package frama-c
Platform dedicated to the analysis of source code written in C
Install
Dune Dependency
Authors
-
MMichele Alberti
-
TThibaud Antignac
-
GGergö Barany
-
PPatrick Baudin
-
NNicolas Bellec
-
TThibaut Benjamin
-
AAllan Blanchard
-
LLionel Blatter
-
FFrançois Bobot
-
RRichard Bonichon
-
VVincent Botbol
-
QQuentin Bouillaguet
-
DDavid Bühler
-
ZZakaria Chihani
-
SSylvain Chiron
-
LLoïc Correnson
-
JJulien Crétin
-
PPascal Cuoq
-
ZZaynah Dargaye
-
BBasile Desloges
-
JJean-Christophe Filliâtre
-
PPhilippe Herrmann
-
MMaxime Jacquemin
-
BBenjamin Jorge
-
FFlorent Kirchner
-
AAlexander Kogtenkov
-
RRemi Lazarini
-
TTristan Le Gall
-
KKilyan Le Gallic
-
JJean-Christophe Léchenet
-
MMatthieu Lemerre
-
DDara Ly
-
DDavid Maison
-
CClaude Marché
-
AAndré Maroneze
-
TThibault Martin
-
FFonenantsoa Maurica
-
MMelody Méaulle
-
BBenjamin Monate
-
YYannick Moy
-
PPierre Nigron
-
AAnne Pacalet
-
VValentin Perrelle
-
GGuillaume Petiot
-
DDario Pinto
-
VVirgile Prevosto
-
AArmand Puccetti
-
FFélix Ridoux
-
VVirgile Robles
-
JJan Rochel
-
MMuriel Roger
-
CCécile Ruet-Cros
-
JJulien Signoles
-
NNicolas Stouls
-
KKostyantyn Vorobyov
-
BBoris Yakobowski
Maintainers
Sources
frama-c-31.0-Gallium.tar.gz
sha256=a94384f00d53791cbb4b4d83ab41607bc71962d42461f02d71116c4ff6dca567
doc/src/mthread/mt_shared_vars.ml.html
Source file mt_shared_vars.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
(**************************************************************************) (* *) (* This file is part of Frama-C. *) (* *) (* Copyright (C) 2007-2025 *) (* CEA (Commissariat à l'énergie atomique et aux énergies *) (* alternatives) *) (* *) (* you can redistribute it and/or modify it under the terms of the GNU *) (* Lesser General Public License as published by the Free Software *) (* Foundation, version 2.1. *) (* *) (* It is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* See the GNU Lesser General Public License version 2.1 *) (* for more details (enclosed in the file licenses/LGPLv2.1). *) (* *) (**************************************************************************) open Cil_types open Cil_datatype open Visitor open Locations open Mt_cil open Mt_memory.Types open Mt_types open Mt_shared_vars_types open Mt_cfg_types open Mt_thread (* -------------------------------------------------------------------------- *) (* --- Collecting accesses to variables --- *) (* -------------------------------------------------------------------------- *) (* The beginning of this module is essentially a variation on an old version of Inputs/Outputs, in which we keep a bit more information (typically locations for writes, or the statements at which the operation took place for reads *) let () = Ast_attributes.register ~ignore:true (AttrName false) "FRAMA_C_MODEL" (* FIXME: Frama-C has removed the attribute FRAMA_C_MODEL from its libc. This should also probably be removed here. *) (* Skip variables such as __fc_heap_status, __fc_random_counter, etc. *) let is_model_base b = try let vi = Base.to_varinfo b in Ast_attributes.contains "FRAMA_C_MODEL" vi.vattr with Base.Not_a_C_variable -> false let keep_base b = not (Base.is_any_formal_or_local b || Mt_memory.is_frama_c_base b || is_model_base b || (Mt_options.IgnoreNull.get () && Base.(equal b null)) ) (* We are only interested in globals, and remove locals, formals, and special frama-c variables on the fly *) let remove_uninteresting_variables_zone z = Zone.filter_base keep_base z let remove_uninteresting_variables_loc loc = Locations.filter_base keep_base loc let error_io_whole_memory op = let source = fst (RW.loc op) in Mt_options.error ~source ~once:true "@[%a of the whole memory.@ Ignoring to allow Mthread to continue, \ but the analysis will not be correct.