package frama-c
Platform dedicated to the analysis of source code written in C
Install
Dune Dependency
Authors
-
MMichele Alberti
-
TThibaud Antignac
-
GGergö Barany
-
PPatrick Baudin
-
NNicolas Bellec
-
TThibaut Benjamin
-
AAllan Blanchard
-
LLionel Blatter
-
FFrançois Bobot
-
RRichard Bonichon
-
VVincent Botbol
-
QQuentin Bouillaguet
-
DDavid Bühler
-
ZZakaria Chihani
-
SSylvain Chiron
-
LLoïc Correnson
-
JJulien Crétin
-
PPascal Cuoq
-
ZZaynah Dargaye
-
BBasile Desloges
-
JJean-Christophe Filliâtre
-
PPhilippe Herrmann
-
MMaxime Jacquemin
-
BBenjamin Jorge
-
FFlorent Kirchner
-
AAlexander Kogtenkov
-
RRemi Lazarini
-
TTristan Le Gall
-
KKilyan Le Gallic
-
JJean-Christophe Léchenet
-
MMatthieu Lemerre
-
DDara Ly
-
DDavid Maison
-
CClaude Marché
-
AAndré Maroneze
-
TThibault Martin
-
FFonenantsoa Maurica
-
MMelody Méaulle
-
BBenjamin Monate
-
YYannick Moy
-
PPierre Nigron
-
AAnne Pacalet
-
VValentin Perrelle
-
GGuillaume Petiot
-
DDario Pinto
-
VVirgile Prevosto
-
AArmand Puccetti
-
FFélix Ridoux
-
VVirgile Robles
-
JJan Rochel
-
MMuriel Roger
-
CCécile Ruet-Cros
-
JJulien Signoles
-
NNicolas Stouls
-
KKostyantyn Vorobyov
-
BBoris Yakobowski
Maintainers
Sources
frama-c-31.0-beta-Gallium.tar.gz
sha256=095ffbb3086a6cd963a03e3defab4f0dc32e9a43f026e552ec9ae346a6e20522
doc/src/frama-c-wp.core/MemBytes.ml.html
Source file MemBytes.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
(**************************************************************************) (* *) (* This file is part of WP plug-in of Frama-C. *) (* *) (* Copyright (C) 2007-2025 *) (* CEA (Commissariat a l'energie atomique et aux energies *) (* alternatives) *) (* *) (* you can redistribute it and/or modify it under the terms of the GNU *) (* Lesser General Public License as published by the Free Software *) (* Foundation, version 2.1. *) (* *) (* It is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* See the GNU Lesser General Public License version 2.1 *) (* for more details (enclosed in the file licenses/LGPLv2.1). *) (* *) (**************************************************************************) open Lang.F open Memory open Ctypes module Logic = Qed.Logic (* Why3 symbols of generated membytes.mlw *) module WBytes = struct let library = "membytes" let t_vblock = Qed.Logic.Array (Qed.Logic.Int, Qed.Logic.Int) let t_memory = Qed.Logic.Array (Qed.Logic.Int,t_vblock) let t_iblock = Qed.Logic.Array (Qed.Logic.Int, Qed.Logic.Bool) let t_init = Qed.Logic.Array (Qed.Logic.Int,t_iblock) let ty_fst_arg = function | Some l :: _ -> l | _ -> raise Not_found let f_eqmem = Lang.extern_fp ~library "eqmem" let f_memcpy = Lang.extern_f ~library ~typecheck:ty_fst_arg "memcpy" let p_sconst = Lang.extern_fp ~coloring:true ~library "sconst" let sconst m = p_call p_sconst [m] let p_scinit = Lang.extern_fp ~coloring:true ~library "scinit" let scinit m = p_call p_scinit [m] let p_bytes = Lang.extern_fp ~library "bytes" let bytes m = p_call p_bytes [ m ] (* read/write *) let f_read_uint8 = Lang.extern_f ~result:Qed.Logic.Int ~library "read_uint8" let read_uint8 m a = e_fun f_read_uint8 [ m ; a ] let f_read_uint16 = Lang.extern_f ~result:Qed.Logic.Int ~library "read_uint16" let read_uint16 m a = e_fun f_read_uint16 [ m ; a ] let f_read_uint32 = Lang.extern_f ~result:Qed.Logic.Int ~library "read_uint32" let read_uint32 m a = e_fun f_read_uint32 [ m ; a ] let f_read_uint64 = Lang.extern_f ~result:Qed.Logic.Int ~library "read_uint64" let read_uint64 m a = e_fun f_read_uint64 [ m ; a ] let f_read_sint8 = Lang.extern_f ~result:Qed.Logic.Int ~library "read_sint8" let read_sint8 m a = e_fun f_read_sint8 [ m ; a ] let f_read_sint16 = Lang.extern_f ~result:Qed.Logic.Int ~library "read_sint16" let read_sint16 m a = e_fun f_read_sint16 [ m ; a ] let f_read_sint32 = Lang.extern_f ~result:Qed.Logic.Int ~library "read_sint32" let read_sint32 m a = e_fun f_read_sint32 [ m ; a ] let f_read_sint64 = Lang.extern_f ~result:Qed.Logic.Int ~library "read_sint64" let