package frama-c
Platform dedicated to the analysis of source code written in C
Install
Dune Dependency
Authors
-
MMichele Alberti
-
TThibaud Antignac
-
GGergö Barany
-
PPatrick Baudin
-
NNicolas Bellec
-
TThibaut Benjamin
-
AAllan Blanchard
-
LLionel Blatter
-
FFrançois Bobot
-
RRichard Bonichon
-
VVincent Botbol
-
QQuentin Bouillaguet
-
DDavid Bühler
-
ZZakaria Chihani
-
SSylvain Chiron
-
LLoïc Correnson
-
JJulien Crétin
-
PPascal Cuoq
-
ZZaynah Dargaye
-
BBasile Desloges
-
JJean-Christophe Filliâtre
-
PPhilippe Herrmann
-
MMaxime Jacquemin
-
BBenjamin Jorge
-
FFlorent Kirchner
-
AAlexander Kogtenkov
-
RRemi Lazarini
-
TTristan Le Gall
-
KKilyan Le Gallic
-
JJean-Christophe Léchenet
-
MMatthieu Lemerre
-
DDara Ly
-
DDavid Maison
-
CClaude Marché
-
AAndré Maroneze
-
TThibault Martin
-
FFonenantsoa Maurica
-
MMelody Méaulle
-
BBenjamin Monate
-
YYannick Moy
-
PPierre Nigron
-
AAnne Pacalet
-
VValentin Perrelle
-
GGuillaume Petiot
-
DDario Pinto
-
VVirgile Prevosto
-
AArmand Puccetti
-
FFélix Ridoux
-
VVirgile Robles
-
JJan Rochel
-
MMuriel Roger
-
CCécile Ruet-Cros
-
JJulien Signoles
-
NNicolas Stouls
-
KKostyantyn Vorobyov
-
BBoris Yakobowski
Maintainers
Sources
frama-c-31.0-Gallium.tar.gz
sha256=a94384f00d53791cbb4b4d83ab41607bc71962d42461f02d71116c4ff6dca567
doc/src/frama-c-inout.core/operational_inputs.ml.html
Source file operational_inputs.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
(**************************************************************************) (* *) (* This file is part of Frama-C. *) (* *) (* Copyright (C) 2007-2025 *) (* CEA (Commissariat à l'énergie atomique et aux énergies *) (* alternatives) *) (* *) (* you can redistribute it and/or modify it under the terms of the GNU *) (* Lesser General Public License as published by the Free Software *) (* Foundation, version 2.1. *) (* *) (* It is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* See the GNU Lesser General Public License version 2.1 *) (* for more details (enclosed in the file licenses/LGPLv2.1). *) (* *) (**************************************************************************) open Cil_types open Locations (* Computation of over-approximated operational inputs: An accurate computation of these inputs needs the computation of under-approximated outputs. *) type t = Inout_type.t = { over_inputs: Locations.Zone.t; over_inputs_if_termination: Locations.Zone.t; over_logic_inputs: Locations.Zone.t; (* [over_logic_inputs] is used internally by Eva to make memexec consider also the logic inputs of the function. Computed in [transfer_annotations]. *) under_outputs_if_termination: Locations.Zone.t; over_outputs: Locations.Zone.t; over_outputs_if_termination: Locations.Zone.t; } let top = { over_inputs = Zone.top; over_inputs_if_termination = Zone.top; over_logic_inputs = Zone.top; under_outputs_if_termination = Zone.bottom; over_outputs = Zone.top; over_outputs_if_termination = Zone.top; } (* [_if_termination] fields of the type above, which are the one propagated by the dataflow analysis of this module. It is meaningless to store the other ones, as they come from branches that are by construction not propagated until the end by the dataflow. *) type compute_t = { over_inputs_d : Zone.t ; under_outputs_d : Zone.t; over_outputs_d: Zone.t; } (* Initial value for the computation *) let empty = { over_inputs_d = Zone.bottom; under_outputs_d = Zone.bottom; over_outputs_d = Zone.bottom; } let bottom = { over_inputs_d = Zone.bottom; under_outputs_d = Zone.top; over_outputs_d = Zone.bottom; } let equal ct1 ct2 = Zone.equal ct1.over_inputs_d ct2.over_inputs_d && Zone.equal ct1.under_outputs_d ct2.under_outputs_d && Zone.equal ct1.over_outputs_d ct2.over_outputs_d let join c1 c2 = { over_inputs_d = Zone.join c1.over_inputs_d c2.over_inputs_d; under_outputs_d = Zone.meet c1.under_outputs_d c2.under_outputs_d; over_outputs_d = Zone.join c1.over_outputs_d c2.over_outputs_d; } let is_included c1 c2 = Zone.is_included c1.over_inputs_d c2.over_inputs_d && Zone.is_included c2.under_outputs_d c1.under_outputs_d && Zone.is_included c1.over_outputs_d c2.over_outputs_d let join_and_is_included smaller larger = let join = join smaller larger in join, equal join larger ;; let externalize_zone ~with_formals kf = Zone.filter_base (Eva.Logic_inout.accept_base ~formals:with_formals ~locals:false kf) (* This code evaluates an assigns, computing in particular a sound approximation of sure outputs. For an assigns [locs_out \from