package goblint
Static analysis framework for C
Install
Dune Dependency
Authors
Maintainers
Sources
goblint-2.5.0.tbz
sha256=452d8491527aea21f2cbb11defcc14ba0daf9fdb6bdb9fc0af73e56eac57b916
sha512=1993cd45c4c7fe124ca6e157f07d17ec50fab5611b270a434ed1b7fb2910aa85a8e6eaaa77dad770430710aafb2f6d676c774dd33942d921f23e2f9854486551
doc/src/goblint.domain/mapDomain.ml.html
Source file mapDomain.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
(** Map domains. *) module Pretty = GoblintCil.Pretty open Pretty module type PS = sig include Printable.S type key (** The type of the map keys. *) type value (** The type of the values. *) val add: key -> value -> t -> t val remove: key -> t -> t val find: key -> t -> value val find_opt: key -> t -> value option val mem: key -> t -> bool val iter: (key -> value -> unit) -> t -> unit val map: (value -> value) -> t -> t val filter: (key -> value -> bool) -> t -> t val mapi: (key -> value -> value) -> t -> t val fold: (key -> value -> 'a -> 'a) -> t -> 'a -> 'a val add_list: (key * value) list -> t -> t val add_list_set: key list -> value -> t -> t val add_list_fun: key list -> (key -> value) -> t -> t val for_all: (key -> value -> bool) -> t -> bool val map2: (value -> value -> value) -> t -> t -> t val long_map2: (value -> value -> value) -> t -> t -> t val merge : (key -> value option -> value option -> value option) -> t -> t -> t (* TODO: unused, remove? *) val cardinal: t -> int val choose: t -> key * value val singleton: key -> value -> t val empty: unit -> t val is_empty: t -> bool val exists: (key -> value -> bool) -> t -> bool val bindings: t -> (key * value) list end module type S = sig include PS include Lattice.S with type t := t val widen_with_fct: (value -> value -> value) -> t -> t -> t (* Widen using a custom widening function for value rather than the default one for value *) val join_with_fct: (value -> value -> value) -> t -> t -> t (* Join using a custom join function for value rather than the default one for value *) val leq_with_fct: (value -> value -> bool) -> t -> t -> bool (* Leq test using a custom leq function for value rather than the default one provided for value *) end (** Subsignature of {!S}, which is sufficient for {!Print}. *) module type Bindings = sig type t type key type value val fold: (key -> value -> 'a -> 'a) -> t -> 'a -> 'a val iter: (key -> value -> unit) -> t -> unit end (** Reusable output definitions for maps. *) module Print (D: Printable.S) (R: Printable.S) (M: Bindings with type key = D.t and type value = R.t) = struct let pretty () map = let doc = M.fold (fun k v acc -> acc ++ dprintf "%a ->@?@[%a@]\n" D.pretty k R.pretty v ) map nil in if doc = Pretty.nil then text "{}" else dprintf "@[{\n @[%a@]}@]" Pretty.insert doc let show map = GobPretty.sprint pretty map let printXml f map = BatPrintf.fprintf f "<value>\n<map>\n"; M.iter (fun k v -> BatPrintf.fprintf f "<key>\n%s</key>\n%a" (XmlUtil.escape (D.show k)) R.printXml v ) map; BatPrintf.fprintf f "</map>\n</value>\n" let to_yojson map = let l = M.fold (fun k v acc -> (D.show k, R.to_yojson v) :: acc ) map [] in `Assoc l end module type Groupable = sig include Printable.S type group (* use [@@deriving show { with_path = false }] *) val compare_group: group -> group -> int val show_group: group -> string val to_group: t -> group end (** Reusable output definitions for maps with key grouping. *) module PrintGroupable (D: Groupable) (R: Printable.S) (M: Bindings with type key = D.t and type value = R.t) = struct include Print (D) (R) (M) module Group = struct type t = D.group [@@deriving ord] end module GroupMap = Map.Make (Group) let pretty () mapping = let groups = M.fold (fun k v acc -> GroupMap.update (D.to_group k) (fun doc -> let doc = Option.value doc ~default:Pretty.nil in let doc' = doc ++ dprintf "%a ->@? @[%a@]\n" D.pretty k R.pretty v in Some doc' ) acc ) mapping GroupMap.empty in let pretty_groups () = GroupMap.fold (fun group doc acc -> acc ++ dprintf "@[%s {\n @[%a@]}@]\n" (D.show_group group) Pretty.insert doc ) groups nil in dprintf "@[{\n @[%t@]}@]" pretty_groups let show map = GobPretty.sprint pretty map (* TODO: groups in XML, JSON? *) end module PMap (Domain: Printable.S) (Range: Lattice.S) : PS with type key = Domain.t and type value = Range.t = struct module M = Map.Make (Domain) include Printable.Std include M type key = Domain.t type value = Range.t type t = Range.t M.t (* key -> value mapping *) let name () = "map" (* And one less brainy definition *) let for_all2 = M.equal let equal x y = x == y || for_all2 Range.equal x y let compare x y = if equal x y then 0 else M.compare Range.compare x y let hash xs = fold (fun k v a -> a + (Domain.hash k * Range.hash v)) xs 0 let empty () = M.empty let add_list keyvalues m = List.fold_left (fun acc (key,value) -> add key value acc) m keyvalues let add_list_set keys value m = List.fold_left (fun acc key -> add key value acc) m keys let add_list_fun keys f m = List.fold_left (fun acc key -> add key (f key) acc) m keys let long_map2 op = let f k v1 v2 = match v1, v2 with | Some v1, Some v2 -> Some (op v1 v2) | Some _, _ -> v1 | _, Some _ -> v2 | _ -> None in M.merge f let map2 op = (* Similar to the previous, except we ignore elements that only occur in one * of the mappings, so we start from an empty map *) let f k v1 v2 = match v1, v2 with | Some v1, Some v2 -> Some (op v1 v2) | _ -> None in M.merge f include Print (Domain) (Range) ( struct type nonrec t = t type nonrec key = key type nonrec value = value let fold = fold let iter = iter end ) (* uncomment to easily check pretty's grouping during a normal run, e.g. ./regtest 01 01: *) (* let add k v m = let _ = Logs.debug "%a" pretty m in M.add k v m *) let arbitrary () = QCheck.always M.empty (* S TODO: non-empty map *) let relift m = M.fold (fun k v acc -> M.add (Domain.relift k) (Range.relift v) acc ) m M.empty end (* TODO: why is HashCached.hash significantly slower as a functor compared to being inlined into PMap? *) module HashCached (M: S) : S with type key = M.key and type value = M.value = struct include Lattice.HashCached (M) type key = M.key type value = M.value let add k v = lift_f' (M.add k v) let remove k = lift_f' (M.remove k) let find k = lift_f (M.find k) let find_opt k = lift_f (M.find_opt k) let mem k = lift_f (M.mem k) let iter f = lift_f (M.iter f) let map f = lift_f' (M.map f) let mapi f = lift_f' (M.mapi f) let fold f x a = M.fold f (unlift x) a let filter f = lift_f' (M.filter f) let merge f = lift_f2' (M.merge f) let for_all f = lift_f (M.for_all f) let cardinal = lift_f M.cardinal let choose = lift_f M.choose let singleton k v = lift @@ M.singleton k v let empty () = lift @@ M.empty () let is_empty = lift_f M.is_empty let exists p = lift_f (M.exists p) let bindings = lift_f M.bindings let add_list keyvalues = lift_f' (M.add_list keyvalues) let add_list_set keys value = lift_f' (M.add_list_set keys value) let add_list_fun keys f = lift_f' (M.add_list_fun keys f) let long_map2 op = lift_f2' (M.long_map2 op) let map2 op = lift_f2' (M.map2 op) let leq_with_fct f = lift_f2 (M.leq_with_fct