package frenetic
The Frenetic Programming Language and Runtime System
Install
Dune Dependency
Authors
Maintainers
Sources
5.0.5.tar.gz
md5=baf754df13a759c32f2c86a1b6f328da
sha512=80140900e7009ccab14b25e244fe7edab87d858676f8a4b3799b4fea16825013cf68363fe5faec71dd54ba825bb4ea2f812c2c666390948ab217ffa75d9cbd29
doc/src/frenetic.kernel/Network.ml.html
Source file Network.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
open Graph (* open Sexplib.Conv *) open Core_kernel module type VERTEX = sig type t [@@deriving sexp] val compare : t -> t -> int val to_string : t -> string val to_dot : t -> string val to_mininet : t -> string val parse_dot : Graph.Dot_ast.node_id -> Graph.Dot_ast.attr list -> t val parse_gml : Graph.Gml.value_list -> t end module type EDGE = sig type t [@@deriving sexp] val compare : t -> t -> int val to_string : t -> string val to_dot : t -> string val parse_dot : Graph.Dot_ast.attr list -> t val parse_gml : Graph.Gml.value_list -> t val default : t end module type WEIGHT = sig type t [@@deriving sexp] type edge [@@deriving sexp] val weight : edge -> t val compare : t -> t -> int val add : t -> t -> t val zero : t end module type NETWORK = sig module Topology : sig type t type vertex [@@deriving sexp] type edge [@@deriving sexp] type port = int32 [@@deriving sexp] module Vertex : VERTEX module Edge : EDGE module UnitWeight : WEIGHT with type t = int and type edge = Edge.t module EdgeSet : Set.S with type Elt.t = edge module VertexSet : Set.S with type Elt.t = vertex module VertexHash : Hashtbl.S with type key = vertex module PortSet : Set.S with type Elt.t = port (* Constructors *) val copy : t -> t val empty : unit -> t val add_vertex : t -> Vertex.t -> (t * vertex) val add_port : t -> vertex -> port -> t val add_edge : t -> vertex -> port -> Edge.t -> vertex -> port -> (t * edge) (* Special Accessors *) val num_vertexes : t -> int val num_edges : t -> int val vertexes : t -> VertexSet.t val edges : t -> EdgeSet.t val neighbors : t -> vertex -> VertexSet.t val find_edge : t -> vertex -> vertex -> edge val find_all_edges : t -> vertex -> vertex -> EdgeSet.t val vertex_to_ports : t -> vertex -> PortSet.t val next_hop : t -> vertex -> port -> edge option val edge_src : edge -> (vertex * port) val edge_dst : edge -> (vertex * port) val inverse_edge : t -> edge -> edge option (* Label Accessors *) val vertex_to_string : t -> vertex -> string val vertex_to_label : t -> vertex -> Vertex.t val vertex_of_label : t -> Vertex.t -> vertex val edge_to_string : t -> edge -> string val edge_to_label : t -> edge -> Edge.t (* Iterators *) val iter_succ : (edge -> unit) -> t -> vertex -> unit val iter_vertexes : (vertex -> unit) -> t -> unit val iter_edges : (edge -> unit) -> t -> unit val fold_vertexes : (vertex -> 'a -> 'a) -> t -> 'a -> 'a val fold_edges : (edge -> 'a -> 'a) -> t -> 'a -> 'a (* Mutators *) val remove_vertex : t -> vertex -> t val remove_port : t -> vertex -> port -> t val remove_edge : t -> edge -> t val remove_endpoint : t -> (vertex * port) -> t end (* Traversals *) module Traverse : sig val bfs : (Topology.vertex -> unit) -> Topology.t -> unit val dfs : (Topology.vertex -> unit) -> Topology.t -> unit end val spanningtree_from : (Topology.vertex -> 'a list -> 'a) -> Topology.t -> Topology.vertex -> 'a (* Paths *) module type PATH = sig type weight type t = Topology.edge list exception NegativeCycle of t val shortest_path : Topology.t -> Topology.vertex -> Topology.vertex -> t option val all_shortest_paths : Topology.t -> Topology.vertex -> Topology.vertex Topology.VertexHash.t val all_pairs_shortest_paths : topo:Topology.t -> f:(Topology.vertex -> Topology.vertex -> bool) -> (weight * Topology.vertex * Topology.vertex * Topology.edge list) list end module Path (Weight : WEIGHT with type edge = Topology.Edge.t) : PATH with type weight = Weight.t module UnitPath : PATH with type weight = int (* Parsing *) module Parse : sig val from_dotfile : string -> Topology.t val from_gmlfile : string -> Topology.t end (* Pretty Printing *) module Pretty : sig val to_string : Topology.t -> string val to_dot : Topology.t -> string val to_mininet : ?prologue_file:string -> ?epilogue_file:string -> Topology.t -> string end end module type MAKE = functor (Vertex:VERTEX) -> functor (Edge:EDGE) -> NETWORK with module Topology.Vertex = Vertex and module Topology.Edge = Edge module Make : MAKE = functor (Vertex:VERTEX) -> functor (Edge:EDGE) -> struct (* FIXME: temporary hack to avoid Jane Street's annoying warnings. *) [@@@warning "-3"] module Topology = struct type port = int32 [@@deriving sexp] module PortSet = Set.Make(Int32) module PortMap = Map.Make(Int32) module Vertex = Vertex module Edge = Edge module VL = struct type t = { id : int; label : Vertex.t } [@@deriving sexp] let compare n1 n2 = Int.compare n1.id n2.id let hash n1 = Hashtbl.hash n1.id let equal n1 n2 = n1.id = n2.id let to_string n = string_of_int n.id (* let sexp_of_t v = Sexp.List [Sexp.Atom "id"; sexp_of_int v.id ] let t_of_sexp s = { id = int_of_sexp (Sexp.Atom "1"); label = vertex_t_of_sexp s } *) end module VertexSet = Set.Make(VL) module VertexMap = Map.Make(Vertex) module VertexHash = Hashtbl.Make(VL) module EL = struct type t = { id : int; label : Edge.t; src : port; dst : port } [@@deriving sexp] let compare e1 e2 = Int.compare e1.id e2.id let hash e1 = Hashtbl.hash e1.id let equal e1 e2 = e1.id = e2.id let to_string e = string_of_int e.id let default = { id = 0; label = Edge.default; src = 0l; dst = 0l } end module UnitWeight = struct type edge = Edge.t [@@deriving sexp] type t = int [@@deriving sexp, compare] type label = EL.t let weight _ = 1 let add = (+) let zero = 0 end type vertex = VL.t [@@deriving sexp] type edge = vertex * EL.t * vertex [@@deriving sexp] module EdgeSet = Set.Make(struct type t = VL.t * EL.t * VL.t [@@deriving sexp] let compare (e1:t) (e2:t) : int = let (_,l1,_) = e1 in let (_,l2,_) = e2 in EL.compare l1 l2 end) module P = Graph.Persistent.Digraph.ConcreteBidirectionalLabeled(VL)(EL) type t = { graph : P.t; node_info : (vertex * PortSet.t) VertexMap.t; next_node : int; next_edge : int } (* Constructors *) let copy (t:t) : t = t let empty () : t = { graph = P.empty; node_info = VertexMap.empty; next_node = 0; next_edge = 0 } let _node_vertex (t:t) (l:Vertex.t) : vertex = fst (VertexMap.find_exn t.node_info l) let _node_ports (t:t) (l:Vertex.t) : PortSet.t = snd (VertexMap.find_exn t.node_info l) let add_vertex (t:t) (l:Vertex.t) : t * vertex = let open VL in try (t, _node_vertex t l) with Not_found | Not_found_s _ -> let id = t.next_node + 1 in let v = { id = id; label = l } in let g = P.add_vertex t.graph v in let nl = VertexMap.set t.node_info l (v, PortSet.empty) in ({ t with graph=g; node_info=nl; next_node = id}, v) let add_port (t:t) (v:vertex) (p:port) : t = let l = v.VL.label in let v, ps = VertexMap.find_exn t.node_info l in let node_info = VertexMap.set t.node_info l (v, PortSet.add ps p) in { t with node_info } let add_edge (t:t) (v1:vertex) (p1:port) (l:Edge.t) (v2:vertex) (p2:port) : t * edge = let open EL in let aux t = let id = t.next_edge + 1 in let l = { id = id; label = l; src = p1; dst = p2 } in let e = (v1,l,v2) in let t = add_port t v1 p1 in let t = add_port t v2 p2 in ({ t with graph = P.add_edge_e t.graph e; next_edge = id }, e) in try let es = P.find_all_edges t.graph v1 v2 in let es' = List.filter es ( fun (s,l,d) -> Poly.