2
    in
    widen s1 s2'
end
OCaml

Innovation. Community. Security.