package frama-c
Platform dedicated to the analysis of source code written in C
Install
Dune Dependency
Authors
-
MMichele Alberti
-
TThibaud Antignac
-
GGergö Barany
-
PPatrick Baudin
-
NNicolas Bellec
-
TThibaut Benjamin
-
AAllan Blanchard
-
LLionel Blatter
-
FFrançois Bobot
-
RRichard Bonichon
-
VVincent Botbol
-
QQuentin Bouillaguet
-
DDavid Bühler
-
ZZakaria Chihani
-
SSylvain Chiron
-
LLoïc Correnson
-
JJulien Crétin
-
PPascal Cuoq
-
ZZaynah Dargaye
-
BBasile Desloges
-
JJean-Christophe Filliâtre
-
PPhilippe Herrmann
-
MMaxime Jacquemin
-
BBenjamin Jorge
-
FFlorent Kirchner
-
AAlexander Kogtenkov
-
RRemi Lazarini
-
TTristan Le Gall
-
KKilyan Le Gallic
-
JJean-Christophe Léchenet
-
MMatthieu Lemerre
-
DDara Ly
-
DDavid Maison
-
CClaude Marché
-
AAndré Maroneze
-
TThibault Martin
-
FFonenantsoa Maurica
-
MMelody Méaulle
-
BBenjamin Monate
-
YYannick Moy
-
PPierre Nigron
-
AAnne Pacalet
-
VValentin Perrelle
-
GGuillaume Petiot
-
DDario Pinto
-
VVirgile Prevosto
-
AArmand Puccetti
-
FFélix Ridoux
-
VVirgile Robles
-
JJan Rochel
-
MMuriel Roger
-
CCécile Ruet-Cros
-
JJulien Signoles
-
NNicolas Stouls
-
KKostyantyn Vorobyov
-
BBoris Yakobowski
Maintainers
Sources
frama-c-31.0-Gallium.tar.gz
sha256=a94384f00d53791cbb4b4d83ab41607bc71962d42461f02d71116c4ff6dca567
doc/src/frama-c-wp.core/MemRegion.ml.html
Source file MemRegion.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
(**************************************************************************) (* *) (* This file is part of WP plug-in of Frama-C. *) (* *) (* Copyright (C) 2007-2025 *) (* CEA (Commissariat a l'energie atomique et aux energies *) (* alternatives) *) (* *) (* you can redistribute it and/or modify it under the terms of the GNU *) (* Lesser General Public License as published by the Free Software *) (* Foundation, version 2.1. *) (* *) (* It is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* See the GNU Lesser General Public License version 2.1 *) (* for more details (enclosed in the file licenses/LGPLv2.1). *) (* *) (**************************************************************************) (* -------------------------------------------------------------------------- *) (* --- Region Memory Model --- *) (* -------------------------------------------------------------------------- *) open Cil_types open Ctypes open Lang.F open Memory open Sigma open MemMemory type prim = Int of c_int | Float of c_float | Ptr type kind = Single of prim | Many of prim | Garbled let pp_prim fmt = function | Int i -> Ctypes.pp_int fmt i | Float f -> Ctypes.pp_float fmt f | Ptr -> Format.pp_print_string fmt "ptr" let pp_kind fmt = function | Single p -> pp_prim fmt p | Many p -> Format.fprintf fmt "[%a]" pp_prim p | Garbled -> Format.pp_print_string fmt "[bytes]" let tau_of_prim = function | Int _ -> Qed.Logic.Int | Float f -> Cfloat.tau_of_float f | Ptr -> MemAddr.t_addr (* -------------------------------------------------------------------------- *) (* --- Region Analysis Proxy --- *) (* -------------------------------------------------------------------------- *) module type RegionProxy = sig type region val id : region -> int val of_id : int -> region option val pretty : Format.formatter -> region -> unit val kind : region -> kind val name : region -> string option val cvar : varinfo -> region option val field : region -> fieldinfo -> region option val shift : region -> c_object -> region option val points_to : region -> region option val literal : eid:int -> Cstring.cst -> region option val separated : region -> region -> bool val included : region -> region -> bool val footprint : region -> region list end (* -------------------------------------------------------------------------- *) (* --- Region Memory Model --- *) (* -------------------------------------------------------------------------- *) module Make (R:RegionProxy) (M:Model) (L:MemLoader.Model with type loc = M.loc) = struct type region = R.region let datatype = "MemRegion.Make" (* For projectification. Must be unique among models. *) let configure = M.configure let configure_ia = M.configure_ia let hypotheses = M.hypotheses module Chunk = struct let self = "MemRegion.Chunk" type data = Value of prim | Array of prim | ValInit | ArrInit type t = { data : data ; region : R.region } let pp_data fmt = function | Value p -> Format.fprintf fmt "µ%a" pp_prim p | Array p -> Format.fprintf fmt "µ%a[]" pp_prim p | ValInit -> Format.pp_print_string fmt "µinit" | ArrInit -> Format.pp_print_string fmt "µinit[]" let hash { data ; region } = Hashtbl.hash (data, R.id region) let equal a b = Stdlib.