(l.src = p1 && l.dst = p2) ) in match es' with | [] -> aux t | es -> let graph' = List.fold_left es ~init:t.graph ~f:(fun acc e -> P.remove_edge_e acc e) in let t' = {t with graph = graph'} in aux t' with Not_found | Not_found_s _ -> aux t (* Special Accessors *) let num_vertexes (t:t) : int = P.nb_vertex t.graph let num_edges (t:t) : int = P.nb_edges t.graph let edges (t:t) : EdgeSet.t = P.fold_edges_e (fun e acc -> EdgeSet.add acc e) t.graph EdgeSet.empty let vertexes (t:t) : VertexSet.t = P.fold_vertex (fun v acc -> VertexSet.add acc v) t.graph VertexSet.empty let neighbors (t:t) (v:vertex) : VertexSet.t = P.fold_succ (fun v acc -> VertexSet.add acc v) t.graph v VertexSet.empty let find_edge (t:t) (src:vertex) (dst:vertex) : edge = P.find_edge t.graph src dst let find_all_edges (t:t) (src:vertex) (dst:vertex) : EdgeSet.t = List.fold_left (P.find_all_edges t.graph src dst) ~init:EdgeSet.empty ~f:EdgeSet.add let vertex_to_string (t:t) (v:vertex) : string = VL.to_string v let vertex_to_label (t:t) (v:vertex) : Vertex.t = v.VL.label let vertex_of_label (t:t) (l:Vertex.t) : vertex = _node_vertex t l let edge_to_label (t:t) (e:edge) : Edge.t = let (_,l,_) = e in l.EL.label let edge_to_string (t:t) (e:edge) : string = let (_,e,_) = e in EL.to_string e let edge_src (e:edge) : (vertex * port) = let (v1,l,_) = e in (v1, l.EL.src) let edge_dst (e:edge) : (vertex * port) = let (_,l,v2) = e in (v2, l.EL.dst) let inverse_edge (t:t) (e:edge) : edge option = let src_vertex, src_port = edge_src e in let dst_vertex, dst_port = edge_dst e in try let inv_e = find_edge t dst_vertex src_vertex in if Poly.(dst_port = snd (edge_src inv_e) && src_port = snd (edge_dst inv_e)) then Some(inv_e) else None with _ -> None let next_hop (t:t) (v1:vertex) (p:port) : edge option = let rec loop es = match es with | [] -> None | ((_,l,v2) as e)::es' -> if Poly.(l.EL.src = p) then Some e else (loop es') in loop (P.succ_e t.graph v1) let vertex_to_ports (t:t) (v1:vertex) : PortSet.t = _node_ports t v1.VL.label (* Iterators *) let fold_vertexes (f:vertex -> 'a -> 'a) (t:t) (init:'a) : 'a = P.fold_vertex f t.graph init let fold_edges (f:edge -> 'a -> 'a) (t:t) (init:'a) : 'a = P.fold_edges_e f t.graph init let iter_vertexes (f:vertex -> unit) (t:t) : unit = P.iter_vertex f t.graph let iter_edges (f:edge -> unit) (t:t) : unit = P.iter_edges_e f t.graph let iter_succ (f:edge -> unit) (t:t) (v:vertex) : unit = P.iter_succ_e f t.graph v (* Mutators *) let remove_vertex (t:t) (v:vertex) : t = let graph = P.remove_vertex t.graph v in let node_info = VertexMap.remove t.node_info v.VL.label in { t with graph; node_info } let remove_port (t:t) (v:vertex) (p:port) : t = let v, ps = VertexMap.find_exn t.node_info v.VL.label in let ps = PortSet.remove ps p in let node_info = VertexMap.set t.node_info v.VL.label (v, ps) in { t with node_info } let remove_edge (t:t) (e:edge) : t = { t with graph = P.remove_edge_e t.graph e } let remove_endpoint (t:t) (ep : vertex * port) : t = let t = fold_edges (fun e acc -> if Poly.(edge_src e = ep || edge_dst e = ep) then remove_edge acc e else acc) t t in let v, p = ep in let v, ps = VertexMap.find_exn t.node_info v.VL.label in let ps = PortSet.remove ps p in let node_info = VertexMap.set t.node_info v.VL.label (v, ps) in { t with node_info } let remove_port (t:t) (v:vertex) (p:port) = remove_endpoint t (v, p) end (* Traversals *) module Traverse = struct open Topology module Bfs = Graph.Traverse.Bfs(P) module Dfs = Graph.Traverse.Dfs(P) let bfs (f:vertex -> unit) (t:t) = Bfs.iter f t.graph let dfs (f:vertex -> unit) (t:t) = Dfs.prefix f t.graph end module Prim = Graph.Prim.Make (Topology.P) (struct type edge = Topology.P.edge