package goblint-cil
A front-end for the C programming language that facilitates program analysis and transformation
Install
Dune Dependency
Authors
Maintainers
Sources
goblint-cil-2.0.1.tbz
sha256=5f81cb3f25c09770e77b5eb4092e6621e456122b6d1219dcc304c062075f9572
sha512=31bb753031e0ef321a2ef065373009270881b1cce7f23167b378845188aed9cb49f18a165edd2e11f751f2c7a7b84ab5ac1da50ba1f5cb975e6e8a97157838ed
doc/src/goblint-cil.pta/olf.ml.html
Source file olf.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
(* Copyright (c) 2001-2002, John Kodumal <jkodumal@eecs.berkeley.edu> All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. The names of the contributors may not be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *) open GoblintCil (***********************************************************************) (* *) (* Exceptions *) (* *) (***********************************************************************) exception Inconsistent (* raised if constraint system is inconsistent *) exception WellFormed (* raised if types are not well-formed *) exception NoContents exception ReachedTop (* raised if top (from an undefined function) flows to a c_absloc during the flow step *) exception UnknownLocation module U = Uref module S = Setp module H = Hashtbl module Q = Queue (** Generic bounds *) type 'a bound = {info : 'a U.uref} module Bound = struct type 'a t = 'a bound let compare (x : 'a t) (y : 'a t) = Stdlib.compare (U.deref x.info) (U.deref y.info) end module B = S.Make (Bound) type 'a boundset = 'a B.t (** Abslocs, which identify elements in points-to sets *) (* jk : I'd prefer to make this an 'a absloc and specialize it to varinfo for use with the Cil frontend, but for now, this will do *) type absloc = int * string * Cil.varinfo option module Absloc = struct type t = absloc let compare (xid, _, _) (yid, _, _) = xid - yid end module C = Set.Make (Absloc) (** Sets of abslocs. Set union is used when two c_abslocs containing absloc sets are unified *) type abslocset = C.t let d_absloc () (a: absloc) : Pretty.doc = let i,s,_ = a in Pretty.dprintf "<%d, %s>" i s type c_abslocinfo = { mutable l_name: string; (** name of the location *) loc : absloc; l_stamp : int; mutable l_top : bool; mutable aliases : abslocset; mutable lbounds : c_abslocinfo boundset; mutable ubounds : c_abslocinfo boundset; mutable flow_computed : bool } and c_absloc = c_abslocinfo U.uref (** The type of lvalues. *) type lvalue = { l: c_absloc; contents: tau } and vinfo = { v_stamp : int; v_name : string; mutable v_top : bool; mutable v_lbounds : tinfo boundset; mutable v_ubounds : tinfo boundset } and rinfo = { r_stamp : int; rl : c_absloc; points_to : tau } and finfo = { f_stamp : int; fl : c_absloc; ret : tau; mutable args : tau list } and pinfo = { p_stamp : int; ptr : tau; lam : tau } and tinfo = Var of vinfo | Ref of rinfo | Fun of finfo | Pair of pinfo and tau = tinfo U.uref type tconstraint = Unification of tau * tau | Leq of tau * tau (** Association lists, used for printing recursive types. The first element is a type that has been visited. The second element is the string representation of that type (so far). If the string option is set, then this type occurs within itself, and is associated with the recursive var name stored in the option. When walking a type, add it to an association list. Example: suppose we have the constraint 'a = ref('a). The type is unified via cyclic unification, and would loop infinitely if we attempted to print it. What we want to do is print the type u rv. ref(rv). This is accomplished in the following manner: -- ref('a) is visited. It is not in the association list, so it is added and the string "ref(" is stored in the second element. We recurse to print the first argument of the constructor. -- In the recursive call, we see that 'a (or ref('a)) is already in the association list, so the type is recursive. We check the string option, which is None, meaning that this is the first recurrence of the type. We create a new recursive variable, rv and set the string option to 'rv. Next, we prepend u rv. to the string representation we have seen before, "ref(", and return "rv" as the string representation of this type. -- The string so far is "u rv.ref(". The recursive call returns, and we complete the type by printing the result of the call, "rv", and ")" In a type where the recursive variable appears twice, e.g. 