read_sint64 m a = e_fun f_read_sint64 [ m ; a ] let f_write_uint8 = Lang.extern_f ~result:t_memory ~library "write_uint8" let write_uint8 m a v = e_fun f_write_uint8 [ m ; a ; v ] let f_write_uint16 = Lang.extern_f ~result:t_memory ~library "write_uint16" let write_uint16 m a v = e_fun f_write_uint16 [ m ; a ; v ] let f_write_uint32 = Lang.extern_f ~result:t_memory ~library "write_uint32" let write_uint32 m a v = e_fun f_write_uint32 [ m ; a ; v ] let f_write_uint64 = Lang.extern_f ~result:t_memory ~library "write_uint64" let write_uint64 m a v = e_fun f_write_uint64 [ m ; a ; v ] let f_write_sint8 = Lang.extern_f ~result:t_memory ~library "write_sint8" let write_sint8 m a v = e_fun f_write_sint8 [ m ; a ; v ] let f_write_sint16 = Lang.extern_f ~result:t_memory ~library "write_sint16" let write_sint16 m a v = e_fun f_write_sint16 [ m ; a ; v ] let f_write_sint32 = Lang.extern_f ~result:t_memory ~library "write_sint32" let write_sint32 m a v = e_fun f_write_sint32 [ m ; a ; v ] let f_write_sint64 = Lang.extern_f ~result:t_memory ~library "write_sint64" let write_sint64 m a v = e_fun f_write_sint64 [ m ; a ; v ] (* init *) let f_read_init8 = Lang.extern_f ~result:Qed.Logic.Bool ~library "read_init8" let read_init8 m a = e_fun f_read_init8 [ m ; a ] let f_read_init16 = Lang.extern_f ~result:Qed.Logic.Bool ~library "read_init16" let read_init16 m a = e_fun f_read_init16 [ m ; a ] let f_read_init32 = Lang.extern_f ~result:Qed.Logic.Bool ~library "read_init32" let read_init32 m a = e_fun f_read_init32 [ m ; a ] let f_read_init64 = Lang.extern_f ~result:Qed.Logic.Bool ~library "read_init64" let read_init64 m a = e_fun f_read_init64 [ m ; a ] let f_write_init8 = Lang.extern_f ~result:t_init ~library "write_init8" let write_init8 m a v = e_fun f_write_init8 [ m ; a ; v ] let f_write_init16 = Lang.extern_f ~result:t_init ~library "write_init16" let write_init16 m a v = e_fun f_write_init16 [ m ; a ; v ] let f_write_init32 = Lang.extern_f ~result:t_init ~library "write_init32" let write_init32 m a v = e_fun f_write_init32 [ m ; a ; v ] let f_write_init64 = Lang.extern_f ~result:t_init ~library "write_init64" let write_init64 m a v = e_fun f_write_init64 [ m ; a ; v ] end (* Model *) let datatype = "MemBytes" let lc_name = String.lowercase_ascii datatype let dkey_model = Wp_parameters.register_category (lc_name ^ ":model") let configure () = begin let orig_pointer = Context.push Lang.pointer MemAddr.t_addr in let orig_null = Context.push Cvalues.null (p_equal MemAddr.null) in let rollback () = Context.pop Lang.pointer orig_pointer ; Context.pop Cvalues.null orig_null ; in rollback end let no_binder = { bind = fun _ f v -> f v } let configure_ia _ = no_binder let hypotheses p = p module Chunk = struct type t = Mem | Init | Alloc let self = "Chunk" ^ datatype let hash = Hashtbl.hash let equal = (=) let compare c1 c2 = match c1, c2 with | Mem, Mem | Init, Init | Alloc, Alloc -> 0 | Mem, _ -> 1 | _, Mem -> -1 | Init, _ -> 1 | _, Init -> -1 let pretty fmt = function | Mem -> Format.fprintf fmt "Mem" | Init -> Format.fprintf fmt "Init" | Alloc -> Format.fprintf fmt "Alloc" let tau_of_memory = WBytes.t_memory let tau_of_init = WBytes.t_init let tau_of_chunk = function | Mem -> tau_of_memory | Init -> tau_of_init | Alloc -> Logic.Array (Logic.Int, Logic.Int) let basename_of_chunk = function | Mem -> "mem" | Init -> "init" | Alloc -> "alloc" let is_init = function Init -> true | Mem | Alloc -> false let is_primary _ = false let is_framed _ = false end module State = Sigma.Make(Chunk) let m_alloc = State.chunk Alloc let m_init = State.chunk Init let m_mem = State.chunk Mem type loc = term let vars = vars let occurs = occurs type segment = loc rloc let shift_cluster () = Definitions.cluster ~id:"Shifts" ~title:"Shifts Definitions" () (* ********************************************************************** *) (* SIZE *) (* ********************************************************************** *) module