type t = int [@@deriving compare] type label = Topology.EL.t let weight _ = 1 let add = (+) let zero = 0 end) let spanningtree_from f graph vertex = let open Topology.P in let edges = Prim.spanningtree_from graph.Topology.graph vertex in let tree = List.fold_left edges ~init:empty ~f:add_edge_e in let rec loop vx = f vx (List.map (succ tree vx) ~f:loop) in loop vertex (* Paths *) module type PATH = sig type weight type t = Topology.edge list exception NegativeCycle of t val shortest_path : Topology.t -> Topology.vertex -> Topology.vertex -> t option val all_shortest_paths : Topology.t -> Topology.vertex -> Topology.vertex Topology.VertexHash.t val all_pairs_shortest_paths : topo:Topology.t -> f:(Topology.vertex -> Topology.vertex -> bool) -> (weight * Topology.vertex * Topology.vertex * Topology.edge list) list end module Path = functor (Weight : WEIGHT with type edge = Topology.Edge.t) -> struct open Topology module WL = struct type t = Weight.t type edge = P.E.t let weight e = Weight.weight ((P.E.label e).EL.label) let compare = Weight.compare let add = Weight.add let zero = Weight.zero end module Dijkstra = Graph.Path.Dijkstra(P)(WL) type weight = Weight.t type t = edge list let shortest_path (t:Topology.t) (v1:vertex) (v2:vertex) : t option = try let pth,_ = Dijkstra.shortest_path t.graph v1 v2 in Some pth with Not_found | Not_found_s _ -> None exception NegativeCycle of edge list (* Implementation of Bellman-Ford algorithm, based on that in ocamlgraph's Path library. Returns a hashtable mapping each node to its predecessor in the path *) let all_shortest_paths (t:Topology.t) (src:vertex) : (vertex VertexHash.t) = let size = P.nb_vertex t.graph in let dist = VertexHash.create () ~size:size in let prev = VertexHash.create () ~size:size in let admissible = VertexHash.create () ~size:size in VertexHash.set dist src Weight.zero; let build_cycle_from x0 = let rec traverse_parent x ret = let e = VertexHash.find_exn admissible x in let s,_ = edge_src e in if Poly.(s = x0) then e :: ret else traverse_parent s (e :: ret) in traverse_parent x0 [] in let find_cycle x0 = let rec visit x visited = if VertexSet.mem visited x then build_cycle_from x else begin let e = VertexHash.find_exn admissible x in let s,_ = edge_src e in visit s (VertexSet.add visited x) end in visit x0 (VertexSet.empty) in let rec relax (i:int) = let update = P.fold_edges_e (fun e x -> let ev1,_ = edge_src e in let ev2,_ = edge_dst e in try begin let dev1 = VertexHash.find_exn dist ev1 in let dev2 = Weight.add dev1 (Weight.weight (Topology.edge_to_label t e)) in let improvement = try Weight.compare dev2 (VertexHash.find_exn dist ev2) < 0 with Not_found | Not_found_s _ -> true in if improvement then begin VertexHash.set prev ev2 ev1; VertexHash.set dist ev2 dev2; VertexHash.set admissible ev2 e; Some ev2 end else x end with Not_found | Not_found_s _ -> x) t.graph None in match update with | Some x -> if (phys_equal i (P.nb_vertex t.graph)) then raise (NegativeCycle (find_cycle x)) else relax (i + 1) | None -> prev in let r = relax 0 in r let all_pairs_shortest_paths ~(topo:Topology.t) ~(f:Topology.vertex -> Topology.vertex -> bool) : (Weight.t * vertex * vertex * edge list) list = (* Because Weight does not provide infinity, we lift Weight.t using an option: None corresponds to infinity, and Some w corresponds to a finite weight. *) let add_opt o1 o2 = match o1, o2 with | Some w1, Some w2 -> Some (Weight.add w1 w2) | _ -> None in let lt_opt o1 o2 = match o1, o2 with | Some w1, Some w2 -> Weight.compare w1 w2 < 0 | Some _, None -> true | None, Some _ -> false | None, None -> false in let make_matrix (g:Topology.t) = let n = P.nb_vertex g.graph in let vs = vertexes g in let nodes = Array.create ~len:n (VertexSet.choose_exn vs) in let _ = VertexSet.fold vs ~init:0 ~f:(fun i v -> Array.set nodes i v; i+1) in (Array.init n (fun i -> Array.init n (fun j -> if i = j then (Some Weight.zero, lazy []) else try let e = find_edge g nodes.