@]" RW.pretty op let filter_inout_memory = let base = try (* Skip variable "__fc_mthread_shared", as it is only used to prevent Memexec from caching some functions *) let vi = Base.to_varinfo base in String.equal vi.vorig_name "__fc_mthread_shared" with Base.Not_a_C_variable -> false in let filter_base base = Base.is_global base && not (is_mthread_shared base) in Inout_memory.mk_filter ~filter_base let read_written_by_thread ?(watch_only=Locations.Zone.top) sm th = let open Current_loc.Operators in let add stmt op zone acc = if Locations.Zone.is_bottom zone then (* Do nothing *) acc else if Locations.Zone.is_top zone then let () = error_io_whole_memory op in acc else let zone = remove_uninteresting_variables_zone zone in let zone = Locations.Zone.narrow zone watch_only in let state = AccessesByZone.Map acc in let v = SetStmtIdAccess.inject_singleton (op, stmt, th) in match AccessesByZone.add_binding state ~exact:false zone v with | AccessesByZone.Bottom -> assert false (* state is not Bottom *) | AccessesByZone.Top -> assert false (* Top is checked above *) | AccessesByZone.Map m -> m in Inout_memory.fold ~filter:filter_inout_memory (fun aloc memory acc -> match aloc with | Global _ -> (* A Global analysis location represents the initialization state and is never multithreaded. *) acc | Local (stmt, _) -> let<> UpdatedCurrentLoc = Stmt.loc stmt in if sm stmt then acc |> add stmt (ReadAloc aloc) memory.read |> add stmt (WriteAloc aloc) memory.written else acc) AccessesByZone.empty_map (** In global mode, we do a rough analysis using the synthetic results of Value. In local mode, we supply precise states for each statement of the function. *) type mode = VLocal | VGlobal type collect_params = { stmt_multithread: stmt -> bool; thread: thread; mode: mode; iter_requests: stmt -> (Results.request -> unit) -> unit; watch_only: Locations.Zone.t; } (* Visitor that collects all reads and assignments done by the functions. Strongly inspired by inout/{inputs,outputs}.ml. There are some differences, eg. Outputs.get_internal, which is accessed through Db in outputs.ml, is here in the class. Moreover we always use the same visitor: all results are accumulated in the variable [result], instead of being returned functionally *) class do_it cp = object(self) inherit Visitor.frama_c_inplace as super val mutable result = AccessesByZone.empty_map method accesses = result (* Functions already visited. Used to avoid recursion and to prevent adding results multiple times in [result] *) val visited = Cil_datatype.Kf.Hashtbl.create 17 method private mark_visited kf = Cil_datatype.Kf.Hashtbl.add visited kf () method private already_visited kf = try Cil_datatype.Kf.Hashtbl.find visited kf; true with Not_found -> false method private add_access op z = if not (Locations.Zone.equal Locations.Zone.top z) then ( let stmt = self#cur_stmt in if cp.stmt_multithread stmt then let interesting = remove_uninteresting_variables_zone z in let concurrent = Locations.Zone.narrow interesting cp.watch_only in let state = AccessesByZone.Map result in let v = SetStmtIdAccess.inject_singleton (op, stmt, cp.thread) in match AccessesByZone.add_binding state ~exact:false concurrent v with | AccessesByZone.Bottom -> assert false (* state is not Bottom *) | AccessesByZone.Top -> assert false (* Top is checked above *) | AccessesByZone.Map m -> result <- m ) else Mt_options.error ~current:true ~once:true "@[%a@ of@ the@ whole@ memory.@ Ignoring@ to@ allow@ Mthread@ to@ \ continue,@ but@ the@ analysis@ will@ not@ be@ correct.@]" RW.pretty op method private cur_stmt = match super#current_stmt with | None -> Mt_options.abort "visiting without current statement" | Some s -> s method! vstmt_aux s = if cp.stmt_multithread s then match s.skind with | UnspecifiedSequence seq -> List.iter (fun (stmt,_,_,_,_) -> ignore(visitFramacStmt (self:>frama_c_visitor) stmt)) seq; Cil.SkipChildren | _ -> super#vstmt_aux s else Cil.DoChildren (* Not an interesting statement, we do not analyse it deeply *) method! vlval lv = cp.iter_requests self#cur_stmt (fun req -> self#add_access Read Results.