OPAQUE_COMP_LENGTH = WpContext.Generator(Cil_datatype.Compinfo) (struct let name = "MemBytes.EmptyCompLength" type key = Cil_types.compinfo type data = Lang.lfun let compile c = if c.Cil_types.cfields <> None then Wp_parameters.fatal "Asking for opaque struct length on non opaque struct" ; let result = Lang.t_int in let size = Lang.generated_f ~params:[] ~result "Length_of_%s" (Lang.comp_id c) in (* Registration *) Definitions.define_symbol { d_cluster = Definitions.compinfo c ; d_lfun = size ; d_types = 0 ; d_params = [] ; d_definition = Logic result ; } ; Definitions.define_lemma { l_kind = Admit ; l_name = "Positive_Length_of_" ^ Lang.comp_id c ; l_triggers = [] ; l_forall = [] ; l_cluster = Definitions.compinfo c ; l_lemma = Lang.F.(p_lt e_zero (e_fun size [])) } ; size end) let protected_sizeof_object = function | C_comp ({ cfields = None } as c) -> e_fun (OPAQUE_COMP_LENGTH.get c) [] | obj -> e_int @@ Ctypes.sizeof_object obj (* ********************************************************************** *) (* SHIFT *) (* ********************************************************************** *) type shift = | RS_Field of Cil_types.fieldinfo * term (* offset of the field *) | RS_Index of term (* size of the shift *) let phi_base = function | p::_ -> MemAddr.base p | _ -> raise Not_found let phi_field offset = function | [p] -> e_add (MemAddr.offset p) offset | _ -> raise Not_found let phi_index size = function | [p;k] -> e_add (MemAddr.offset p) (e_mul size k) | _ -> raise Not_found module RegisterShift = WpContext.Static (struct type key = Lang.lfun type data = shift let name = "MemBytes.RegisterShift" include Lang.Fun end) let field_offset ci field = let comp = Cil_const.mk_tcomp ci in let field = Cil_types.Field(field, NoOffset) in let bits_offset, bits_size = Cil.bitsOffset comp field in if 0 <> bits_offset mod 8 || 0 <> bits_size mod 8 then Wp_parameters.error "Bitfields not allowed in Bytes model" ; bits_offset / 8 module ShiftFieldDef = WpContext.StaticGenerator(Cil_datatype.Fieldinfo) (struct let name = "MemBytes.ShiftFieldDef" type key = Cil_types.fieldinfo type data = Definitions.dfun let generate f = let result = MemAddr.t_addr in let lfun = Lang.generated_f ~result "shiftfield_%s" (Lang.field_id f) in (* Since its a generated it is the unique name given *) let p = Lang.freshvar ~basename:"p" MemAddr.t_addr in let tp = e_var p in let position = e_int @@ field_offset f.fcomp f in let def = MemAddr.shift tp position in let dfun = Definitions.Function( result , Def , def) in RegisterShift.define lfun (RS_Field(f,position)) ; MemAddr.register ~base:phi_base ~offset:(phi_field position) lfun ; Definitions.{ d_lfun = lfun ; d_types = 0 ; d_params = [p] ; d_definition = dfun ; d_cluster = Definitions.dummy () ; } let compile = Lang.local generate end) module ShiftField = WpContext.Generator(Cil_datatype.Fieldinfo) (struct let name = "MemBytes.ShiftField" type key = Cil_types.fieldinfo type data = Lang.lfun let compile fd = let dfun = ShiftFieldDef.get fd in let d_cluster = shift_cluster () in Definitions.define_symbol { dfun with d_cluster } ; dfun.d_lfun end) module Cobj = struct type t = c_object let pretty = C_object.pretty let compare = compare_ptr_conflated end (* This is a model-independent generator, which will be inherited from the model-dependent clusters *) module ShiftGen = WpContext.StaticGenerator(Cobj) (struct let name = "MemBytes.ShiftDef" type key = Cobj.t type data = Definitions.dfun let rec c_object_id fmt = function | C_int i -> pp_int fmt i | C_float f -> pp_float fmt f | C_pointer _ -> Format.fprintf fmt "PTR" | C_comp c -> Format.pp_print_string fmt (Lang.comp_id c) | C_array a -> let te = object_of a.arr_element in match a.arr_flat with | None -> Format.fprintf fmt "A_%a" c_object_id te | Some f -> Format.fprintf fmt "A%d_%a" f.arr_size c_object_id te let c_object_id c = Format.asprintf "%a@?" c_object_id c let generate obj = let result = MemAddr.t_addr in let shift = Lang.generated_f ~result "shift_%s" (c_object_id obj) in let size = protected_sizeof_object obj in (* Since its a generated it is the unique name given *) let p = Lang.freshvar ~basename:"p" MemAddr.t_addr in let tp = e_var p in let k = Lang.freshvar ~basename:"k" Qed.Logic.Int in let tk = e_var k in let def = MemAddr.shift tp (e_mul size tk) in let dfun = Definitions.Function( result , Def , def) in RegisterShift.define shift (RS_Index size) ; MemAddr.register ~base:phi_base ~offset:(phi_index size) ~linear:true shift ; Definitions.