(i) nodes.(j) in let w = Weight.weight (Topology.edge_to_label g e) in (Some w, lazy [e]) with Not_found | Not_found_s _ -> (None,lazy []))), nodes) in let matrix,vxs = make_matrix topo in let n = P.nb_vertex topo.graph in let dist i j = fst (matrix.(i).(j)) in (* let path i j = Lazy.force (snd (matrix.(i).(j))) in *) (* assumes that !(start = mid && stop = mid) *) let path (start : int) (mid : int) (stop : int) = if start = mid then lazy (find_edge topo vxs.(start) vxs.(stop) :: Lazy.force (snd (matrix.(mid).(stop)))) else if stop = mid then lazy (Lazy.force (snd (matrix.(start).(mid))) @ [find_edge topo vxs.(start) vxs.(stop)]) else lazy (Lazy.force (snd matrix.(start).(mid)) @ Lazy.force (snd matrix.(mid).(stop))) in for k = 0 to n - 1 do for i = 0 to n - 1 do for j = 0 to n - 1 do let dist_ikj = add_opt (dist i k) (dist k j) in if lt_opt dist_ikj (dist i j) then matrix.(i).(j) <- (dist_ikj, path i k j) done done done; let paths = ref [] in Array.iteri matrix ~f:(fun i array -> Array.iteri array ~f:(fun j elt -> match elt with | Some w, p when f (vxs.(i)) (vxs.(j)) -> paths := (w, vxs.(i), vxs.(j),Lazy.force p) :: !paths | _ -> () ) ); !paths end module UnitPath = Path(Topology.UnitWeight) (* Parsing *) module Parse = struct open Topology (* TODO(jnf): this could be refactored into a functor that wraps a G.t in an arbitrary type and lifts all other G operations over that type. *) module Build = struct module G = struct module V = P.V module E = P.E type vertex = V.t type edge = E.t type t = Topology.t let empty () = empty () let remove_vertex t v = { t with graph = P.remove_vertex t.graph v } let remove_edge t v1 v2 = { t with graph = P.remove_edge t.graph v1 v2 } let remove_edge_e t e = { t with graph = P.remove_edge_e t.graph e } let add_vertex t v = { t with graph = P.add_vertex t.graph v ; node_info = VertexMap.set t.node_info v.Topology.VL.label (v, PortSet.empty) ; next_node = v.Topology.VL.id + 1} let add_edge t v1 v2 = { t with graph = P.add_edge t.graph v1 v2 ; next_edge = t.next_edge + 1} let add_edge_e t e = let (_,l,_) = e in { t with graph = P.add_edge_e t.graph e ; next_edge = l.Topology.EL.id + 1} let fold_pred_e f t i = P.fold_pred_e f t.graph i let iter_pred_e f t = P.iter_pred_e f t.graph let fold_succ_e f t i = P.fold_succ_e f t.graph i let iter_succ f t v = P.iter_succ f t.graph v let iter_succ_e f t v = P.iter_succ_e f t.graph v let iter_edges f t = P.iter_edges f t.graph let fold_pred f t v i = P.fold_pred f t.graph v i let fold_succ f t v i = P.fold_succ f t.graph v i let iter_pred f t v = P.iter_pred f t.graph v let map_vertex f t = { t with graph = P.map_vertex f t.graph } let fold_edges_e f t i = P.fold_edges_e f t.graph i let iter_edges_e f t = P.iter_edges_e f t.graph let fold_vertex f t i = P.fold_vertex f t.graph i let fold_edges f t i = P.fold_edges f t.graph i let iter_vertex f t = P.iter_vertex f t.graph let pred_e t v = P.pred_e t.graph v let succ_e t v = P.succ_e t.graph v let pred t v = P.pred t.graph v let succ t v = P.succ t.graph v let find_all_edges t v1 v2 = P.find_all_edges t.graph v1 v2 let find_edge t v1 v2 = P.find_edge t.graph v1 v2 let mem_edge_e t e = P.mem_edge_e t.graph e let mem_edge t v1 v2 = P.mem_edge t.graph v1 v2 let mem_vertex t v = P.mem_vertex t.graph v let in_degree t v = P.in_degree t.graph v let out_degree t v = P.out_degree t.graph v let nb_edges t = P.nb_edges t.graph let nb_vertex t = P.nb_vertex