'a = pair('a,'a), the second time we hit 'a, the string option will be set, so we know to reuse the same recursive variable name. *) type association = tau * string ref * string option ref (** The current state of the solver engine either adding more constraints, or finished adding constraints and querying graph *) type state = AddingConstraints | FinishedConstraints (***********************************************************************) (* *) (* Global Variables *) (* *) (***********************************************************************) (** A count of the constraints introduced from the AST. Used for debugging. *) let toplev_count = ref 0 let solver_state : state ref = ref AddingConstraints (** Print the instantiations constraints. *) let print_constraints : bool ref = ref false (** If true, print all constraints (including induced) and show additional debug output. *) let debug = ref false (** Just debug all the constraints (including induced) *) let debug_constraints = ref false (** Compatibility with GOLF *) let debug_aliases = ref false let smart_aliases = ref false let no_flow = ref false let analyze_mono = ref false (** If true, disable subtyping (unification at all levels) *) let no_sub = ref false (** A list of equality constraints. *) let eq_worklist : tconstraint Q.t = Q.create () (** A list of leq constraints. *) let leq_worklist : tconstraint Q.t = Q.create () (** A hashtable mapping pairs of tau's to their join node. *) let join_cache : (int * int, tau) H.t = H.create 64 (** *) let label_prefix = "l_" (***********************************************************************) (* *) (* Utility Functions *) (* *) (***********************************************************************) let starts_with s p = let n = String.length p in if String.length s < n then false else String.sub s 0 n = p let die s = Printf.printf "*******\nAssertion failed: %s\n*******\n" s; assert false let insist b s = if not b then die s else () let can_add_constraints () = !solver_state = AddingConstraints let can_query_graph () = !solver_state = FinishedConstraints let finished_constraints () = insist (!solver_state = AddingConstraints) "inconsistent states"; solver_state := FinishedConstraints let find = U.deref (** Generate a unique integer. *) let fresh_index : (unit -> int) = let counter = ref 0 in fun () -> incr counter; !counter let fresh_stamp : (unit -> int) = let stamp = ref 0 in fun () -> incr stamp; !stamp (** Return a unique integer representation of a tau *) let get_stamp (t : tau) : int = match find t with Var v -> v.v_stamp | Ref r -> r.r_stamp | Pair p -> p.p_stamp | Fun f -> f.f_stamp (** Consistency checks for inferred types *) let pair_or_var (t : tau) = match find t with Pair _ -> true | Var _ -> true | _ -> false let ref_or_var (t : tau) = match find t with Ref _ -> true | Var _ -> true | _ -> false let fun_or_var (t : tau) = match find t with Fun _ -> true | Var _ -> true | _ -> false (** Apply [f] structurally down [t]. Guaranteed to terminate, even if [t] is recursive *) let iter_tau f t = let visited : (int, tau) H.t = H.create 4 in let rec iter_tau' t = if H.mem visited (get_stamp t) then () else begin f t; H.add visited (get_stamp t) t; match find t with Pair p -> iter_tau' p.ptr; iter_tau' p.lam | Fun f -> List.iter iter_tau' f.args; iter_tau' f.ret; | Ref r -> iter_tau' r.points_to | _ -> () end in iter_tau' t let equal_absloc = function (i, _, _), (i', _, _) -> i = i' let equal_c_absloc l l' = (find l).l_stamp = (find l').l_stamp let equal_tau (t : tau) (t' : tau) = get_stamp t = get_stamp t' let top_c_absloc l = (find l).l_top let get_flow_computed l = (find l).flow_computed let set_flow_computed l = (find l).flow_computed <- true let rec top_tau (t : tau) = match find t with Pair p -> top_tau p.ptr || top_tau p.lam | Ref r -> top_c_absloc r.rl | Fun f -> top_c_absloc f.fl | Var v -> v.v_top let get_c_absloc_stamp (l : c_absloc) : int = (find l).l_stamp let set_top_c_absloc (l : c_absloc) (b: bool) : unit = (find l).l_top <- b let get_aliases (l : c_absloc) = if top_c_absloc l then raise ReachedTop else (find l).aliases (***********************************************************************) (* *) (* Printing Functions *) (* *) (***********************************************************************) (** Convert a c_absloc to a string, short representation *) let string_of_c_absloc (l : c_absloc) : string = "\"" ^ (find l).l_name ^ if top_c_absloc l then "(top)" else "" ^ "\"" (** Return true if the element [e] is present in the association list, according to uref equality *) let rec assoc_list_mem (e : tau) (l : association list) = match l with [] -> None | (h, s, so) :: t -> if U.equal (h, e) then Some (s, so) else assoc_list_mem e t (** Given a tau, create a unique recursive variable name. This should always return the same name for a given tau *) let fresh_recvar_name (t : tau) : string = match find t with Pair p -> "rvp" ^ string_of_int p.p_stamp | Ref r -> "rvr" ^ string_of_int r.r_stamp | Fun f -> "rvf" ^ string_of_int f.f_stamp | _ -> die "fresh_recvar_name" (** Return a string representation of a tau, using association lists. *) let string_of_tau (t : tau) : string = let tau_map : association list ref = ref [] in let rec string_of_tau' t = match assoc_list_mem t !tau_map with Some (s, so) -> (* recursive type. see if a var name has been set *) begin match !so with None -> let rv = fresh_recvar_name t in s := "u " ^ rv ^ "." ^ !s; so := Some rv; rv | Some rv -> rv end | None -> (* type's not recursive. Add it to the assoc list and cont. *) let s = ref "" and so : string option ref = ref None in tau_map := (t, s, so) :: !tau_map; begin match find t with Var v -> s := v.v_name | Pair p -> insist (ref_or_var p.ptr) "wellformed"; insist (fun_or_var p.lam) "wellformed"; s := "{"; s := !s ^ string_of_tau' p.ptr; s := !s ^ ","; s := !s ^ string_of_tau' p.lam; s := !s ^ "}" | Ref r -> insist (pair_or_var r.points_to) "wellformed"; s := "ref(|"; s := !s ^ string_of_c_absloc r.rl; s := !s ^ "|,"; s := !s ^ string_of_tau' r.points_to; s := !s ^ ")" | Fun f -> let rec string_of_args = function [] -> () | h :: [] -> insist (pair_or_var h) "wellformed"; s := !s ^ string_of_tau' h | h :: t -> insist (pair_or_var h) "wellformed"; s := !s ^ string_of_tau' h ^ ","; string_of_args t in insist (pair_or_var f.ret) "wellformed"; s := "fun(|"; s := !s ^ string_of_c_absloc f.fl; s := !s ^ "|,"; s := !s ^ "<"; if List.length f.args > 0 then string_of_args f.args else s := !s ^ "void"; s := !s ^ ">,"; s := !s ^ string_of_tau' f.ret; s := !s ^ ")" end; tau_map := List.tl !tau_map; !s in string_of_tau' t (** Convert an lvalue to a string *) let string_of_lvalue (lv : lvalue) : string = let contents = string_of_tau lv.contents and l = string_of_c_absloc lv.l in insist (pair_or_var lv.contents) "inconsistency at string_of_lvalue"; (* do a consistency check *) Printf.sprintf "[%s]^(%s)" contents l let print_constraint (c : tconstraint) = match c with Unification (t, t') -> let lhs = string_of_tau t in let rhs = string_of_tau t' in Printf.printf "%s == %s\n" lhs rhs | Leq (t, t') -> let lhs = string_of_tau t in let rhs = string_of_tau t' in Printf.printf "%s <= %s\n" lhs rhs (***********************************************************************) (* *) (* Type Operations -- these do not create any constraints *) (* *) (***********************************************************************) (** Create an lvalue with c_absloc [lbl] and tau contents [t]. *) let make_lval (loc, t : c_absloc * tau) : lvalue = {l = loc; contents = t} let make_c_absloc_int (is_top : bool) (name : string) (vio : Cil.varinfo option) : c_absloc = let my_absloc = (fresh_index (), name, vio) in let locc = C.add my_absloc C.empty in U.uref { l_name = name; l_top = is_top; l_stamp = fresh_stamp (); loc = my_absloc; aliases = locc; ubounds = B.empty; lbounds = B.empty; flow_computed = false } (** Create a new c_absloc with name [name]. Also adds a fresh absloc with name [name] to this c_absloc's aliases set. *) let make_c_absloc (is_top : bool) (name : string) (vio : Cil.varinfo option) = make_c_absloc_int is_top name vio let fresh_c_absloc (is_top : bool) : c_absloc = let index = fresh_index () in make_c_absloc_int is_top (label_prefix ^ string_of_int index) None (** Create a fresh bound (edge in the constraint graph). *) let make_bound (a : c_absloc) : c_abslocinfo bound = {info = a} let make_tau_bound (t : tau) : tinfo bound = {info = t} (** Create a fresh named variable with name '[name]. *) let make_var (is_top : bool) (name : string) : tau = U.uref (Var {v_name = ("'" ^ name); v_top = is_top; v_stamp = fresh_index (); v_lbounds = B.empty; v_ubounds = B.empty}) let fresh_var (is_top : bool) : tau = make_var is_top ("fi" ^ string_of_int (fresh_index ())) (** Create a fresh unnamed variable (name will be 'fi). *) let fresh_var_i (is_top : bool) : tau = make_var is_top ("fi" ^ string_of_int (fresh_index ())) (** Create a Fun constructor. *) let make_fun (lbl, a, r : c_absloc * (tau list) * tau) : tau = U.uref (Fun {fl = lbl; f_stamp = fresh_index (); args = a; ret = r}) (** Create a Ref constructor. *) let make_ref (lbl, pt : c_absloc * tau) : tau = U.uref (Ref {rl = lbl; r_stamp = fresh_index (); points_to = pt}) (** Create a Pair constructor. *) let make_pair (p, f : tau * tau) : tau = U.uref (Pair {ptr = p; p_stamp = fresh_index (); lam = f}) (** Copy the toplevel constructor of [t], putting fresh variables in each argument of the constructor. *) let copy_toplevel (t : tau) : tau = match find t with Pair _ -> make_pair (fresh_var_i false, fresh_var_i false) | Ref _ -> make_ref (fresh_c_absloc false, fresh_var_i false) | Fun f -> make_fun (fresh_c_absloc false, Util.list_map (fun _ -> fresh_var_i false) f.args, fresh_var_i false) | _ -> die "copy_toplevel" let pad_args (fi, tlr : finfo * tau list ref) : unit = let padding = List.length fi.args - List.length !tlr in if padding == 0 then () else if padding > 0 then for _ = 1 to padding do tlr := !tlr @ [fresh_var false] done else for _ = 1 to -padding do fi.args <- fi.args @ [fresh_var false] done (***********************************************************************) (* *) (* Constraint Generation/ Resolution *) (* *) (***********************************************************************) let set_top (b : bool) (t : tau) : unit = let set_top_down t = match find t with Var v -> v.v_top <- b | Ref r -> set_top_c_absloc r.rl b | Fun f -> set_top_c_absloc f.fl b | Pair p -> () in iter_tau set_top_down t let rec unify_int (t, t' : tau * tau) : unit = if equal_tau t t' then () else let ti, ti' = find t, find t' in U.unify combine (t, t'); match ti, ti' with Var v, Var v' -> set_top (v.v_top || v'.v_top) t'; merge_v_lbounds (v, v'); merge_v_ubounds (v, v') | Var v, _ -> set_top (v.v_top || top_tau t') t'; notify_vlbounds t v; notify_vubounds t v | _, Var v -> set_top (v.v_top || top_tau t) t; notify_vlbounds t' v; notify_vubounds t' v | Ref r, Ref r' -> unify_ref (r, r') | Fun f, Fun f' -> unify_fun (f, f') | Pair p, Pair p' -> unify_pair (p, p') | _ -> raise Inconsistent and notify_vlbounds (t : tau) (vi : vinfo) : unit = let notify bounds = List.iter (fun b -> add_constraint (Unification (b.info, copy_toplevel t)); add_constraint (Leq (b.info, t))) bounds in notify (B.elements vi.v_lbounds) and notify_vubounds (t : tau) (vi : vinfo) : unit = let notify bounds = List.iter (fun b -> add_constraint (Unification (b.info, copy_toplevel t)); add_constraint (Leq (t, b.info))) bounds in notify (B.elements vi.v_ubounds) and unify_ref (ri, ri' : rinfo * rinfo) : unit = unify_c_abslocs (ri.rl, ri'.rl); add_constraint (Unification (ri.points_to, ri'.points_to)) and unify_fun (fi, fi' : finfo * finfo) : unit = let rec union_args = function _, [] -> false | [], _ -> true | h :: t, h' :: t' -> add_constraint (Unification (h, h')); union_args(t, t') in unify_c_abslocs (fi.fl, fi'.fl); add_constraint (Unification (fi.ret, fi'.ret)); if union_args (fi.args, fi'.args) then fi.args <- fi'.args and unify_pair (pi, pi' : pinfo * pinfo) : unit = add_constraint (Unification (pi.ptr, pi'.ptr)); add_constraint (Unification (pi.lam, pi'.lam)) and unify_c_abslocs (l, l' : c_absloc * c_absloc) : unit = let pick_name (li, li' : c_abslocinfo * c_abslocinfo) = if starts_with li.l_name label_prefix then li.l_name <- li'.l_name else () in let combine_c_absloc (li, li' : c_abslocinfo * c_abslocinfo) : c_abslocinfo = pick_name (li, li'); li.l_top <- li.l_top || li'.l_top; li.aliases <- C.union li.aliases li'.aliases; li.ubounds <- B.union li.ubounds li'.ubounds; li.lbounds <- B.union li.lbounds li'.lbounds; li in if !debug_constraints then Printf.printf "%s == %s\n" (string_of_c_absloc l) (string_of_c_absloc l'); U.unify combine_c_absloc (l, l') and merge_v_lbounds (vi, vi' : vinfo * vinfo) : unit = vi'.v_lbounds <- B.union vi.v_lbounds vi'.v_lbounds; and merge_v_ubounds (vi, vi' : vinfo * vinfo) : unit = vi'.v_ubounds <- B.union vi.v_ubounds vi'.v_ubounds (** Pick the representative info for two tinfo's. This function prefers the first argument when both arguments are the same structure, but when one type is a structure and the other is a var, it picks the structure. All other actions (e.g., updating the info) is done in unify_int *) and combine (ti, ti' : tinfo * tinfo) : tinfo = match ti, ti' with Var _, _ -> ti' | _, _ -> ti and leq_int (t, t') : unit = if equal_tau t t' then () else let ti, ti' = find t, find t' in match ti, ti' with Var v, Var v' -> v.v_ubounds <- B.add (make_tau_bound t') v.v_ubounds; v'.v_lbounds <- B.add (make_tau_bound t) v'.v_lbounds | Var v, _ -> add_constraint (Unification (t, copy_toplevel t')); add_constraint (Leq (t, t')) | _, Var v -> add_constraint (Unification (t', copy_toplevel t)); add_constraint (Leq (t, t')) | Ref r, Ref r' -> leq_ref (r, r') | Fun f, Fun f' -> (* TODO: check, why not do subtyping here? *) add_constraint (Unification (t, t')) | Pair pr, Pair pr' -> add_constraint (Leq (pr.ptr, pr'.ptr)); add_constraint (Leq (pr.lam, pr'.lam)) | _ -> raise Inconsistent and leq_ref (ri, ri') : unit = leq_c_absloc (ri.rl, ri'.rl); add_constraint (Unification (ri.points_to, ri'.points_to)) and leq_c_absloc (l, l') : unit = let li, li' = find l, find l' in if !debug_constraints then Printf.printf "%s <= %s\n" (string_of_c_absloc l) (string_of_c_absloc l'); if U.equal (l, l') then () else begin li.ubounds <- B.add (make_bound l') li.ubounds; li'.lbounds <- B.add (make_bound l) li'.lbounds end and add_constraint_int (c : tconstraint) (toplev : bool) = if !debug_constraints && toplev then begin Printf.printf "%d:>" !toplev_count; print_constraint c; incr toplev_count end else if !debug_constraints then print_constraint c else (); insist (can_add_constraints ()) "can't add constraints after compute_results is called"; begin match c with Unification _ -> Q.add c eq_worklist | Leq _ -> Q.add c leq_worklist end; solve_constraints () (* solve online *) and add_constraint (c : tconstraint) = add_constraint_int c false and add_toplev_constraint (c : tconstraint) = if !print_constraints && not !debug_constraints then begin Printf.printf "%d:>" !toplev_count; incr toplev_count; print_constraint