{ d_lfun = shift ; d_types = 0 ; d_params = [p;k] ; d_definition = dfun ; d_cluster = Definitions.dummy () ; } let compile = Lang.local generate end) (* The model-dependent derivation of model-independent ShiftDef *) module Shift = WpContext.Generator(Cobj) (struct let name = "MemBytes.Shift" type key = Cobj.t type data = Lang.lfun let compile obj = let dfun = ShiftGen.get obj in let d_cluster = shift_cluster () in Definitions.define_symbol { dfun with d_cluster } ; dfun.d_lfun end) let field loc f = e_fun (ShiftField.get f) [loc] let shift loc obj k = e_fun (Shift.get obj) [loc;k] (* ********************************************************************** *) (* VALIDITY and SEPARATION *) (* ********************************************************************** *) let allocated sigma l = e_get (Sigma.value sigma m_alloc) (MemAddr.base l) let s_valid sigma acs p n = let valid = match acs with | RW -> MemAddr.valid_rw | RD -> MemAddr.valid_rd | OBJ -> (fun m p _ -> MemAddr.valid_obj m p) in valid (Sigma.value sigma m_alloc) p n let s_invalid sigma p n = MemAddr.invalid (Sigma.value sigma m_alloc) p n let segment phi = function | Rloc(obj,l) -> phi l @@ protected_sizeof_object obj | Rrange(l,obj,Some a,Some b) -> let l = shift l obj a in let n = e_mul (protected_sizeof_object obj) (e_range a b) in phi l n | Rrange(l,_,a,b) -> Wp_parameters.abort ~current:true "Invalid infinite range @[<hov 2>%a+@,(%a@,..%a)@]" Lang.F.pp_term l Vset.pp_bound a Vset.pp_bound b let valid sigma acs = Wp_parameters.debug ~level:2 ~dkey:dkey_model "%s.valid _ _" datatype ; segment (s_valid sigma acs) let invalid sigma = Wp_parameters.debug ~level:2 ~dkey:dkey_model "%s.invalid _ _" datatype ; segment (s_invalid sigma) let included = Wp_parameters.debug ~level:2 ~dkey:dkey_model "%s.included _ _" datatype ; let addrof l = l in let sizeof obj = protected_sizeof_object obj in MemAddr.included ~shift ~addrof ~sizeof let separated = Wp_parameters.debug ~level:2 ~dkey:dkey_model "%s.separated _ _" datatype ; let addrof l = l in let sizeof obj = protected_sizeof_object obj in MemAddr.separated ~shift ~addrof ~sizeof (* Prepare loader *) let float_cluster () = Definitions.cluster ~id:"MemBytes.Float" ~title:"MemBytes definitions" () module Float = struct type t = Ctypes.c_float let pretty = Ctypes.pp_float let compare = Ctypes.compare_c_float let ikind = function | Float32 -> UInt32 | Float64 -> UInt64 end module CODEC_FLOAT = WpContext.Generator(Float) (struct let name = "MemBytes.LOAD_FLOAT" type key = Float.t type data = Lang.lfun * Lang.lfun let decode ft = let result = Cfloat.tau_of_float ft in let f = Lang.freshvar ~basename:"f" Lang.t_int in let decode = Lang.generated_f ~result "int_to_%a" Float.pretty ft in Definitions.define_symbol { d_lfun = decode ; d_cluster = float_cluster () ; d_types = 0 ; d_params = [ f ] ; d_definition = Logic result ; } ; decode let encode ft = let result = Lang.t_int in let f = Lang.freshvar ~basename:"f" @@ Cfloat.tau_of_float ft in let encode = Lang.generated_f ~result "%a_to_int" Float.pretty ft in Definitions.define_symbol { d_lfun = encode ; d_cluster = float_cluster () ; d_types = 0 ; d_params = [ f ] ; d_definition = Logic result ; } ; encode let add_decode_encode ft encode decode = let f = Lang.freshvar ~basename:"f" @@ Cfloat.tau_of_float ft in let tf = e_var f in let name = Format.asprintf "decode_encode_%a" Float.pretty ft in let lemma = p_equal tf (e_fun decode [e_fun encode [tf]]) in Definitions.define_lemma { l_kind = Admit ; l_name = name ; l_triggers = [] ; l_forall = [f] ; l_cluster = float_cluster () ; l_lemma = lemma } let add_encode_decode ft encode decode = let i = Lang.freshvar ~basename:"i" Lang.t_int in let ti = e_var i in let name = Format.asprintf "encode_decode_%a" Float.pretty ft in let lemma = p_equal ti (e_fun encode [e_fun decode [ti]]) in Definitions.define_lemma { l_kind = Admit ; l_name = name ; l_triggers = [] ; l_forall = [i] ; l_cluster = float_cluster () ; l_lemma = lemma } let add_encode_bounds ft encode = let f = Lang.freshvar ~basename:"f" @@ Cfloat.tau_of_float ft in let tf = e_var f in let name = Format.asprintf "encode_bounds_%a" Float.pretty ft in let lemma = Cint.range (Float.ikind ft) @@ e_fun encode [ tf ] in Definitions.define_lemma { l_kind = Admit ; l_name = name ; l_triggers = [] ; l_forall = [f] ; l_cluster = float_cluster () ; l_lemma = lemma } let compile ft = let encode = encode ft in let decode = decode ft in add_encode_decode ft encode decode ; add_decode_encode ft encode decode ; add_encode_bounds ft encode ; encode, decode end) let float_to_int fkind f = e_fun (fst @@ CODEC_FLOAT.get fkind) [ f ] let int_to_float fkind f = e_fun (snd @@ CODEC_FLOAT.get fkind) [ f ] let load_int_raw memory kind addr = let read = match kind with | CBool -> WBytes.read_uint8 | UInt8 -> WBytes.read_uint8 | SInt8 -> WBytes.read_sint8 | UInt16 -> WBytes.read_uint16 | SInt16 -> WBytes.read_sint16 | UInt32 -> WBytes.read_uint32 | SInt32 -> WBytes.read_sint32 | UInt64 -> WBytes.read_uint64 | SInt64 -> WBytes.read_sint64 in read memory addr let load_int sigma kind addr = load_int_raw (Sigma.value sigma m_mem) kind addr let load_float sigma kind addr = int_to_float kind @@ load_int sigma (Float.ikind kind) addr let load_pointer_raw memory _ty loc = MemAddr.addr_of_int @@ load_int_raw memory (Ctypes.c_ptr ()) loc let load_pointer sigma _ty loc = MemAddr.addr_of_int @@ load_int sigma (Ctypes.c_ptr ()) loc let load_init_raw memory size loc = match size with | 1 -> WBytes.read_init8 memory loc | 2 -> WBytes.read_init16 memory loc | 4 -> WBytes.read_init32 memory loc | 8 -> WBytes.read_init64 memory loc | _ -> assert false let load_init_atom sigma obj loc = let init_memory = Sigma.value sigma m_init in let size = sizeof_object obj in load_init_raw init_memory size loc let store_int sigma kind addr v = let write = match kind with | CBool -> WBytes.write_uint8 | UInt8 -> WBytes.write_uint8 | SInt8 -> WBytes.write_sint8 | UInt16 -> WBytes.write_uint16 | SInt16 -> WBytes.write_sint16 | UInt32 -> WBytes.write_uint32 | SInt32 -> WBytes.write_sint32 | UInt64 -> WBytes.write_uint64 | SInt64 -> WBytes.write_sint64 in m_mem, write (Sigma.value sigma m_mem) addr v let store_float sigma kind addr v = store_int sigma (Float.ikind kind) addr @@ float_to_int kind v let store_pointer sigma _kind addr v = store_int sigma (Ctypes.c_ptr ()) addr @@ MemAddr.int_of_addr v let store_init_raw m size loc v = let write = match size with | 1 -> WBytes.write_init8 | 2 -> WBytes.write_init16 | 4 -> WBytes.write_init32 | 8 -> WBytes.write_init64 | _ -> assert false in write m loc v let store_init_atom sigma obj loc v = let init_memory = Sigma.value sigma m_init in let size = sizeof_object obj in m_init, store_init_raw init_memory size loc v module LOADER = struct let name = "MemBytes.LOADER" type nonrec loc = loc let pretty = Lang.F.pp_term let sizeof = protected_sizeof_object let field = field let shift = shift let to_region_pointer l = 0,l let of_region_pointer _r _obj l = l let value_footprint _ _ = Sigma.Domain.singleton m_mem let init_footprint _ _ = Sigma.Domain.singleton m_init let last sigma obj l = let n = protected_sizeof_object obj in e_sub (e_div (allocated sigma l) n) e_one let fresh _l = let x = Lang.freshvar ~basename:"p" MemAddr.t_addr in [x] , e_var x let separated p n p' n' = p_call MemAddr.p_separated [p;n;p';n'] let eqmem _chunk