package frama-c
Platform dedicated to the analysis of source code written in C
Install
Dune Dependency
Authors
-
MMichele Alberti
-
TThibaud Antignac
-
GGergö Barany
-
PPatrick Baudin
-
NNicolas Bellec
-
TThibaut Benjamin
-
AAllan Blanchard
-
LLionel Blatter
-
FFrançois Bobot
-
RRichard Bonichon
-
VVincent Botbol
-
QQuentin Bouillaguet
-
DDavid Bühler
-
ZZakaria Chihani
-
SSylvain Chiron
-
LLoïc Correnson
-
JJulien Crétin
-
PPascal Cuoq
-
ZZaynah Dargaye
-
BBasile Desloges
-
JJean-Christophe Filliâtre
-
PPhilippe Herrmann
-
MMaxime Jacquemin
-
BBenjamin Jorge
-
FFlorent Kirchner
-
AAlexander Kogtenkov
-
RRemi Lazarini
-
TTristan Le Gall
-
KKilyan Le Gallic
-
JJean-Christophe Léchenet
-
MMatthieu Lemerre
-
DDara Ly
-
DDavid Maison
-
CClaude Marché
-
AAndré Maroneze
-
TThibault Martin
-
FFonenantsoa Maurica
-
MMelody Méaulle
-
BBenjamin Monate
-
YYannick Moy
-
PPierre Nigron
-
AAnne Pacalet
-
VValentin Perrelle
-
GGuillaume Petiot
-
DDario Pinto
-
VVirgile Prevosto
-
AArmand Puccetti
-
FFélix Ridoux
-
VVirgile Robles
-
JJan Rochel
-
MMuriel Roger
-
CCécile Ruet-Cros
-
JJulien Signoles
-
NNicolas Stouls
-
KKostyantyn Vorobyov
-
BBoris Yakobowski
Maintainers
Sources
frama-c-31.0-beta-Gallium.tar.gz
sha256=095ffbb3086a6cd963a03e3defab4f0dc32e9a43f026e552ec9ae346a6e20522
doc/src/mthread/trie.ml.html
Source file trie.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
(**************************************************************************) (* *) (* Copyright (C) Jean-Christophe Filliatre *) (* *) (* This software is free software; you can redistribute it and/or *) (* modify it under the terms of the GNU Library General Public *) (* License version 2.1, with the special exception on linking *) (* described in file LICENSE. *) (* *) (* This software is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. *) (* *) (* File modified by CEA (Commissariat à l'énergie atomique et aux *) (* énergies alternatives). *) (* *) (**************************************************************************) (*s A trie is a tree-like structure to implement dictionaries over keys which have list-like structures. The idea is that each node branches on an element of the list and stores the value associated to the path from the root, if any. Therefore, a trie can be defined as soon as a map over the elements of the list is given. *) module type S = sig type key type +'a t val empty : 'a t val is_empty : 'a t -> bool val add : key -> 'a -> 'a t -> 'a t val find : key -> 'a t -> 'a val find_opt : key -> 'a t -> 'a option val remove : key -> 'a t -> 'a t val merge : (key -> 'a option -> 'b option -> 'c option) -> 'a t -> 'b t -> 'c t val union : (key -> 'a -> 'a -> 'a option) -> 'a t -> 'a t -> 'a t val mem : key -> 'a t -> bool val iter : (key -> 'a -> unit) -> 'a t -> unit val map : ('a -> 'b) -> 'a t -> 'b t val mapi : (key -> 'a -> 'b) -> 'a t -> 'b t val fold : (key -> 'a -> 'b -> 'b) -> 'a t -> 'b -> 'b val compare : ('a -> 'a -> int) -> 'a t -> 'a t -> int val equal : ('a -> 'a -> bool) -> 'a t -> 'a t -> bool val exists : (key -> 'a -> bool) -> 'a t -> bool val to_seq : 'a t -> (key * 'a) Seq.t end module Make(M : S) = struct (*s Then a trie is just a tree-like structure, where a possible information is stored at the node (['a option]) and where the sons are given by a map from type [key] to sub-tries, so of type ['a t M.t]. The empty trie is just the empty map. *) type key = M.key list type 'a t = Node of 'a option * 'a t M.t (* open Unmarshal let help dkey = let key' = t_list dkey in let tmp = [| Abstract; Abstract |] in let t = Structure (Sum [| [| t_tuple tmp |] |]) in tmp.(0) <- t_option key'; tmp.(1) <- M.descr t; t *) let empty = Node (None, M.empty) (*s To find a mapping in a trie is easy: when all the elements of the key have been read, we just inspect the optional info at the current node; otherwise, we descend in the appropriate sub-trie using [M.find]. *) let rec find l t = match (l,t) with | [], Node (None,_) -> raise Not_found | [], Node (Some v,_) -> v | x::r, Node (_,m) -> find r (M.find x m) let rec find_opt l t = match (l,t) with | [], Node (None,_) -> None | [], Node (Some v,_) -> Some v | x::r, Node (_,m) -> Option.bind (find_opt r) (M.find_opt x m) let rec mem l t = match (l,t) with | [], Node (None,_) -> false | [], Node (Some _,_) -> true | x::r, Node (_,m) -> try mem r (M.find x m) with Not_found -> false (*s Insertion is more subtle. When the final node is reached, we just put the information ([Some v]). Otherwise, we have to insert the binding in the appropriate sub-trie [t']. But it may not exists, and in that case [t'] is bound to an empty trie. Then we get a new sub-trie [t''] by a recursive insertion and we modify the branching, so that it now points to [t''], with [M.add]. *) let add l v t = let rec ins = function | [], Node (_,m) -> Node (Some v,m) | x::r, Node (v,m) -> let t' = try M.find x m with Not_found -> empty in let t'' = ins (r,t') in Node (v, M.add x t'' m) in ins (l,t) (*s When removing a binding, we take care of not leaving bindings to empty sub-tries in the nodes. Therefore, we test wether the result [t'] of the recursive call is the empty trie [empty]: if so, we just remove the branching with [M.remove]; otherwise, we modify it with [M.add]. *) let rec remove l t = match (l,t) with | [], Node (_,m) -> Node (None,m) | x::r, Node (v,m) -> try let t' = remove r (M.find x m) in Node (v, if t' = empty then M.remove x m else M.add x t' m) with Not_found -> t (*s The iterators [map], [mapi], [iter] and [fold] are implemented in a straigthforward way using the corresponding iterators [M.map], [M.mapi], [M.iter] and [M.fold]. For the last three of them, we have to remember the path from the root, as an extra argument [revp]. Since elements are pushed in reverse order in [revp], we have to reverse it with [List.rev] when the actual binding has to be passed to function [f]. *) let rec map f = function | Node (None,m) -> Node (None, M.map (map f) m) | Node (Some v,m) -> Node (Some (f v), M.map (map f) m) let mapi f t = let rec maprec revp = function | Node (None,m) -> Node (None, M.mapi (fun x -> maprec (x::revp)) m) | Node (Some v,m) -> Node (Some (f revp v), M.mapi (fun x -> maprec (x::revp)) m) in maprec [] t let iter f t = let rec traverse revp = function | Node (None,m) -> M.iter (fun x -> traverse (x::revp)) m | Node (Some v,m) -> f revp v; M.iter (fun x t -> traverse (x::revp) t) m in traverse [] t let fold f t acc = let rec traverse revp t acc = match t with | Node (None,m) -> M.fold (fun x -> traverse (x::revp)) m acc | Node (Some v,m) -> f revp v (M.fold (fun x -> traverse (x::revp)) m acc) in traverse [] t acc let exists f t = let rec traverse revp t = match t with | Node (None,m) -> M.exists (fun x -> traverse (x::revp)) m | Node (Some v,m) -> f revp v || M.exists (fun x -> traverse (x::revp)) m in traverse [] t let compare cmp a b = let rec comp a b = match a,b with | Node (Some _, _), Node (None, _) -> 1 | Node (None, _), Node (Some _, _) -> -1 | Node (None, m1), Node (None, m2) -> M.compare comp m1 m2 | Node (Some a, m1), Node (Some b, m2) -> let c = cmp a b in if c <> 0 then c else M.compare comp m1 m2 in comp a b let equal eq a b = let rec comp a b = match a,b with | Node (None, m1), Node (None, m2) -> M.equal comp m1 m2 | Node (Some a, m1), Node (Some b, m2) -> eq a b && M.equal comp m1 m2 | _ -> false in comp a b (* The base case is rather stupid, but constructable *) let is_empty = function | Node (None, m1) -> M.is_empty m1 | Node (Some _, _) -> false let merge f t1 t2 = let rec aux revp t1 t2 = let v1, m1 = match t1 with | None -> None, M.empty | Some (Node (v1, m1)) -> v1, m1 and v2, m2 = match t2 with | None -> None, M.empty | Some (Node (v2, m2)) -> v2, m2 in let v = f revp v1 v2 and m = M.merge (fun x t1 t2 -> Some (aux (x :: revp) t1 t2)) m1 m2 in Node (v, m) in aux [] (Some t1) (Some t2) let union f t1 t2 = let rec aux revp t1 t2 = let Node (v1, m1) = t1 and Node (v2, m2) = t2 in let v = match v1, v2 with | None, None -> None | (Some _ as v), None | None, (Some _ as v) -> v | Some v1, Some v2 -> f revp v1 v2 and m = M.union (fun x t1 t2 -> Some (aux (x :: revp) t1 t2)) m1 m2 in Node (v, m) in aux [] t1 t2 let to_seq t = let rec aux revp t = let Node (v, m) = t in Seq.append (Seq.map (fun v -> revp, v) (Option.to_seq v)) (Seq.flat_map (fun (x, t) -> aux (x :: revp) t) (M.to_seq m)) in aux [] t let add_prefix k m = Node (None, M.add k m M.empty) let select_prefix k t = let Node(_, m) = t in M.find k m let prefixes_seq (Node (_, map)) = M.to_seq map end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>