f) let join_with_fct f = lift_f2' (M.join_with_fct f) let widen_with_fct f = lift_f2' (M.widen_with_fct f) let relift = lift_f' M.relift end (* TODO: this is very slow because every add/remove in a fold-loop relifts *) (* TODO: currently hardcoded to assume_idempotent *) module HConsed (M: S) : S with type key = M.key and type value = M.value = struct include Lattice.HConsed (M) (struct let assume_idempotent = false end) type key = M.key type value = M.value let lift_f' f x = lift @@ lift_f f x let lift_f2' f x y = lift @@ lift_f2 f x y let add k v = lift_f' (M.add k v) let remove k = lift_f' (M.remove k) let find k = lift_f (M.find k) let find_opt k = lift_f (M.find_opt k) let mem k = lift_f (M.mem k) let iter f = lift_f (M.iter f) let map f = lift_f' (M.map f) let mapi f = lift_f' (M.mapi f) let fold f x a = M.fold f (unlift x) a let filter f = lift_f' (M.filter f) let merge f = lift_f2' (M.merge f) let for_all f = lift_f (M.for_all f) let cardinal = lift_f M.cardinal let choose = lift_f M.choose let singleton k v = lift @@ M.singleton k v let empty () = lift @@ M.empty () let is_empty = lift_f M.is_empty let exists p = lift_f (M.exists p) let bindings = lift_f M.bindings let add_list keyvalues = lift_f' (M.add_list keyvalues) let add_list_set keys value = lift_f' (M.add_list_set keys value) let add_list_fun keys f = lift_f' (M.add_list_fun keys f) let long_map2 op = lift_f2' (M.long_map2 op) let map2 op = lift_f2' (M.map2 op) let leq_with_fct f = lift_f2 (M.leq_with_fct f) let join_with_fct f = lift_f2' (M.join_with_fct f) let widen_with_fct f = lift_f2' (M.widen_with_fct f) end module Timed (M: S) : S with type key = M.key and type value = M.value = struct let time str f arg = Timing.wrap (M.name ()) (Timing.wrap str f) arg (* Printable.S *) type t = M.t let equal x y = time "equal" (M.equal x) y let compare x y = time "compare" (M.compare x) y let hash x = time "hash" M.hash x let tag x = time "tag" M.tag x (* TODO: time these also? *) let name = M.name let to_yojson = M.to_yojson let show = M.show let pretty = M.pretty let pretty_diff = M.pretty_diff let printXml = M.printXml let arbitrary = M.arbitrary (* Lattice.S *) let top () = time "top" M.top () let is_top x = time "is_top" M.is_top x let bot () = time "bot" M.bot () let is_bot x = time "is_bot" M.is_bot x let leq x y = time "leq" (M.leq x) y let join x y = time "join" (M.join x) y let meet x y = time "meet" (M.meet x) y let widen x y = time "widen" (M.widen x) y let narrow x y = time "narrow" (M.narrow x) y (* MapDomain.S *) type key = M.key type value = M.value let add k v x = time "add" (M.add k v) x let remove k x = time "remove" (M.remove k) x let find k x = time "find" (M.find k) x let find_opt k x = time "find_opt" (M.find_opt k) x let mem k x = time "mem" (M.mem k) x let iter f x = time "iter" (M.iter f) x let map f x = time "map" (M.map f) x let mapi f x = time "mapi" (M.mapi f) x let fold f x a = time "fold" (M.fold f x) a let filter f x = time "filter" (M.filter f) x let merge f x y = time "merge" (M.merge f x) y let for_all f x = time "for_all" (M.for_all f) x let cardinal x = time "cardinal" M.cardinal x let choose x = time "choose" M.choose x let singleton k v = time "singleton" (M.singleton k) v let empty () = time "empty" M.empty () let is_empty x = time "is_empty" M.is_empty x let exists p x = time "exists" (M.exists p) x let bindings x = time "bindings" M.bindings x let add_list xs x = time "add_list" (M.add_list xs) x let add_list_set ks v x = time "add_list_set" (M.add_list_set ks v) x let add_list_fun