t.graph let is_empty t = P.is_empty t.graph let is_directed = P.is_directed end let empty = G.empty let remove_vertex = G.remove_vertex let remove_edge = G.remove_edge let remove_edge_e = G.remove_edge_e let add_vertex = G.add_vertex let add_edge = G.add_edge let add_edge_e = G.add_edge_e let copy t = t end module Dot = Graph.Dot.Parse(Build)(struct let get_port o = match o with | Some(s) -> begin match s with | Graph.Dot_ast.Number(i) -> Scanf.sscanf i "%lu" (fun i -> i) | _ -> failwith "Requires number" end | None -> failwith "Requires value" let next_node = let r = ref 0 in fun _ -> incr r; !r let next_edge = let r = ref 0 in fun _ -> incr r; !r let node id attrs = let open VL in { id = next_node (); label = Vertex.parse_dot id attrs } let edge attrs = (* This is a bit of a hack because we only look at the first list of attrs *) let ats = List.hd_exn attrs in let src,dst,rest = List.fold_left ats ~init:(0l,0l,[]) ~f:(fun (src,dst,acc) (k,v) -> match k with | Graph.Dot_ast.Ident("src_port") -> (get_port v,dst,acc) | Graph.Dot_ast.Ident("dst_port") -> (src, get_port v, acc) | _ -> (src,dst,(k,v)::acc)) in let attrs' = rest::(List.tl_exn attrs) in let open EL in { id = next_edge (); label = Edge.parse_dot attrs'; src = src; dst = dst } end) module Gml = Graph.Gml.Parse(Build)(struct let next_node = let r = ref 0 in fun _ -> incr r; !r let next_edge = let r = ref 0 in fun _ -> incr r; !r let node vs = let open VL in { id = next_node (); label = Vertex.parse_gml vs } let edge vs = let open EL in { id = next_edge (); label = Edge.parse_gml vs; src = 0l; dst = 0l } end) let from_dotfile = Dot.parse let from_gmlfile = Gml.parse end (* Pretty Printing *) module Pretty = struct open Topology let load_file fn = In_channel.(with_file fn ~f:input_all) let to_dot (t:t) = let es = (EdgeSet.fold (edges t) ~init:"" ~f:(fun acc (s,l,d) -> let _,src_port = edge_src (s,l,d) in let _,dst_port = edge_dst (s,l,d) in Printf.sprintf "%s%s%s -> %s {src_port=%lu; dst_port=%lu; %s};" acc (if Poly.(acc = "") then "" else "\n") (Vertex.to_string s.VL.label) (Vertex.to_string d.VL.label) src_port dst_port (Edge.to_dot l.EL.label))) in let vs = (VertexSet.fold (vertexes t) ~init:"" ~f:(fun acc v -> Printf.sprintf "%s%s\n%s;" acc (if Poly.(acc = "") then "" else "\n") (Vertex.to_dot v.VL.label) )) in Printf.sprintf "digraph G {\n%s\n%s\n}\n" vs es let to_string (t:t) : string = to_dot t (* Produce a Mininet script that implements the given topology *) let to_mininet ?(prologue_file = "static/mn_prologue.txt") ?(epilogue_file = "static/mn_epilogue.txt") (t:t) : string = (* Load static strings (maybe there's a better way to do this?) *) let prologue = load_file prologue_file in let epilogue = load_file epilogue_file in (* Check if an edge or its reverse has been added already *) let seen = ref EdgeSet.empty in let not_printable e = let (src,edge,dst) = e in let inverse = match inverse_edge t e with | None -> false | Some e -> EdgeSet.mem !seen e in Poly.(src = dst) || EdgeSet.mem !seen e || inverse in (* Add the hosts and switches *) let add_hosts = fold_vertexes (fun v acc -> let label = vertex_to_label t v in let add = Vertex.to_mininet label in acc ^ " " ^ add ) t "" in (* Add links between them *) let links = fold_edges (fun e acc -> let add = if (not_printable e) then "" (* Mininet links are bidirectional *) else let src_vertex,src_port = edge_src e in let dst_vertex,dst_port = edge_dst e in let src_label = vertex_to_label t src_vertex in let dst_label = vertex_to_label t dst_vertex in let src = Str.global_replace (Str.regexp "[ ,]") "" (Vertex.to_string src_label) in let dst = Str.global_replace (Str.regexp "[ ,]") "" (Vertex.to_string