(lval_deps lv req)); Cil.SkipChildren method private do_assign lv = cp.iter_requests self#cur_stmt (fun request -> let deps = Results.(address_deps lv request) in self#add_access Read deps; let loc = Results.(eval_address lv request |> as_location) in if Location_Bits.(equal loc.loc top) then Mt_options.warning ~current:true ~once:true "Problem with %a: its writing location is completely unknown." Printer.pp_lval lv; let loc = remove_uninteresting_variables_loc loc in let loc = Locations.(valid_part Write loc) in let bits_loc = Locations.(enumerate_valid_bits Write loc) in self#add_access (Write loc) bits_loc) method private do_init v i = let rec aux lv = function | SingleInit e -> self#do_assign lv; ignore (visitFramacExpr (self:>frama_c_visitor) e) | CompoundInit(ct,initl) -> let doinit o i _ () = aux (Cil.addOffsetLval o lv) i in Cil.foldLeftCompound ~implicit:true ~doinit ~ct ~initl ~acc:() in aux (Cil.var v) i method private do_call exp = cp.iter_requests self#cur_stmt (fun request -> let deps = match exp.enode with | Lval lv -> Results.address_deps lv request | _ -> assert false in self#add_access Read deps; (* In global mode, we treat the recursive calls. In precise mode, they are done elsewhere in the construction of the cfg *) if cp.mode = VGlobal then let callees = Results.(eval_callee exp request |> default []) in List.iter self#rw_fun callees ) method! vinst i = let visit_expr e = ignore (visitFramacExpr (self:>frama_c_visitor) e) in if not (Results.is_reachable self#cur_stmt) then Cil.SkipChildren else match i with | Set (lv,exp,_) -> self#do_assign lv; visit_expr exp; Cil.SkipChildren | Local_init(v, AssignInit i, _) -> self#do_init v i; Cil.SkipChildren | Local_init(v, ConsInit (f, args, _), _) -> self#do_assign (Cil.var v); self#do_call (Cil.evar f); List.iter visit_expr args; Cil.SkipChildren | Call (lv_opt,exp,args,_) -> Option.iter self#do_assign lv_opt; self#do_call exp; List.iter visit_expr args; Cil.SkipChildren | _ -> Cil.DoChildren method! vexpr exp = match exp.enode with | AddrOf lv | StartOf lv -> cp.iter_requests self#cur_stmt (fun request -> let deps = Results.address_deps lv request in self#add_access Read deps; ); Cil.SkipChildren | _ -> Cil.DoChildren method rw_stmt stmt = ignore (visitFramacStmt (self :> frama_c_visitor) stmt) (* Skip assigns to "__fc_mthread_shared" variable, as this variable is only used to prevent Memexec from caching some functions *) method private assigns_not_mthread = function | WritesAny -> WritesAny | Writes l -> let aux (t, _) = match t.it_content.term_node with | TLval (TVar { lv_name = name}, _) -> name <> "__fc_mthread_shared" | _ -> true in Writes (List.filter aux l) method private compute_for_funspec kf = let aux request = let state = Results.get_cvalue_model request in let behaviors = Logic_inout.valid_behaviors kf state in let assigns = Ast_info.merge_assigns behaviors in let assigns = self#assigns_not_mthread assigns in (* Compute the zones written by the assigns *) (match assigns with | WritesAny -> let top = Locations.make_loc Location_Bits.top Int_Base.top in self#add_access (Write top) Zone.top; | Writes assigns' -> let aux l = try let loc = Eva_results.eval_tlval_as_location state l in let loc = remove_uninteresting_variables_loc loc in let loc = Locations.(valid_part Write loc) in let z = Locations.(enumerate_valid_bits Write loc) in self#add_access (Write loc) z with Logic_to_c.No_conversion -> Mt_options.warning ~once:true "unsupported@ assigns@ clause@ for@ function %a;@ Ignoring it." Kernel_function.pretty kf; in List.iter (fun ({it_content = loc}, _) -> if not (Logic_utils.is_result loc) then aux loc ) assigns' ); (* Compute the zone read by the assigns *) let read = Logic_inout.assigns_inputs_to_zone state assigns in self#add_access Read read in match cp.mode with | VGlobal -> let requests = Results.