ks f x = time "add_list_fun" (M.add_list_fun ks f) x let long_map2 f x y = time "long_map2" (M.long_map2 f x) y let map2 f x y = time "map2" (M.map2 f x) y let leq_with_fct f x y = time "leq_with_fct" (M.leq_with_fct f x) y let join_with_fct f x y = time "join_with_fct" (M.join_with_fct f x) y let widen_with_fct f x y = time "widen_with_fct" (M.widen_with_fct f x) y let relift x = M.relift x end module MapBot (Domain: Printable.S) (Range: Lattice.S) : S with type key = Domain.t and type value = Range.t = struct include PMap (Domain) (Range) let leq_with_fct f m1 m2 = (* For each key-value in m1, the same key must be in m2 with a geq value: *) let p key value = try f value (find key m2) with Not_found -> false in m1 == m2 || for_all p m1 let leq = leq_with_fct Range.leq let find x m = try find x m with | Not_found -> Range.bot () let top () = Lattice.unsupported "partial map top" let bot () = empty () let is_top _ = false let is_bot = is_empty let pretty_diff () ((m1:t),(m2:t)): Pretty.doc = let diff_key k v acc_opt = match find k m2 with | v2 when not (Range.leq v v2) -> let acc = BatOption.map_default (fun acc -> acc ++ line) Pretty.nil acc_opt in Some (acc ++ dprintf "Map: %a =@?@[%a@]" Domain.pretty k Range.pretty_diff (v, v2)) | exception Lattice.BotValue -> let acc = BatOption.map_default (fun acc -> acc ++ line) Pretty.nil acc_opt in Some (acc ++ dprintf "Map: %a =@?@[%a not leq bot@]" Domain.pretty k Range.pretty v) | v2 -> acc_opt in match fold diff_key m1 None with | Some w -> w | None -> Pretty.dprintf "No binding grew." let meet m1 m2 = if m1 == m2 then m1 else map2 Range.meet m1 m2 let join_with_fct f m1 m2 = if m1 == m2 then m1 else long_map2 f m1 m2 let join = join_with_fct Range.join let widen_with_fct f = long_map2 f let widen = widen_with_fct Range.widen let narrow = map2 Range.narrow end module MapTop (Domain: Printable.S) (Range: Lattice.S) : S with type key = Domain.t and type value = Range.t = struct include PMap (Domain) (Range) let leq_with_fct f m1 m2 = (* TODO use merge or sth faster? *) (* For each key-value in m2, the same key must be in m1 with a leq value: *) let p key value = try f (find key m1) value with Not_found -> false in m1 == m2 || for_all p m2 let leq = leq_with_fct Range.leq let find x m = try find x m with | Not_found -> Range.top () let top () = empty () let bot () = Lattice.unsupported "partial map bot" let is_top = is_empty let is_bot _ = false (* let cleanup m = fold (fun k v m -> if Range.is_top v then remove k m else m) m m *) let meet m1 m2 = if m1 == m2 then m1 else long_map2 Range.meet m1 m2 let join_with_fct f m1 m2 = if m1 == m2 then m1 else map2 f m1 m2 let join = join_with_fct Range.join let widen_with_fct f = map2 f let widen = widen_with_fct Range.widen let narrow = long_map2 Range.narrow let pretty_diff () ((m1:t),(m2:t)): Pretty.doc = let diff_key k v acc_opt = match find k m1 with | v1 when not (Range.leq v1 v) -> let acc = BatOption.map_default (fun acc -> acc ++ line) Pretty.nil acc_opt in Some (acc ++ dprintf "Map: %a =@?@[%a@]" Domain.pretty k Range.pretty_diff (v1, v)) | exception Lattice.TopValue -> let acc = BatOption.map_default (fun acc -> acc ++ line) Pretty.nil acc_opt in Some (acc ++ dprintf "Map: %a =@?