dst_label) in Printf.sprintf " net.addLink(%s, %s, %ld, %ld)\n" src dst src_port dst_port in seen := EdgeSet.add !seen e; acc ^ add ) t "" in prologue ^ add_hosts ^ links ^ epilogue end end (* Utility functions *) let parse_rate (r:string) : Int64.t = let a = Str.search_forward (Str.regexp "\\([0-9]+\\)") r 0 in let amt = Str.matched_group 0 r in let _ = Str.search_forward (Str.regexp "\\([A-Za-z]+\\)") r a in let rate = Str.matched_group 0 r in let n = Int64.of_string amt in let m = match rate with | "bps" -> 1L | "Bps" -> 8L | "kbps" -> 1024L | "kBps" -> 8192L | "Mbps" -> 1048576L | "MBps" -> 8388608L | "Gbps" -> 1073741824L | "GBps" -> 8589934592L | _ -> failwith "Invalid rate specifier" in Int64.(n * m) let maybe o = match o with | Some(s) -> s | None -> failwith "Requires value" (* Convert the generic id type to more specialized types *) let string_of_id id = match id with | Dot_ast.Ident(s) -> s | Dot_ast.Number(s) -> "n" ^ s | Dot_ast.String(s) -> s | Dot_ast.Html(s) -> s let int32_of_id vo = match maybe vo with | Dot_ast.Number(n) -> Int32.of_string n | _ -> failwith "Need a number to get int32\n" let int64_of_id vo = match maybe vo with | Dot_ast.Number(n) -> Int64.of_string n | _ -> failwith "Need a number to get id\n" let capacity_of_id vo = match maybe vo with | Dot_ast.String(s) -> parse_rate s | _ -> failwith "Need a string to get capacity\n" module Node = struct type device = Switch | Host | Middlebox [@@deriving sexp, compare] type t = { dev_type : device ; dev_id : int64 ; ip : int32 ; mac : int64 ; name : string } [@@deriving sexp, compare] type partial_t = { partial_dev_type : device option ; partial_dev_id : int64 option ; partial_ip : int32 option ; partial_mac : int64 option ; partial_name : string option } let default = { dev_type = Host ; dev_id = 0L ; name = "" ; ip = 0l ; mac = 0L } let partial_default = { partial_dev_type = None ; partial_dev_id = None ; partial_ip = None ; partial_mac = None ; partial_name = None } let create (n:string) (i:int64) (d:device) (ip:int32) (mac:int64) : t = { dev_type = d ; name = n ; ip = ip ; mac = mac ; dev_id = i } let name (n:t) : string = n.name let id (n:t) : int64 = n.dev_id let device (n:t) : device = n.dev_type let mac (n:t) : int64 = n.mac let ip (n:t) : int32 = n.ip let to_string n = n.name let to_dot n = let devstr = match n.dev_type with | Switch -> "switch" | Host -> "host" | Middlebox -> "middlebox" in Printf.sprintf "%s [type=%s, ip=\"%s\", mac=\"%s\", id=%Ld]" n.name devstr (Packet.string_of_ip n.ip) (Packet.string_of_mac n.mac) (n.dev_id) let to_mininet n = match n.dev_type with | Host -> (* Mininet doesn't like underscores in host names *) let mnname = Str.global_replace (Str.regexp "_") "" n.name in Printf.sprintf "%s = net.addHost(\'%s\', mac=\'%s\', ip=\'%s\')\n" n.name mnname (Packet.string_of_mac n.mac) (Packet.string_of_ip n.ip) | _ -> Printf.sprintf "%s = net.addSwitch(\'s%Ld\')\n" n.name n.dev_id (* Update the record for a node *) let update_dot_attr n (k,vo) = let dev_type_of vo = match string_of_id (maybe vo) with | "host" -> Host | "switch" -> Switch | "middlebox" -> Middlebox | s -> failwith (Printf.sprintf "Unknown node type: %s\n" s) in let ip_of vo = match maybe vo with | Dot_ast.String(s) -> Packet.ip_of_string s | _ -> failwith "IPs must be represented as a string (in quotes)\n" in let mac_of vo = match maybe vo with | Dot_ast.String(s) -> Packet.mac_of_string s | _ -> failwith "MAC must be represented as a string (in quotes)\n" in match k with | Dot_ast.Ident("type") -> {n with partial_dev_type = Some (dev_type_of vo)} | Dot_ast.Ident("id") -> {n with partial_dev_id = Some (int64_of_id vo)} | Dot_ast.Ident("ip") -> {n with partial_ip = Some (ip_of vo)} | Dot_ast.Ident("mac") -> {n with partial_mac = Some (mac_of vo)} | _ -> failwith "Unknown node attribute\n" (* Take the partial node record and remove the option types, or raise an error if it is not fully filled *) let unbox (p:partial_t) : t = let unbox_host (p:partial_t) = let i = match p.partial_ip with | Some i -> i | None -> failwith "Host must have an IP address" in let m = match p.partial_mac with | Some m -> m | None -> failwith "Host must have a MAC address" in let n = match p.partial_name with | Some n -> n | None -> failwith "Host must have a name" in let id = match p.partial_dev_id with | Some i -> i | None -> m in { dev_type = Host ; dev_id = id ; ip = i ; mac = m ; name = n} in let unbox_switch (p:partial_t) = let id = match p.partial_dev_id with | Some i -> i | None -> failwith "Switches must have a unique id" in let n = match p.partial_name with | Some n -> n | None -> failwith "Switch must have a name" in let m = match p.partial_mac with | Some m -> m | None -> 0L in let i = match p.partial_ip with | Some i -> i | None -> 0l in { dev_type = Switch ; dev_id = id ; ip = i ; mac = m ; name = n} in match p.partial_dev_type with | Some Host -> unbox_host p | Some Switch -> unbox_switch p | Some Middlebox -> unbox_switch p | _ -> failwith "Must provide valid devide type for all nodes" let parse_dot (i:Dot_ast.node_id) (ats:Dot_ast.attr list) : t = let (id, popt) = i in let name = string_of_id id in let at = List.hd_exn ats in let partial = List.fold_left at ~init:{partial_default with partial_name = Some name} ~f:update_dot_attr in unbox partial let int64_of_value v = match v with | Gml.Int(i) -> Int64.of_int i | _ -> failwith "Id requires int value\n" let string_of_value v = match v with | Gml.String(s) -> s | _ -> failwith "Label requires int value\n" let update_gml_attr n (key, value) = match key with | "id" -> {n with dev_id = int64_of_value value} | "label" -> {n with name = string_of_value value} | "mac" -> {n with mac = Packet.mac_of_string (string_of_value value)} | "ip" -> {n with ip = Packet.ip_of_string (string_of_value value)} | _ -> n let parse_gml (vs:Gml.value_list) : t = List.fold_left vs ~init:default ~f:update_gml_attr end module Link = struct type t = { cost : int64 ; capacity : int64 ; mutable weight : float } [@@deriving sexp, compare] let default = { cost = 1L; capacity = Int64.of_int64 0x7FFFFFFFFFFFFFFFL; weight = 1. } let create (cost:int64) (cap:int64) : t = { default with cost = cost; capacity = cap } let cost (l:t) = l.cost let capacity (l:t) = l.capacity let weight (l:t) = l.weight let set_weight (l:t) (w:float) = l.weight <- w let to_string (l:t) : string = Printf.sprintf " cost = %s; capacity = %s; " (Int64.to_string l.cost) (Int64.to_string l.capacity) let to_dot = to_string let update_dot_attr edge (key,valopt) = match key with | Dot_ast.Ident("cost") -> {edge with cost = int64_of_id valopt } | Dot_ast.Ident("capacity") -> {edge with capacity = capacity_of_id valopt } | Dot_ast.Ident(s) -> edge | _ -> failwith ("Unknown edge attribute\n") let update_gml_attr edge (key, value) = match key with | _ -> edge let parse_dot (ats:Dot_ast.attr list) : t = let at = List.hd_exn ats in let link = List.fold_left at ~init:default ~f:update_dot_attr in link let parse_gml (vs:Gml.value_list) : t = let link = List.fold_left vs ~init:default ~f:update_gml_attr in link end module Weight = struct type edge = Link.t [@@deriving sexp] type t = float [@@deriving sexp] let weight l = let open Link in l.weight let compare = Poly.compare let add = (+.) let zero = 0. end module Net = Make(Node)(Link) module NetPath = Net.Path(Weight)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>