(at_start_of kf |> by_callstack |> List.map snd) in List.iter aux requests | VLocal -> cp.iter_requests self#cur_stmt aux method rw_fun kf = if not (self#already_visited kf) then ( self#mark_visited kf; match Analysis.use_spec_instead_of_definition kf, kf.fundec with | false, Definition (f,_) -> ignore (visitFramacFunction (self:>frama_c_visitor) f) | true, _ | _, Declaration _ -> self#compute_for_funspec kf ) end let aux_visitor sm th sa watch_only = let cp = { stmt_multithread = sm; thread = th; mode = (match sa with Global -> VGlobal | Local _ -> VLocal); iter_requests = iter_requests sa; watch_only = watch_only; } in new do_it cp let read_written_by_function sm th sa ?(watch_only=Locations.Zone.top) kf ki = let comp = aux_visitor sm th sa watch_only in (* We position the current statement for calls to leaf functions *) (match ki with | Kglobal -> () | Kstmt s -> comp#push_stmt s ); comp#rw_fun kf; comp#accesses; ;; let var_thread_created = Mt_cil.mthread_global_var "__fc_mthread_threads_running" (* Ad-hoc function that disregards accesses to variables that occurs before any thread is created. This simplifies the cfg of threads, and increases convergence speed *) exception Stmt_is_multithreaded let stmt_is_multithreaded analysis sa = let iter_requests = iter_requests sa in let th = analysis.curr_thread in if Thread.is_main th.th_eva_thread then let v = var_thread_created () in (fun stmt -> try iter_requests stmt (fun request -> let value = Results.(eval_var v request |> as_cvalue) in match Mt_memory.extract_int value with | `Success 0 -> () | _ -> raise Stmt_is_multithreaded ); false with Stmt_is_multithreaded -> true ) else (fun _ -> true) (* -------------------------------------------------------------------------- *) (* --- Computation of variables accessed concurrently by two threads --- *) (* -------------------------------------------------------------------------- *) module type Computer = sig module Access : Datatype.S module Set: Lattice_type.Lattice_Set with type O.elt = Access.t module ZoneMap: Lmap_bitwise.Location_map_bitwise with type v = Set.t type list_accesses = (Locations.Zone.t * Set.t) list val pretty_concurrent_accesses : ?f:Access.t Pretty_utils.formatter -> unit -> Format.formatter -> list_accesses -> unit val all_zones_accessed : list_accesses -> Locations.Zone.t val concurrent_accesses_all_threads : Mt_thread.ThreadState.t list -> (list_accesses * list_accesses) * ZoneMap.map end (* All our computations are parameterized by the structure on which we act: either the information is at the level of the statement (obtained by the class [do_it] above), or at the level of the cfg node. In the second case, we use the dataflow information to determine when two threads are live simultaneously *) module Aux(X: sig type info module Access: Datatype.S with type t = rw * info * Thread.t module Set: sig include Lattice_type.Lattice_Set with type O.elt = Access.t val pretty_aux: Access.t Pretty_utils.formatter -> t Pretty_utils.formatter end module ZoneMap: Lmap_bitwise.Location_map_bitwise with type v = Set.t val thread_data: thread_state -> ZoneMap.map val running_concurrently: thp:thread_state -> ths:thread_state -> infop:info -> bool end) = struct include X open Abstract_interp (* YYY: this is not the good approach, as a write t[i] = foo with i imprecise will result in a huge location, instead of a unique location with many offsets. However, extracting the real location require changes at many places. Ideally, those locations should be stocked directly the RW constructor itself. This has been done for W, but not for R. *) let fold_location f m acc = let module H = Datatype.Integer.Hashtbl in let aux b itvs v acc = try let l = Int_Intervals.project_set itvs in let by_size = H.create 4 in let aux_itv (ib, ie) = let loc = Location_Bits.inject b (Ival.inject_singleton ib) in let size = Int.succ (Int.sub ie ib) in try let prev = H.find by_size size in let loc = Location_Bits.join prev loc in H.replace by_size size loc with Not_found -> H.add by_size size loc in List.iter aux_itv l; H.fold (fun size loc acc -> let loc = Locations.make_loc