locs_from], the process is the following: - evaluate locs_out to locations; discard those that are not exact, as we cannot guarantee that they are always assigned - evaluate locs_from, as a zone (no need for locations) - compute the difference between the out and the froms, ie remove the zones that are such that [z \from z] holds (Note: large parts of this code are inspired/redundant with [assigns_to_zone_foobar_state] in Value/register.ml) *) let eval_assigns kf state assigns = let treat_one_zone acc (out, froms as asgn) = (* treat a single assign *) (* Return a list of independent output zones, plus a zone indicating that the zone has been overwritten in a sure way *) let clean_deps = Locations.Zone.filter_base (function | Base.Var (v, _) | Base.Allocated (v, _, _) -> not (Kernel_function.is_formal v kf) | Base.CLogic_Var _ | Base.Null | Base.String _ -> true) in let out_term = out.it_content in let outputs_under, outputs_over, deps = if Logic_const.(is_result out_term || is_exit_status out_term) then (Zone.bottom, Zone.bottom, Zone.bottom) else let output = Eva.Logic_inout.tlval_to_zones Assigns state Write out_term in match output with | Some output -> output.under, output.over, clean_deps output.deps | None -> Inout_parameters.warning ~current:true ~once:true "failed to interpret assigns clause '%a'" Printer.pp_term out_term; (Zone.bottom, Zone.top, Zone.top) in (* Compute all inputs as a zone *) let inputs = match froms with | FromAny -> Zone.top | From l -> let aux acc { it_content = from } = let inputs = Eva.Logic_inout.tlval_to_zones Assigns state Read from in match inputs with | Some inputs -> let acc = Zone.join (clean_deps inputs.deps) acc in Zone.join inputs.over acc | _ -> Inout_parameters.warning ~current:true ~once:true "failed to interpret inputs in assigns clause '%a'" Printer.pp_from asgn; Zone.top in List.fold_left aux deps l in (* Fuse all outputs. An output is sure if it was certainly overwritten (i.e. is in the left part of an assign clause, and if it is not amongst its from.) *) (* Note: here we remove an overapproximation from an underapproximation to get an underapproximation, which is not the usual direction. It works here because diff on non-top zones is an exact operation. *) let sure_out = Zone.(if equal top inputs then bottom else diff outputs_under inputs) in { under_outputs_d = Zone.link acc.under_outputs_d sure_out; over_inputs_d = Zone.join acc.over_inputs_d inputs; over_outputs_d = Zone.join acc.over_outputs_d outputs_over; } in match assigns with | WritesAny -> Inout_parameters.warning "@[no assigns clauses for@ function %a.@]@ \ Results will be imprecise." Kernel_function.pretty kf; top | Writes l -> let init = { bottom with under_outputs_d = Zone.bottom } in let r = List.fold_left treat_one_zone init l in { over_inputs = r.over_inputs_d; over_logic_inputs = r.over_inputs_d; over_inputs_if_termination = r.over_inputs_d; under_outputs_if_termination = r.under_outputs_d; over_outputs = r.over_outputs_d; over_outputs_if_termination = r.over_outputs_d; } let compute_using_spec state kf = let behaviors = Eva.Logic_inout.valid_behaviors kf state in let assigns = Ast_info.merge_assigns behaviors in eval_assigns kf state assigns let compute_using_prototype ?stmt kf = let state = Cumulative_analysis.specialize_state_on_call ?stmt kf in compute_using_spec state kf (* Results of this module, consolidated by functions. Formals and locals are stored *) module Internals = Kernel_function.Make_Table(Inout_type) (struct let name = "Inout.Operational_inputs.Internals" let dependencies = [ Eva.Analysis.self ] let size = 17 end) module Callsite = Datatype.Pair_with_collections (Kernel_function) (Cil_datatype.Kinstr) module CallsiteHash = Callsite.Hashtbl (* Results of an an entire call, represented by a pair (stmt, kernel_function). *) module CallwiseResults = State_builder.Hashtbl (Callsite.Hashtbl) (Inout_type) (struct let size = 17 let dependencies = [Internals.self] let name = "Inout.Operational_inputs.CallwiseResults" end) module Computer(Fenv:Dataflows.FUNCTION_ENV)(X:sig val _version: string (* Debug: Callwise or functionwise *) val _kf: kernel_function (* Debug: Function being analyzed *) val kf_pre_state: Cvalue.Model.t (* Memory pre-state of the function. *) val stmt_state: stmt -> Cvalue.Model.t (* Memory state at the given stmt *) val stmt_request: stmt -> Eva.Results.request (* Request at the given stmt *) val at_call: stmt -> kernel_function -> Inout_type.t (* Results of the analysis for the given call. Must not contain locals or formals *) end) = struct (* We want to compute the in/out for all terminating and non-terminating points of the function. This is not immediate with a dataflow, as all (1) infinite loops, (2) branches that call a non terminating function, or (3) branches that fail, will not appear in the final state. Hence, we two use auxiliary variables into which we add all partial results. *) let non_terminating_inputs = ref Zone.bottom let non_terminating_outputs = ref Zone.bottom let non_terminating_logic_inputs = ref Zone.bottom let store_non_terminating_inputs inputs = non_terminating_inputs := Zone.join !non_terminating_inputs inputs; ;; let store_non_terminating_logic_inputs logic_inputs = non_terminating_logic_inputs := Zone.join !non_terminating_logic_inputs logic_inputs let store_non_terminating_outputs outputs = non_terminating_outputs := Zone.join !non_terminating_outputs outputs; ;; (* Store the 'non-termination' information of a function subcall into the current call. [under_outputs] are the current call sure outputs. *) let store_non_terminating_subcall under_outputs subcall = store_non_terminating_inputs (Zone.diff subcall.over_inputs under_outputs); store_non_terminating_outputs subcall.over_outputs; ;; let catenate c1 c2 = let inputs = Zone.diff c2.over_inputs_d c1.under_outputs_d in store_non_terminating_inputs inputs; { over_inputs_d = Zone.join c1.over_inputs_d inputs; under_outputs_d = Zone.link c1.under_outputs_d c2.under_outputs_d; over_outputs_d = Zone.join c1.over_outputs_d c2.over_outputs_d; } type t = compute_t let pretty fmt x = Format.fprintf fmt "@[Over-approximated operational inputs: %a@]@\n\ @[Under-approximated operational outputs: %a@]" Zone.pretty x.over_inputs_d Zone.pretty x.under_outputs_d let bottom = bottom let join_and_is_included = join_and_is_included let join = join let is_included = is_included (* Transfer function on expression. *) let transfer_exp s exp data = let request = X.stmt_request s in let inputs = Eva.Results.expr_deps exp request in let new_inputs = Zone.diff inputs data.under_outputs_d in store_non_terminating_inputs new_inputs; {data with over_inputs_d = Zone.join data.over_inputs_d new_inputs} (* Initialized const variables should be included as outputs of the function, so [for_writing] must be false for local initializations. It should be true for all other instructions. *) let add_out ~for_writing request lv deps data = let lv_address = Eva.Results.eval_address ~for_writing lv request in let new_outs = Eva.Results.as_zone lv_address in let exact = Eva.Results.is_singleton lv_address in store_non_terminating_outputs new_outs; let lv_deps = Eva.Results.address_deps lv request in let deps = Zone.join lv_deps deps in let new_inputs = Zone.diff deps data.under_outputs_d in store_non_terminating_inputs new_inputs; let new_sure_outs = if exact then (* There is only one modified zone. So, this is an exact output. Add it into the under-approximated outputs. *) Zone.link data.under_outputs_d new_outs else data.under_outputs_d in { under_outputs_d = new_sure_outs; over_inputs_d = Zone.join data.over_inputs_d new_inputs; over_outputs_d = Zone.join data.over_outputs_d new_outs } let transfer_call ~for_writing s dest f args _loc data = let request = X.stmt_request s in (* Join the inputs of [args] and of the function expression. *) let eval_deps acc e = Zone.join acc (Eva.Results.expr_deps e request) in let f_args_inputs = List.fold_left eval_deps Zone.bottom (f :: args) in let data = catenate data { over_inputs_d = f_args_inputs ; under_outputs_d = Zone.bottom; over_outputs_d = Zone.bottom; } in let called = Eva.Results.(eval_callee f request |> default []) in let for_functions = List.fold_left (fun acc kf -> let res = X.at_call s kf in store_non_terminating_subcall data.over_outputs_d res; let for_function = { over_inputs_d = res.over_inputs_if_termination; under_outputs_d = res.under_outputs_if_termination; over_outputs_d = res.over_outputs_if_termination; } in join for_function acc) bottom called in let result = catenate data for_functions in let result = (* Treatment for the possible assignment of the call result *) (match dest with | None -> result | Some lv -> add_out ~for_writing request lv Zone.bottom result) in result (* Propagate all zones in predicates for the given statement, only in the case of assertions and loop-invariants. For the time being, we do not treat