(=) a.data b.data && R.id a.region = R.id b.region let compare a b = let cmp = Stdlib.compare a.data b.data in if cmp <> 0 then cmp else Int.compare (R.id a.region) (R.id b.region) let pretty fmt { data ; region } = Format.fprintf fmt "%a@%03d" pp_data data (R.id region) let tau_of_chunk { data } = match data with | Value p -> tau_of_prim p | ValInit -> Qed.Logic.Bool | Array p -> Qed.Logic.Array(MemAddr.t_addr,tau_of_prim p) | ArrInit -> Qed.Logic.Array(MemAddr.t_addr,Qed.Logic.Bool) let basename_of_chunk c = match c.data with | ValInit -> "Vinit" | ArrInit -> "Minit" | Array p -> Format.asprintf "M%04x_%a" (R.id c.region) pp_prim p | Value p -> match R.name c.region with | Some a -> a | None -> Format.asprintf "V%04x_%a" (R.id c.region) pp_prim p let is_init c = match c.data with | ValInit | ArrInit -> true | Array _ | Value _ -> false let is_primary c = match c.data with | Value _ -> true | ValInit | ArrInit | Array _ -> false let is_framed _ = false end module State = Sigma.Make(Chunk) (* -------------------------------------------------------------------------- *) (* --- Region Loader --- *) (* -------------------------------------------------------------------------- *) module LOADER = struct let name = "MemRegion.LOADER" type loc = | Null | Raw of M.loc | Loc of M.loc * region let pretty fmt (l: loc) = match l with | Null -> M.pretty fmt M.null | Raw l -> M.pretty fmt l | Loc (l,r) -> Format.fprintf fmt "%a@%a" M.pretty l R.pretty r let make a = function None -> Raw a | Some r -> Loc(a,r) let loc = function Null -> M.null | Raw a | Loc(a,_) -> a let reg = function Null | Raw _ -> None | Loc(_,r) -> Some r let rfold f = function Null | Raw _ -> None | Loc(_,r) -> f r (* ---------------------------------------------------------------------- *) (* --- Utilities on locations --- *) (* ---------------------------------------------------------------------- *) let localized action = function | Null -> Warning.error ~source:"MemRegion" "Attempt to %s at NULL" action | Raw a -> Warning.error ~source:"MemRegion" "Attempt to %s without region (%a)" action M.pretty a | Loc(l,r) -> l,r let sizeof ty = L.sizeof ty let to_addr l = M.pointer_val (loc l) let last sigma ty l = L.last sigma ty (loc l) let field l fd = make (M.field (loc l) fd) (rfold (fun r -> R.field r fd) l) let ofield l fd = Option.map (fun r -> Loc (M.field (loc l) fd, r)) @@ rfold (fun r -> R.field r fd) l let shift l obj ofs = make (M.shift (loc l) obj ofs) (rfold (fun r -> R.shift r obj) l) let fresh l = let l0,r = localized "quantify loc" l in let xs, l1 = L.fresh l0 in xs, Loc(l1,r) let separated p n p' n' = L.separated (loc p) n (loc p') n' let eqmem chunk m0 m1 l n = match Sigma.ckind chunk with | State.Mu { data = ValInit | Value _ } -> p_equal m0 m1 | State.Mu { data = ArrInit | Array _ } -> p_call f_eqmem [m0;m1;to_addr l;n] | _ -> L.eqmem chunk m0 m1 (loc l) n let memcpy chunk m0 l0 m1 l1 n = match Sigma.ckind chunk with | State.Mu { data = ValInit | Value _ } -> m1 | State.Mu { data = ArrInit | Array _ } -> e_fun f_memcpy [m0;to_addr l0;m1;to_addr l1;n] | _ -> L.memcpy chunk m0 (loc l0) m1 (loc l1) n (* ---------------------------------------------------------------------- *) (* --- Load --- *) (* ---------------------------------------------------------------------- *) let to_region_pointer l = let l,r = localized "get region pointer" l in R.id r, M.pointer_val l let of_region_pointer r _ t = make (M.pointer_loc t) (R.of_id r) let check_access action (p:prim) (q:prim) = if Stdlib.