loc (Int_Base.inject size) in f loc v acc ) by_size acc with Abstract_interp.Error_Top -> let locb = Location_Bits.inject b Ival.zero in let size = Int_Base.top (* TODO : use validity *) in let loc = Locations.make_loc locb size in f loc v acc in X.ZoneMap.fold_base (fun base -> X.ZoneMap.LOffset.fold_fuse_same (aux base)) m acc (* Given two threads, return a function that tells if two possible concurrent accesses to a variable need to be considered (ie. if they are really concurrent wrt. the calling structure of the threads). *) let consider_vars_accesses th1 th2 = match ThreadState.one_creates_other th1 th2 with | `Unrelated -> (* The two threads are independent, so we have no better choice than to assume that all their variable accesses are concurrent *) (fun _ _ -> true) | `Creates (thp, ths) -> (* thp creates ths. We should only consider accesses of [thp] that can occur after [ths] is created, but we do not necessarily have this information available *) let before info = X.running_concurrently ~thp ~ths ~infop:info in if ThreadState.equal thp th1 then (fun (_, info, _ : X.Access.t) _ -> before info) else (fun _ (_, info, _ : X.Access.t) -> before info) ;; (* Join two sets of accesses to a same location for two given threads. The [consider] function must return true when the accesses are possibly concurrent, ie when the two threads can be live. *) let concurrent_accesses_sets consider s1 s2 = (* We basically do a cartesian product, only removing accesses that are guaranteed to be non concurrent *) X.Set.fold (fun o1 acc -> X.Set.fold (fun o2 s -> Mt_options.debug ~level:2 "@[<hov>Possible concurrent accesss@ %a@ and %a@]" X.Access.pretty o1 X.Access.pretty o2; let is_concurrent = consider o1 o2 in if is_concurrent then ( Mt_options.debug ~level:2 "@[Above access is concurrent@]"; X.Set.join s (X.Set.join (X.Set.inject_singleton o1) (X.Set.inject_singleton o2)) ) else ( Mt_options.debug ~level:2 "@[Above access is not concurrent@]"; s) ) s2 acc ) s1 X.Set.bottom ;; (* Compute the concurrent accesses between two threads, by considering all accesses to the same variable by the two threads, and by removing those that are not really concurrent (using [concurrent_accesses_sets] above) *) let concurrent_accesses_two_threads th1 th2 = Mt_options.debug ~level:2 "Concurrent accessses in threads %a and %a" ThreadState.pretty th1 ThreadState.pretty th2; let consider = consider_vars_accesses th1 th2 in (* not a global cache: we have a dependency on [Thread.one_creates_other], which is not a pure function. *) let cache = Hptmap_sig.TemporaryCache "Mt_shared_vars.concurrent_accesses_two_threads" in (* NOT [empty_neutral]: this operation is akin to an intersection. *) let empty_neutral = false in (* NOT [idempotent]: two accesses at the same statement may fail to interact if one thread is not yet created. *) let idempotent = false in let symmetric = false in let decide_fast _ _ = X.ZoneMap.LOffset.Recurse in let map2 = X.ZoneMap.map2 ~cache ~symmetric ~idempotent ~empty_neutral decide_fast in map2 (fun s1 s2 -> concurrent_accesses_sets consider s1 s2) (X.thread_data th1) (X.thread_data th2) ;; (* Basic union of two sets accesses to the same variable. We simply merge the sets *) let basic_merge_events = let cache = Hptmap_sig.PersistentCache "Mt_shared_vars.basic_merge_events" in let empty_neutral = true in let idempotent = true in let symmetric = true in let decide_fast _ _ = X.ZoneMap.LOffset.Recurse in (* Partial application is important *) X.ZoneMap.map2 ~cache ~symmetric ~idempotent ~empty_neutral decide_fast X.Set.join type list_accesses = (Locations.Zone.t * X.Set.t) list (* Compute all the concurrent accesses to all the variables. For each thread, we consider its possible concurrent accesses with all the other threads. Algorithmically, there is no need to consider the accesses between (th1, th2) and (th2, th1), as the relation is symmetric. Hence we consider only half the cases. *) let