c end else (); add_constraint_int c true and fetch_constraint () : tconstraint option = try Some (Q.take eq_worklist) with Q.Empty -> begin try Some (Q.take leq_worklist) with Q.Empty -> None end (** The main solver loop. *) and solve_constraints () : unit = match fetch_constraint () with None -> () | Some c -> begin match c with Unification (t, t') -> unify_int (t, t') | Leq (t, t') -> if !no_sub then unify_int (t, t') else leq_int (t, t') end; solve_constraints () (***********************************************************************) (* *) (* Interface Functions *) (* *) (***********************************************************************) (** Return the contents of the lvalue. *) let rvalue (lv : lvalue) : tau = lv.contents (** Dereference the rvalue. If it does not have enough structure to support the operation, then the correct structure is added via new unification constraints. *) let rec deref (t : tau) : lvalue = match find t with Pair p -> begin match find p.ptr with | Var _ -> let is_top = top_tau p.ptr in let points_to = fresh_var is_top in let l = fresh_c_absloc is_top in let r = make_ref (l, points_to) in add_toplev_constraint (Unification (p.ptr, r)); make_lval (l, points_to) | Ref r -> make_lval (r.rl, r.points_to) | _ -> raise WellFormed end | Var v -> let is_top = top_tau t in add_toplev_constraint (Unification (t, make_pair (fresh_var is_top, fresh_var is_top))); deref t | _ -> raise WellFormed (** Form the union of [t] and [t'], if it doesn't exist already. *) let join (t : tau) (t' : tau) : tau = let s, s' = get_stamp t, get_stamp t' in try H.find join_cache (s, s') with Not_found -> let t'' = fresh_var false in add_toplev_constraint (Leq (t, t'')); add_toplev_constraint (Leq (t', t'')); H.add join_cache (s, s') t''; t'' (** Form the union of a list [tl], expected to be the initializers of some structure or array type. *) let join_inits (tl : tau list) : tau = let t' = fresh_var false in List.iter (function t -> add_toplev_constraint (Leq (t, t'))) tl; t' (** Take the address of an lvalue. Does not add constraints. *) let address (lv : lvalue) : tau = make_pair (make_ref (lv.l, lv.contents), fresh_var false ) (** No instantiation in this analysis *) let instantiate (lv : lvalue) (i : int) : lvalue = lv (** Constraint generated from assigning [t] to [lv]. *) let assign (lv : lvalue) (t : tau) : unit = add_toplev_constraint (Leq (t, lv.contents)) let assign_ret (i : int) (lv : lvalue) (t : tau) : unit = add_toplev_constraint (Leq (t, lv.contents)) (** Project out the first (ref) component or a pair. If the argument [t] has no discovered structure, raise NoContents. *) let proj_ref (t : tau) : tau = match find t with Pair p -> p.ptr | Var v -> raise NoContents | _ -> raise WellFormed (* Project out the second (fun) component of a pair. If the argument [t] has no discovered structure, create it on the fly by adding constraints. *) let proj_fun (t : tau) : tau = match find t with Pair p -> p.lam | Var v -> let p, f = fresh_var false, fresh_var false in add_toplev_constraint (Unification (t, make_pair (p, f))); f | _ -> raise WellFormed let get_finfo (t : tau) : finfo = match find t with Fun f -> f | _ -> raise WellFormed (** Function type [t] is applied to the arguments [actuals]. Unifies the actuals with the formals of [t]. If no functions have been discovered for [t] yet, create a fresh one and unify it with t. The result is the return value of the function plus the index of this application site. For this analysis, the application site is always 0 *) let apply (t : tau) (al : tau list) : (tau * int) = let f = proj_fun t in let actuals = ref al in let fi, ret = match find f with Fun fi -> fi, fi.ret | Var v -> let new_l, new_ret, new_args = fresh_c_absloc false, fresh_var false, Util.list_map (function _ -> fresh_var false) !actuals in let new_fun = make_fun (new_l, new_args, new_ret) in add_toplev_constraint (Unification (new_fun, f)); (get_finfo new_fun, new_ret) | _ -> raise WellFormed in pad_args (fi, actuals); List.iter2 (fun actual -> fun formal -> add_toplev_constraint (Leq (actual, formal))) !actuals fi.args; (ret, 0) let make_undefined_lvalue () = make_lval (make_c_absloc false "undefined" None, make_var true "undefined") let make_undefined_rvalue () = make_var true "undefined" let assign_undefined (lv : lvalue) : unit = assign lv (make_undefined_rvalue ()) let apply_undefined (al : tau list) : (tau * int) = List.iter (fun actual -> assign (make_undefined_lvalue ()) actual) al; (fresh_var true, 0) (** Create a new function type with name [name], list of formal arguments [formals], and return value [ret]. Adds no constraints. *) let make_function (name : string) (formals : lvalue list) (ret : tau) : tau = let f = make_fun (make_c_absloc false name None, Util.list_map (fun x -> rvalue x) formals, ret) in make_pair (fresh_var false, f) (** Create an lvalue. *) let make_lvalue (b : bool ) (name : string) (vio : Cil.varinfo option) = make_lval (make_c_absloc false name vio, make_var false name) (** Create a fresh named variable. *) let make_fresh (name : string) : tau = make_var false name (** The default type for abslocs. *) let bottom () : tau = make_var false "bottom" (** Unify the result of a function with its return value. *) let return (t : tau) (t' : tau) = add_toplev_constraint (Leq (t', t)) (***********************************************************************) (* *) (* Query/Extract Solutions *) (* *) (***********************************************************************) module IntHash = Hashtbl.Make (struct type t = int let equal x y = x = y let hash x = x end) (** this is a quadratic flow step. keep it for debugging the fast version above. *) let collect_ptset_slow (l : c_absloc) : abslocset = let onpath : unit IntHash.t = IntHash.create 101 in let rec flow_step (l : c_absloc) : abslocset = if top_c_absloc l then raise ReachedTop else let stamp = get_c_absloc_stamp l in if IntHash.mem onpath stamp then C.empty else let li = find l in IntHash.add onpath stamp (); B.iter (fun lb -> li.aliases <- C.union li.aliases (flow_step lb.info)) li.lbounds; li.aliases in insist (can_query_graph ()) "collect_ptset_slow can't query graph"; if get_flow_computed l then get_aliases l else begin set_flow_computed l; flow_step l end let collect_ptset = collect_ptset_slow (* if !debug_flow_step then collect_ptset_slow else collect_ptset_fast *) let may_alias (t1 : tau) (t2 : tau) : bool = let get_l (t : tau) : c_absloc = match find (proj_ref t) with Ref r -> r.rl | Var v -> raise NoContents | _ -> raise WellFormed in try let l1 = get_l t1 and l2 = get_l t2 in equal_c_absloc l1 l2 || not (C.is_empty (C.inter (collect_ptset l1) (collect_ptset l2))) with NoContents -> false | ReachedTop -> raise UnknownLocation let points_to_aux (t : tau) : absloc list = try match find (proj_ref t) with Var v -> [] | Ref r -> C.elements (collect_ptset r.rl) | _ -> raise WellFormed with NoContents -> [] | ReachedTop -> raise UnknownLocation let points_to (lv : lvalue) : Cil.varinfo list = let rec get_vinfos l : Cil.varinfo list = match l with [] -> [] | (_, _, Some h) :: t -> h :: get_vinfos t | (_, _, None) :: t -> get_vinfos t in get_vinfos (points_to_aux lv.contents) let epoints_to (t : tau) : Cil.varinfo list = let rec get_vinfos l : Cil.varinfo list = match l with [] -> [] | (_, _, Some h) :: t -> h :: get_vinfos t | (_, _, None) :: t -> get_vinfos t in get_vinfos (points_to_aux t) let points_to_names (lv : lvalue) : string list = Util.list_map (fun v -> v.vname) (points_to lv) let absloc_points_to (lv : lvalue) : absloc list = points_to_aux lv.contents let absloc_epoints_to (t : tau) : absloc list = points_to_aux t let absloc_of_lvalue (lv : lvalue) : absloc = (find lv.l).loc let absloc_eq = equal_absloc
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>