m0 m1 l n = p_call WBytes.f_eqmem [m0;m1;l;n] let memcpy _chunk m0 l0 m1 l1 n = e_fun WBytes.f_memcpy [m0;l0;m1;l1;n] let load_int = load_int let load_float = load_float let load_pointer = load_pointer let load_init_atom = load_init_atom let store_int = store_int let store_float = store_float let store_pointer = store_pointer let store_init_atom = store_init_atom end include MemLoader.Make(LOADER) (* ********************************************************************** *) (* BASES *) (* ********************************************************************** *) let cluster_globals () = Definitions.cluster ~id:"Globals" ~title:"Global Variables" () let globals = 0 let locals = 1 let formals = 2 module RegisterBASE = WpContext.Index (struct type key = Lang.lfun type data = Cil_types.varinfo let name = "MemBytes.RegisterBASE" include Lang.Fun end) module BASE = WpContext.Generator(Cil_datatype.Varinfo) (struct let name = datatype ^ ".BASE" type key = Cil_types.varinfo type data = Lang.F.term open Cil_types let static_alloc prefix base = let name = prefix ^ "_static_alloc" in Definitions.define_lemma { l_kind = Admit ; l_name = name ; l_triggers = [] ; l_forall = [] ; l_lemma = MemAddr.static_alloc base ; l_cluster = cluster_globals () ; } let region prefix x base = let name = prefix ^ "_region" in let region = if x.vglob then globals else if x.vformal then formals else locals in Definitions.define_lemma { l_kind = Admit ; l_name = name ; l_triggers = [] ; l_forall = [] ; l_lemma = p_equal (MemAddr.region base) (e_int region) ; l_cluster = cluster_globals () ; } let binit prefix x base = if Cvalues.always_initialized x then let name = prefix ^ "_binit" in Definitions.define_lemma { l_kind = Admit ; l_name = name ; l_triggers = [] ; l_forall = [] ; l_lemma = MemAddr.binit base ; l_cluster = cluster_globals () ; } let sizeof x = Warning.handle ~handler:(fun _ -> None) ~fallback:(Printf.sprintf "No allocation size for variable '%s'" x.vname) (fun obj -> Some (protected_sizeof_object obj)) (Ctypes.object_of x.vtype) let alloc prefix x base = let name = prefix ^ "_linked" in let size = if x.vglob then sizeof x else Some e_zero in match size with | None -> () | Some size -> let a = Lang.freshvar ~basename:"alloc" MemAddr.t_malloc in let m = e_var a in let base_size = p_equal (Lang.F.e_get m base) size in Definitions.define_lemma { l_kind = Admit ; l_name = name ; l_triggers = [] ; l_forall = [] ; l_lemma = p_forall [a] (p_imply (MemAddr.linked m) base_size) ; l_cluster = cluster_globals () ; } (* Specializes the lemma in Pointers below for globals *) let pointer_type prefix base = let name = prefix ^ "_is_pointer" in let typed = MemAddr.in_uintptr_range (MemAddr.global base) in Definitions.define_lemma { l_kind = Admit ; l_name = name ; l_triggers = [] ; l_forall = [] ; l_lemma = typed ; l_cluster = cluster_globals () ; } let compile vi = let result = Logic.Int in let acs_rd = Ast_types.has_qualifier "const" vi.vtype in let prefix = if vi.vglob then if acs_rd then "K" else "G" else if vi.vformal then "P" else "L" in let lfun = Lang.generated_f ~category:Logic.Constructor ~result:Logic.Int "%s_%s_%d" prefix vi.vorig_name vi.vid in Definitions.define_symbol { d_lfun = lfun ; d_types = 0 ; d_params = [ ] ; d_definition = Definitions.Function (result, Def, e_int vi.vid) ; d_cluster = cluster_globals () ; } ; let prefix = Lang.Fun.debug lfun in let base = e_fun lfun [] in RegisterBASE.define lfun vi ; static_alloc prefix base ; region prefix vi base ; alloc prefix vi base ; binit prefix vi base ; pointer_type prefix base ; base end) module LITERAL = struct type t = int * Cstring.cst let compare (a:t) (b:t) = Stdlib.compare (fst a) (fst b) let pretty fmt (eid,cst) = Format.fprintf fmt "%a@%d" Cstring.pretty cst eid end module EID = State_builder.Ref(Datatype.Int) (struct let name = datatype ^ ".EID" let dependencies = [Ast.self] let default () = 0 end) module STRING = WpContext.Generator(LITERAL) (struct let name = datatype ^ ".STRING" type key = LITERAL.t type data = term let linked prefix base cst = let name = prefix ^ "_linked" in let a = Lang.freshvar ~basename:"alloc" (Chunk.tau_of_chunk Alloc) in let m = e_var a in let alloc = Lang.F.e_get m base in (* The size is alloc-1 *) let sized = Cstring.str_len cst (Lang.F.