concurrent_accesses_all_threads all_threads : (list_accesses * list_accesses) * _ = let rec aux acc = function | [] -> acc | th :: thq -> let rec aux' acc = function | [] -> acc | th' :: thq' -> let m = concurrent_accesses_two_threads th th' in aux' (basic_merge_events m acc) thq' in aux (aux' acc thq) thq in let all = aux X.ZoneMap.empty_map all_threads in (* Gather possible data races into two different lists. At this write/write dataraces are separated from read/write dataraces. *) X.ZoneMap.fold_fuse_same (fun z s ((write_write_races, read_write_races) as acc) -> let read_access, write_access = X.Set.fold (fun (op, _, _) (read, write) -> match op with | Read -> (true, write) | Write _ -> (read, true) | ReadAloc _ -> (true, write) | WriteAloc _ -> (read, true) ) s (false, false) in match read_access, write_access with | false, false -> acc (* no access at all, [s] is empty *) | true, false -> (* not a race condition *) acc | false, true -> (* write/write race *) if Mt_options.WriteWriteRaces.get () then (z, s) :: write_write_races, read_write_races else acc | true, true -> (* read/write race *) write_write_races, (z, s) :: read_write_races ) all ([], []), all let pretty_concurrent_accesses ?(f=(fun _fmt _ -> ())) () fmt (l:list_accesses) = if l = [] then Format.fprintf fmt "none" else Format.fprintf fmt "@[<v 1>%a@]" (Pretty_utils.pp_list ~sep:"@ " (fun fmt (z, s) -> Format.fprintf fmt "@[<v 0>%a:@ @[<hov>%a@]@]" Locations.Zone.pretty z (X.Set.pretty_aux f) s )) l let all_zones_accessed (l: list_accesses) = let aux acc (z, _) = Locations.Zone.join z acc in List.fold_left aux Locations.Zone.bottom l end module Global = Aux( struct type info = stmt let thread_data th = th.th_read_written module Access = StmtIdAccess module Set = SetStmtIdAccess module ZoneMap = AccessesByZone (* For this analysis, we do not try to find if the two threads run concurrently. This will be done later through the cfg *) let running_concurrently ~thp:_ ~ths:_ ~infop:_ = true end) module Precise = struct include Aux( struct type info = node let thread_data th = th.th_read_written_cfg module Access = NodeIdAccess module Set = SetNodeIdAccess module ZoneMap = AccessesByZoneNode let running_concurrently ~thp:_ ~ths ~infop = let context = infop.cfgn_context in match ThreadPresence.find context.started_threads ths.th_eva_thread with | NotPresent -> false | MaybePresent | Present -> true end) (* validity should not be [Invalid] *) let default_offsetmap validity = let size = Cvalue.V_Offsetmap.size_from_validity validity in let size = Lattice_bounds.Bottom.non_bottom size in Cvalue.V_Offsetmap.create_isotropic ~size Cvalue.V_Or_Uninitialized.bottom let node op loc state = match loc.size with | Int_Base.Top -> Mt_options.warning ?source:(CfgNode.node_first_loc node) "Ignoring imprecise %a at %a" Mt_types.RW.pretty op Locations.pretty loc; [] | Int_Base.Value size -> Location_Bits.fold_topset_ok (fun base offs acc -> let validity = Base.validity base in if Base.Validity.equal Base.Invalid validity then acc else let default = default_offsetmap validity in let v = Cvalue.Model.find ~conflate_bottom:false state loc in let r = Cvalue.V_Offsetmap.update ~validity:(Base.validity base) ~exact:true ~offsets:offs ~size (Cvalue.V_Or_Uninitialized.C_init_noesc v) default in match r with | `Bottom -> acc | `Value offsm -> (base, offsm)::acc ) loc.loc [] let pp_stack fmt node = Format.fprintf fmt "@ // %a" CfgNode.pretty_stmts node; if Mt_options.DumpSharedVarsValues.get () > 1 then Format.fprintf fmt "@ %a" Callstack.pretty node.cfgn_stack let pp_access (op, node, th) base offsm = if Mt_options.DumpSharedVarsValues.get () > 0 then Mt_options.result ~once:true "@[%a %as @ @[%a%a@]@ %a@]" Thread.pretty th Mt_types.RW.pretty op Base.pretty base (Cvalue.V_Offsetmap.pretty_generic ?typ:(Base.typeof base) ()) offsm pp_stack node let m = fold_location (fun loc s () -> SetNodeIdAccess.fold (fun (op, node, _thid as access) () -> match