(<>) p q then Warning.error ~source:"MemRegion" "Inconsistent %s (%a <> %a)" action pp_prim p pp_prim q let load_int sigma iota loc : term = let l,r = localized "load int" loc in match R.kind r with | Garbled -> L.load_int sigma iota l | Single p -> check_access "load" p (Int iota) ; State.value sigma { data = Value p ; region = r } | Many p -> check_access "load" p (Int iota) ; e_get (State.value sigma { data = Array p ; region = r}) (M.pointer_val l) let load_float sigma flt loc : term = let l,r = localized "load float" loc in match R.kind r with | Garbled -> L.load_float sigma flt l | Single p -> check_access "load" p (Float flt) ; State.value sigma { data = Value p ; region = r } | Many p -> check_access "load" p (Float flt) ; e_get (State.value sigma { data = Array p ; region = r}) (M.pointer_val l) let load_pointer sigma ty loc : loc = let l,r = localized "load pointer" loc in match R.points_to r with | None -> Warning.error ~source:"MemRegion" "Attempt to load pointer without points-to@\n\ (addr %a, region %a)" M.pretty l R.pretty r | Some _ as rp -> let loc = match R.kind r with | Garbled -> L.load_pointer sigma ty l | Single p -> check_access "load" p Ptr ; M.pointer_loc @@ State.value sigma { data = Value p ; region = r } | Many p -> check_access "load" p Ptr ; M.pointer_loc @@ e_get (State.value sigma { data = Array p ; region = r}) (M.pointer_val l) in make loc rp (* ---------------------------------------------------------------------- *) (* --- Store --- *) (* ---------------------------------------------------------------------- *) let store_int sigma iota loc v : Sigma.chunk * term = let l,r = localized "store int" loc in match R.kind r with | Garbled -> L.store_int sigma iota l v | Single p -> check_access "store" p (Int iota) ; State.chunk { data = Value p ; region = r }, v | Many p -> check_access "store" p (Int iota) ; let rc = Chunk.{ data = Array p ; region = r } in State.chunk rc, e_set (State.value sigma rc) (M.pointer_val l) v let store_float sigma flt loc v : Sigma.chunk * term = let l,r = localized "store float" loc in match R.kind r with | Garbled -> L.store_float sigma flt l v | Single p -> check_access "store" p (Float flt) ; State.chunk { data = Value p ; region = r }, v | Many p -> check_access "store" p (Float flt) ; let rc = Chunk.{ data = Array p ; region = r } in State.chunk rc, e_set (State.value sigma rc) (M.pointer_val l) v let store_pointer sigma ty loc v : Sigma.chunk * term = let l,r = localized "store pointer" loc in match R.kind r with | Garbled -> L.store_pointer sigma ty l v | Single p -> check_access "store" p Ptr ; State.chunk { data = Value p ; region = r }, v | Many p -> check_access "store" p Ptr ; let rc = Chunk.{ data = Array p ; region = r } in State.chunk rc, e_set (State.value sigma rc) (M.pointer_val l) v (* ---------------------------------------------------------------------- *) (* --- Init --- *) (* ---------------------------------------------------------------------- *) let load_init_atom sigma obj loc : term = let l,r = localized "init atom" loc in match R.kind r with | Garbled -> L.load_init_atom sigma obj l | Single _-> State.value sigma { data = ValInit ; region = r } | Many _ -> e_get (State.value sigma { data = ArrInit ; region = r }) (M.pointer_val l) let store_init_atom sigma obj loc v : Sigma.chunk * term = let l,r = localized "init atom" loc in match R.kind r with | Garbled -> L.store_init_atom sigma obj l v | Single _-> State.chunk { data = ValInit ; region = r }, v | Many _ -> let rc = Chunk.