@[top not leq %a@]" Domain.pretty k Range.pretty v) | v1 -> acc_opt in match fold diff_key m2 None with | Some w -> w | None -> Pretty.dprintf "No binding grew." end exception Fn_over_All of string module LiftTop (Range: Lattice.S) (M: S with type value = Range.t): S with type key = M.key and type value = Range.t = struct include Lattice.LiftTop (M) type key = M.key type value = M.value let add k v = function | `Top -> `Top | `Lifted x -> `Lifted (M.add k v x) let remove k = function | `Top -> `Top | `Lifted x -> `Lifted (M.remove k x) let find k = function | `Top -> Range.top () | `Lifted x -> M.find k x let find_opt k = function | `Top -> Some (Range.top ()) | `Lifted x -> M.find_opt k x let mem k = function | `Top -> true | `Lifted x -> M.mem k x let map f = function | `Top -> `Top | `Lifted x -> `Lifted (M.map f x) let add_list xs = function | `Top -> `Top | `Lifted x -> `Lifted (M.add_list xs x) let add_list_set ks v = function | `Top -> `Top | `Lifted x -> `Lifted (M.add_list_set ks v x) let add_list_fun ks f = function | `Top -> `Top | `Lifted x -> `Lifted (M.add_list_fun ks f x) let map2 f x y = match x, y with | `Lifted x, `Lifted y -> `Lifted (M.map2 f x y) | _ -> raise (Fn_over_All "map2") let long_map2 f x y = match x, y with | `Lifted x, `Lifted y -> `Lifted (M.long_map2 f x y) | _ -> raise (Fn_over_All "long_map2") let for_all f = function | `Top -> raise (Fn_over_All "for_all") | `Lifted x -> M.for_all f x let iter f = function | `Top -> raise (Fn_over_All "iter") | `Lifted x -> M.iter f x let fold f x a = match x with | `Top -> raise (Fn_over_All "fold") | `Lifted x -> M.fold f x a let filter f x = match x with | `Top -> raise (Fn_over_All "filter") | `Lifted x -> `Lifted (M.filter f x) let merge f x y = match x, y with | `Lifted x, `Lifted y -> `Lifted (M.merge f x y) | _ -> raise (Fn_over_All "merge") let leq_with_fct f x y = match (x,y) with | (_, `Top) -> true | (`Top, _) -> false | (`Lifted x, `Lifted y) -> M.leq_with_fct f x y let join_with_fct f x y = match (x,y) with | (`Top, x) -> `Top | (x, `Top) -> `Top | (`Lifted x, `Lifted y) -> `Lifted (M.join_with_fct f x y) let widen_with_fct f x y = match (x,y) with | (`Lifted x, `Lifted y) -> `Lifted (M.widen_with_fct f x y) | _ -> y let cardinal = function | `Top -> raise (Fn_over_All "cardinal") | `Lifted x -> M.cardinal x let choose = function | `Top -> raise (Fn_over_All "choose") | `Lifted x -> M.choose x let singleton k v = `Lifted (M.singleton k v) let empty () = `Lifted (M.empty ()) let is_empty = function | `Top -> false | `Lifted x -> M.is_empty x let exists f = function | `Top -> raise (Fn_over_All "exists") | `Lifted x -> M.exists f x let bindings = function | `Top -> raise (Fn_over_All "bindings") | `Lifted x -> M.bindings x let mapi f = function | `Top -> `Top | `Lifted x -> `Lifted (M.mapi f x) end module MapBot_LiftTop (Domain: Printable.S) (Range: Lattice.S) : S with type key = Domain.t and type value = Range.t = struct module M = MapBot (Domain) (Range) include LiftTop (Range) (M) end module LiftBot (Range: Lattice.S) (M: S with type value = Range.t): S with type key = M.key and type value = Range.t = struct include Lattice.LiftBot (M) type key = M.key type value = M.value let add k v = function | `Bot -> `Bot | `Lifted x -> `Lifted (M.add k v x) let remove k = function | `Bot -> `Bot | `Lifted x -> `Lifted (M.remove k x) let find k = function | `Bot -> Range.bot () | `Lifted x -> M.find k x let find_opt k = function | `Bot -> Some (Range.bot ()) | `Lifted x -> M.find_opt k x let mem k = function | `Bot -> false | `Lifted x -> M.mem k x let map f = function | `Bot -> `Bot | `Lifted x -> `Lifted (M.map f x) let add_list xs = function | `Bot -> `Bot | `Lifted x -> `Lifted (M.add_list xs x) let add_list_set ks v = function | `Bot -> `Bot | `Lifted x -> `Lifted (M.add_list_set ks v x) let add_list_fun ks f = function | `Bot -> `Bot | `Lifted x -> `Lifted (M.add_list_fun ks f x) let map2 f x y = match x, y with | `Lifted x, `Lifted y -> `Lifted (M.map2 f x y) | _ -> raise (Fn_over_All "map2") let long_map2 f x y = match x, y with | `Lifted x, `Lifted y -> `Lifted (M.long_map2 f x y) | _ -> raise (Fn_over_All "long_map2") let for_all f = function | `Bot -> raise (Fn_over_All "for_all") | `Lifted x -> M.for_all f x let iter f = function | `Bot -> raise (Fn_over_All "iter") | `Lifted x -> M.iter f x let fold f x a = match x with | `Bot -> raise (Fn_over_All "fold") | `Lifted x -> M.fold f x a let filter f x = match x with | `Bot -> raise (Fn_over_All "filter") | `Lifted x -> `Lifted (M.filter f x) let merge f x y = match x, y with | `Lifted x, `Lifted y -> `Lifted (M.merge f x y) | _ -> raise (Fn_over_All "merge") let join_with_fct f x y = match (x,y) with | (`Bot, x) -> x | (x, `Bot) -> x | (`Lifted x, `Lifted y) -> `Lifted (M.join_with_fct f x y) let widen_with_fct f x y = match (x,y) with | (`Lifted x, `Lifted y) -> `Lifted(M.widen_with_fct f x y) | _ -> y let leq_with_fct f x y = match (x,y) with | (`Bot, _) -> true | (_, `Bot) -> false | (`Lifted x, `Lifted y) -> M.leq_with_fct f x y let cardinal = function | `Bot -> raise (Fn_over_All "cardinal") | `Lifted x -> M.cardinal x let choose = function | `Bot -> raise (Fn_over_All "choose") | `Lifted x -> M.choose x let singleton k v = `Lifted (M.singleton k v) let empty () = `Lifted (M.empty ()) let is_empty = function | `Bot -> false | `Lifted x -> M.is_empty x let exists f = function | `Bot -> raise (Fn_over_All "exists") | `Lifted x -> M.exists f x let bindings = function | `Bot -> raise (Fn_over_All "bindings") | `Lifted x -> M.bindings x let mapi f = function | `Bot -> `Bot | `Lifted x -> `Lifted (M.mapi f x) end module MapTop_LiftBot (Domain: Printable.S) (Range: Lattice.S): S with type key = Domain.t and type value = Range.t = struct module M = MapTop (Domain) (Range) include LiftBot (Range) (M) end (** Map abstracted by a single (joined) key. *) module Joined (E: Lattice.S) (R: Lattice.S): S with type key = E.t and type value = R.t = struct type key = E.t type value = R.t include Lattice.Prod (E) (R) let singleton e r = (e, r) let exists p (e, r) = p e r let for_all p (e, r) = p e r let mem e (e', _) = E.leq e e' let choose er = er let bindings er = [er] let remove e ((e', _) as er) = if E.leq e' e then (E.bot (), R.bot ()) else er let map f (e, r) = (e, f r) let mapi f (e, r) = (e, f e r) let map2 f (e, r) (e', r') = (E.meet e e', f r r') let long_map2 f (e, r) (e', r') = (E.join e e', f r r') let merge f m1 m2 = failwith "MapDomain.Joined.merge" (* TODO: ? *) let fold f (e, r) a = f e r a let empty () = (E.bot (), R.bot ()) let add e r (e', r') = (E.join e e', R.join r r') let is_empty (e, _) = E.is_bot e let iter f (e, r) = f e r let cardinal er = if is_empty er then 0 else 1 let find e (e', r) = if E.leq e e' then r else raise Not_found let find_opt e (e', r) = if E.leq e e' then Some r else None let filter p s = failwith "MapDomain.Joined.filter" let add_list ers m = List.fold_left (fun acc (e, r) -> add e r acc ) m ers let add_list_set es r m = List.fold_left (fun acc e -> add e r acc ) m es let add_list_fun es f m = List.fold_left (fun acc e -> add e (f e) acc ) m es let leq_with_fct _ _ _ = failwith "MapDomain.Joined.leq_with_fct" let join_with_fct _ _ _ = failwith "MapDomain.Joined.join_with_fct" let widen_with_fct _ _ _ = failwith "MapDomain.Joined.widen_with_fct" end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>