op with | ReadAloc _ | WriteAloc _ -> Mt_options.not_yet_implemented ~current:true ~once:true "MtSharedVars.Precise.display_shared_vars_value for ALoc" | Write _ -> () | Read -> let state = node.cfgn_value_state.state_before in let = extract_shared_value node op loc state in List.iter (fun (base, offsm) -> pp_access access base offsm) shared) s ()) m () module WriteSeen = Datatype.Triple_with_collections(CfgNode)(Thread)(Locations.Location) let enumerate_written_vars_value m = let aux _b _itvs s acc = let aux_nodes (op, node, th as access) (seen, _wr as acc) = match op with | ReadAloc _ | WriteAloc _ -> Mt_options.not_yet_implemented ~current:true ~once:true "MtSharedVars.Precise.enumerate_written_vars_value for ALoc" | Read -> acc | Write loc -> if not (WriteSeen.Set.mem (node, th, loc) seen) then let state = node.cfgn_value_state.state_after in let = extract_shared_value node op loc state in List.fold_left (fun (seen,wr) (base, offsm) -> pp_access access base offsm; let seen = WriteSeen.Set.add (node, th, loc) seen in (seen, (th, base, offsm) :: wr)) acc shared else acc in SetNodeIdAccess.fold aux_nodes s acc in let _seen, wr = AccessesByZoneNode.fold_base (fun base -> AccessesByZoneNode.LOffset.fold_fuse_same (aux base)) m (WriteSeen.Set.empty, []) in wr let l = let aux m (_id, base, offsm) = try let offsm' = Cvalue.Model.find_base base m in match offsm' with | `Top -> Mt_options.fatal "Top state" | `Bottom -> m (* base invalid. Probably impossible case *) | `Value offsm' -> let join = Cvalue.V_Offsetmap.join offsm offsm' in Cvalue.Model.add_base base join m with Not_found -> (* from Cvalue.Model.find_base *) Cvalue.Model.add_base base offsm m in List.fold_left aux Cvalue.Model.empty_map l (* Remove from the field [concur_accesses] of cfg nodes the zones that are not really concurrent. Then flag the node either as [NotReallySharedVar] or [SharedVarNonConcurrentAccess], depending on whether some zones remain. *) let remove_non_concur_zones_from_cfg all_zones cfg = let update_zones n = let filtered = SetZoneAccess.filter (fun (_, z) -> not (Locations.Zone.equal Locations.Zone.bottom (Locations.Zone.narrow all_zones z))) n.cfgn_var_access.concur_accesses in let kind = if SetZoneAccess.equal filtered SetZoneAccess.empty then NotReallySharedVar else SharedVarNonConcurrentAccess (* for now *) in n.cfgn_var_access <- { concur_accesses = filtered; var_access_kind = kind } in CfgNode.iter ~f_before:update_zones cfg ;; (* Given a list of zone of accesses that are supposed to be the really concurrent ones (typically obtained by the function [concurrent_accesses_all_threads] of this module), mark all the relevant nodes as containing a really concurrent access *) let mark_concur_access_in_cfg l = let mark_useful (_z, s) = SetNodeIdAccess.iter (fun (_rw, n, _id) -> n.cfgn_var_access <- { n.cfgn_var_access with var_access_kind = ConcurrentAccess } ) s in List.iter mark_useful l end let register_concurrent_var_accesses analysis states = let kf = current_fun analysis in (* In the precise computation of shared vars, we prefer to have all accesses to a shared variable , even if the access itself is not concurrent. Hence we set [is_multithread] to a function that always return false *) let is_multithreaded = fun _ -> true in let ki = calling_ki analysis in let sa = match states with | `Final h -> h | `Leaf state -> match ki with | Kglobal -> assert false | Kstmt s -> let h = Stmt.Hashtbl.create 1 in Stmt.Hashtbl.add h s state; h in let accesses = read_written_by_function is_multithreaded analysis.curr_thread.th_eva_thread (Local sa) ~watch_only:analysis.concurrent_accesses kf ki in (* We transform the various accesses into mthread events *) AccessesByZone.fold (fun z set () -> SetStmtIdAccess.iter (fun (rw, stmt, _id) -> let top = Stack.access_to_var stmt in Mt_thread.register_event analysis ~top (VarAccess (rw, z)) ) set ) accesses ()
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>