{ data = ArrInit ; region = r } in State.chunk rc, e_set (State.value sigma rc) (M.pointer_val l) v (* ---------------------------------------------------------------------- *) (* --- Footprints --- *) (* ---------------------------------------------------------------------- *) let lfootprint ~init obj l = if init then L.init_footprint obj l else L.value_footprint obj l let rec footprint ~init obj loc = match loc with | Null -> lfootprint ~init obj M.null | Raw l -> lfootprint ~init obj l | Loc(l,r) -> match obj with | C_comp { cfields = None} -> Domain.empty | C_comp { cfields = Some fds } -> List.fold_left (fun dom fd -> let obj = Ctypes.object_of fd.ftype in match ofield loc fd with | None -> dom | Some loc -> Domain.union dom (footprint ~init obj loc) ) Domain.empty fds | C_array { arr_element = elt } -> let obj = object_of elt in footprint ~init obj (shift loc obj e_zero) | C_int _ | C_float _ | C_pointer _ -> match R.kind r with | Garbled -> lfootprint ~init obj l | Single p -> let data = Chunk.(if init then ValInit else Value p) in State.singleton { data ; region = r } | Many p -> let data = Chunk.(if init then ArrInit else Array p) in State.singleton { data ; region = r } let value_footprint = footprint ~init:false let init_footprint = footprint ~init:true end type loc = LOADER.loc type segment = loc rloc let pretty = LOADER.pretty include MemLoader.Make(LOADER) let lookup = M.lookup (*TODO: lookups in MemRegion *) let updates = M.updates (*TODO: updates in MemRegion *) (* {2 Memory Model API} *) let vars l = M.vars @@ LOADER.loc l let occurs x l = M.occurs x @@ LOADER.loc l let null = LOADER.Null let literal ~eid:eid str = LOADER.make (M.literal ~eid str) (R.literal ~eid str) let cvar v = LOADER.make (M.cvar v) (R.cvar v) let field = LOADER.field let shift = LOADER.shift let pointer_loc t = LOADER.Raw (M.pointer_loc t) let pointer_val l = M.pointer_val @@ LOADER.loc l let base_addr l = LOADER.Raw (M.base_addr @@ LOADER.loc l) let base_offset l = M.base_offset @@ LOADER.loc l let block_length sigma obj l = M.block_length sigma obj @@ LOADER.loc l let is_null = function LOADER.Null -> p_true | Raw l | Loc(l,_) -> M.is_null l let loc_of_int obj t = LOADER.Raw (M.loc_of_int obj t) let int_of_loc iota l = M.int_of_loc iota @@ LOADER.loc l let cast conv l = let l0 = LOADER.loc l in let r0 = LOADER.reg l in LOADER.make (M.cast conv l0) r0 let loc_eq a b = M.loc_eq (LOADER.loc a) (LOADER.loc b) let loc_lt a b = M.loc_lt (LOADER.loc a) (LOADER.loc b) let loc_neq a b = M.loc_neq (LOADER.loc a) (LOADER.loc b) let loc_leq a b = M.loc_leq (LOADER.loc a) (LOADER.loc b) let loc_diff obj a b = M.loc_diff obj (LOADER.loc a) (LOADER.loc b) let rloc = function | Rloc(obj, l) -> Rloc (obj, LOADER.loc l) | Rrange(l, obj, inf, sup) -> Rrange(LOADER.loc l, obj, inf, sup) let rloc_region = function Rloc(_,l) | Rrange(l,_,_,_) -> LOADER.reg l let valid sigma acs r = M.valid sigma acs @@ rloc r let invalid sigma r = M.invalid sigma (rloc r) let included (a : segment) (b : segment) = match rloc_region a, rloc_region b with | Some ra, Some rb when R.separated ra rb -> p_false | _ -> M.included (rloc a) (rloc b) let separated (a : segment) (b : segment) = match rloc_region a, rloc_region b with | Some ra, Some rb when R.separated ra rb -> p_true | _ -> M.separated (rloc a) (rloc b) let alloc = M.alloc let scope = M.scope let global = M.global let frame sigma = let pool = ref @@ M.frame sigma in let assume p = pool := p :: !pool in Sigma.iter (fun c m -> match Sigma.ckind c with | State.Mu { data } -> begin match data with | Value Ptr -> assume @@ global sigma (e_var m) | Array Ptr -> assume @@ MemMemory.framed (e_var m) | ValInit | ArrInit | Value _ | Array _ -> () end | _ -> () ) sigma ; !pool let is_well_formed sigma = let pool = ref @@ [M.is_well_formed sigma] in let assume p = pool := p :: !pool in Sigma.iter (fun c m -> match Sigma.ckind c with | State.Mu { data } -> begin match data with | ValInit | ArrInit -> () | Value (Int iota) -> assume @@ Cint.range iota (e_var m) | Array (Int iota) -> let a = Lang.freshvar ~basename:"p" @@ Lang.t_addr () in let b = e_get (e_var m) (e_var a) in assume @@ p_forall [a] (Cint.range iota b) | Value (Float _ | Ptr) | Array (Float _ | Ptr) -> () end | _ -> () ) sigma ; p_conj !pool end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>