(e_add alloc e_minus_one)) in Definitions.define_lemma { l_kind = Admit ; l_name = name ; l_triggers = [] ; l_forall = [] ; l_lemma = p_forall [a] (p_imply (MemAddr.linked m) sized) ; l_cluster = Cstring.cluster () ; } let region prefix base cst = let name = prefix ^ "_region" in let re = - Cstring.str_id cst in Definitions.define_lemma { l_kind = Admit ; l_name = name ; l_triggers = [] ; l_forall = [] ; l_lemma = p_equal (MemAddr.region base) (e_int re) ; l_cluster = Cstring.cluster () ; } let sconst prefix base cst = (* describe the content of literal strings *) let name = prefix ^ "_literal" in let i = Lang.freshvar ~basename:"i" Lang.t_int in let c = Cstring.char_at cst (e_var i) in let ikind = Ctypes.c_char () in let m = Lang.freshvar ~basename:"mchar" @@ Chunk.tau_of_chunk Mem in let addr = shift (MemAddr.global base) (C_int ikind) (e_var i) in let v = load_int_raw (e_var m) ikind addr in let read = Lang.F.(p_equal c v) in Definitions.define_lemma { l_kind = Admit ; l_name = name ; l_triggers = [] ; l_forall = [m;i] ; l_cluster = Cstring.cluster () ; l_lemma = Lang.F.p_imply (WBytes.sconst @@ e_var m) read ; } let fresh () = let eid = succ (EID.get ()) in EID.set eid ; eid let compile (_,cst) = let eid = fresh () in let lfun = Lang.generated_f ~result:Lang.t_int "Str_%d" eid in (* Since its a generated it is the unique name given *) let prefix = Lang.Fun.debug lfun in let base = Lang.F.e_fun lfun [] in Definitions.define_symbol { d_lfun = lfun ; d_types = 0 ; d_params = [] ; d_definition = Logic Lang.t_int ; d_cluster = Cstring.cluster () ; } ; Definitions.define_lemma { l_name = prefix ^ "_base" ; l_kind = Admit ; l_triggers = [] ; l_forall = [] ; l_lemma = Lang.F.(p_lt base e_zero) ; l_cluster = Cstring.cluster () ; } ; region prefix base cst ; linked prefix base cst ; sconst prefix base cst ; base end) let pretty fmt loc = Format.fprintf fmt "l:(%a)" Lang.F.pp_term loc let null = MemAddr.null let literal ~eid cst = Wp_parameters.debug ~level:3 ~dkey:dkey_model "%s.literal %d _" datatype eid ; shift (MemAddr.global (STRING.get (eid,cst))) (C_int (Ctypes.c_char ())) e_zero let cvar vi = Wp_parameters.debug ~level:3 ~dkey:dkey_model "%s.cvar %a" datatype Cil_printer.pp_varinfo vi ; MemAddr.global (BASE.get vi) let global _sigma p = Wp_parameters.debug ~level:2 ~dkey:dkey_model "%s.global _ _" datatype ; p_leq (MemAddr.region @@ MemAddr.base p) e_zero (* ********************************************************************** *) (* STATE *) (* ********************************************************************** *) let rec lookup_a e = match repr e with | Fun( f , [e] ) when MemAddr.is_f_global f -> lookup_a e | Fun( f , es ) -> lookup_f f es | _ -> raise Not_found and lookup_f f es = try match RegisterShift.find f , es with | RS_Field(fd,_) , [e] -> Mstate.field (lookup_lv e) fd | RS_Index _ , [e;k] -> Mstate.index (lookup_lv e) k | _ -> raise Not_found with Not_found when es = [] -> Memory.(Mvar (RegisterBASE.find f),[]) and lookup_lv e = try lookup_a e with Not_found -> Memory.(Mmem e,[]) let lookup s e = match repr e with | Fun( f , es ) -> Memory.Maddr (lookup_f f es) | Aget( m , k ) -> begin match Sigma.ckind @@ Tmap.find m s with | State.Mu Alloc -> raise Not_found | State.Mu Init -> Memory.Minit (lookup_lv k) | State.Mu _ -> Memory.Mlval (lookup_lv k) | _ -> raise Not_found end | _ -> raise Not_found let updates _ _ = Bag.empty (* ********************************************************************** *) (* POINTERS OPS *) (* ********************************************************************** *) let pointer_loc t = t let pointer_val t = t let base_addr loc = Wp_parameters.debug ~level:3 ~dkey:dkey_model "%s.base_addr %a" datatype pretty loc ; MemAddr.mk_addr (MemAddr.base loc) e_zero let base_offset loc = Wp_parameters.debug ~level:3 ~dkey:dkey_model "%s.base_offset %a" datatype pretty loc ; MemAddr.base_offset (MemAddr.base loc) (MemAddr.offset loc) let block_length sigma _obj loc = Wp_parameters.debug ~level:3 ~dkey:dkey_model "%s.block_length _ _ _ " datatype ; e_get (Sigma.value sigma m_alloc) (MemAddr.base loc) let cast _ loc = Wp_parameters.debug ~level:3 ~dkey:dkey_model "%s.cast _ %a" datatype pretty loc ; loc let loc_of_int _ loc = Wp_parameters.debug ~level:3 ~dkey:dkey_model "%s.loc_of_int _ %a" datatype pretty loc ; MemAddr.addr_of_int loc let int_of_loc _ loc = Wp_parameters.debug ~level:3 ~dkey:dkey_model "%s.int_of_loc _ %a" datatype pretty loc ; MemAddr.int_of_addr loc (* -------------------------------------------------------------------------- *) let domain _ _ = Sigma.Domain.of_list [ m_init ; m_mem ] let is_null = p_equal null let loc_eq = p_equal let loc_lt = MemAddr.addr_lt let loc_leq = MemAddr.addr_le let loc_neq l1 l2 = p_not @@ loc_eq l1 l2 let loc_diff _ l1 l2 = let byte_size = Ctypes.sizeof_object (C_int (Ctypes.c_char ())) in e_div (e_sub (MemAddr.offset l1) (MemAddr.offset l2)) (e_int byte_size) let pointer_cluster () = Definitions.cluster ~id:"MemBytes.PointersProperties" ~title:"MemBytes definitions" () module PointersProperties = WpContext.Generator(Datatype.Unit) (struct let name = datatype ^ ".POINTERS" type key = unit type data = Lang.lfun let ranges () = let a = Lang.freshvar ~basename:"a" MemAddr.t_addr in let prop = MemAddr.in_uintptr_range (e_var a) in Definitions.define_lemma { l_kind = Admit ; l_name = "pointers_int_range" ; l_triggers = [] ; l_forall = [a] ; l_cluster = pointer_cluster () ; l_lemma = prop ; } let compile () = let lfun = Lang.generated_p "framed" in let m = Lang.freshvar ~basename:"m" WBytes.t_memory in let a = Lang.freshvar ~basename:"a" MemAddr.t_addr in let p = load_pointer_raw (e_var m) (Cil_const.voidPtrType) (e_var a) in let ba = MemAddr.base (e_var a) and bp = MemAddr.base p in let body = p_forall [a] @@ p_imply (p_leq (MemAddr.region ba) e_zero) (p_leq (MemAddr.region bp) e_zero) in Definitions.define_symbol { d_lfun = lfun ; d_cluster = pointer_cluster () ; d_types = 0 ; d_params = [ m ] ; d_definition = Predicate (Def, body) }; ranges () ; lfun end) let framed m = p_call (PointersProperties.get ()) [ m ] let frame sigma = Wp_parameters.debug ~level:2 ~dkey:dkey_model "%s.frame _" datatype ; let wellformed_frame phi chunk = if Sigma.mem sigma chunk then [ phi (Sigma.value sigma chunk) ] else [] in wellformed_frame MemAddr.linked m_alloc @ wellformed_frame WBytes.scinit m_init @ wellformed_frame WBytes.sconst m_mem @ [ framed (Sigma.value sigma m_mem) ] let is_well_formed s = Wp_parameters.debug ~level:2 ~dkey:dkey_model "%s.is_well_formed _" datatype ; WBytes.bytes (Sigma.value s m_mem) (* ********************************************************************** *) (* ALLOCATION *) (* ********************************************************************** *) let alloc sigma xs = Wp_parameters.debug ~level:2 ~dkey:dkey_model "%s.alloc %a %a" datatype Sigma.pretty sigma (Pretty_utils.pp_list Cil_printer.pp_varinfo) xs ; if xs = [] then sigma else Sigma.havoc_chunk sigma m_alloc let scope seq scope xs = Wp_parameters.debug ~level:2 ~dkey:dkey_model "%s.scope { %a ; %a } %s %a" datatype Sigma.pretty seq.pre Sigma.pretty seq.post (if scope = Memory.Enter then "Enter" else "Leave") (Pretty_utils.pp_list Cil_printer.pp_varinfo) xs ; if xs = [] then [] else let alloc = List.fold_left (fun m x -> let size = match scope with | Memory.Leave -> e_zero | Memory.Enter -> protected_sizeof_object @@ Ctypes.object_of x.Cil_types.vtype in e_set m (BASE.get x) size) (Sigma.value seq.pre m_alloc) xs in [ p_equal (Sigma.value seq.post m_alloc) alloc ]
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>