terminating and non-terminating points of the function differently. *) let transfer_annotations stmt = Annotations.iter_code_annot (fun _ ca -> match ca.annot_content with | AAssert (_, p) | AInvariant (_, true, p) -> begin let pre = X.kf_pre_state and here = X.stmt_state stmt in let deps = Eva.Logic_inout.predicate_deps ~pre ~here p.tp_statement in match deps with | None -> (* To be sound, we should perform a join with the top zone here. We do nothing instead because the latter behavior would directly disable memexec. *) () | Some p_zone -> store_non_terminating_logic_inputs p_zone end | _ -> ()) stmt (* Transfer function on instructions. *) let transfer_instr stmt (i: instr) (data: t) = match i with | Set (lv, exp, _) -> let request = X.stmt_request stmt in let e_inputs = Eva.Results.expr_deps exp request in add_out ~for_writing:true request lv e_inputs data | Local_init (v, AssignInit i, _) -> let request = X.stmt_request stmt in let rec aux lv i acc = match i with | SingleInit e -> let e_inputs = Eva.Results.expr_deps e request in add_out ~for_writing:false request lv e_inputs acc | CompoundInit(ct, initl) -> (* Avoid folding implicit zero-initializer of large arrays. *) let implicit = Cumulative_analysis.fold_implicit_initializer ct in let doinit o i _ data = aux (Cil.addOffsetLval o lv) i data in let data = Cil.foldLeftCompound ~implicit ~doinit ~ct ~initl ~acc in if implicit then data else (* If the implicit zero-initializers hade been skipped, add the zone of the array as outputs. It is exactly the written zone for arrays of scalar elements. Nothing is read by zero-initializers, so the inputs are empty. *) add_out ~for_writing:false request lv Zone.bottom acc in aux (Cil.var v) i data | Call (lvaloption,funcexp,argl,loc) -> transfer_call ~for_writing:true stmt lvaloption funcexp argl loc data | Local_init(v, ConsInit(f, args, kind), loc) -> let transfer = transfer_call ~for_writing:false stmt in Cil.treat_constructor_as_func transfer v f args kind loc data | Asm _ | Code_annot _ | Skip _ -> data ;; (* transfer_guard: gets the state obtained after evaluating the condition, and split the state according to the truth value of the condition. In this case, we just make sure that dead edges get bottom, instead of the input state. *) let transfer_guard stmt e t = let request = X.stmt_request stmt in let v_e = Eva.Results.(eval_exp e request |> as_cvalue) in let t1 = Ast_types.unroll (Cil.typeOf e) in let do_then, do_else = if Ast_types.is_integral t1 || Ast_types.is_ptr t1 then Cvalue.V.contains_non_zero v_e, Cvalue.V.contains_zero v_e else true, true (* TODO: a float condition is true iff != 0.0 *) in (if do_then then t else bottom), (if do_else then t else bottom) ;; let return_data = ref bottom;; let transfer_stmt s data = let map_on_all_succs new_data = List.map (fun x -> (x,new_data)) s.succs in match s.skind with | Instr i -> map_on_all_succs (transfer_instr s i data) | If(exp,_,_,_) -> let data = transfer_exp s exp data in Dataflows.transfer_if_from_guard transfer_guard s data | Switch(exp,_,_,_) -> let data = transfer_exp s exp data in Dataflows.transfer_switch_from_guard transfer_guard s data | Return(Some exp,_) -> return_data := transfer_exp s exp data; assert (s.succs == []); [] | Return(None,_) -> return_data := data; assert (s.succs == []); [] | Throw _ | TryCatch _ -> Inout_parameters.fatal "Exception node in the AST" | UnspecifiedSequence _ | Loop _ | Block _ | Goto _ | Break _ | Continue _ | TryExcept _ | TryFinally _ -> map_on_all_succs data ;; let transfer_stmt s data = if Cvalue.Model.is_reachable (X.stmt_state s) then begin transfer_annotations s; transfer_stmt s data end else [] ;; let init = [(Kernel_function.find_first_stmt Fenv.kf), empty];; let end_dataflow () = let res_if_termination = !return_data in { over_inputs_if_termination = res_if_termination.over_inputs_d; under_outputs_if_termination = res_if_termination.under_outputs_d ; over_outputs_if_termination = res_if_termination.over_outputs_d; over_inputs = Zone.join !non_terminating_inputs res_if_termination.over_inputs_d; over_logic_inputs = !non_terminating_logic_inputs; over_outputs = Zone.join !non_terminating_outputs res_if_termination.over_outputs_d; } end let externalize ~with_formals kf v = let filter = externalize_zone ~with_formals kf in Inout_type.map filter v let compute_externals_using_prototype ?stmt kf = let internals = compute_using_prototype ?stmt kf in externalize ~with_formals:false kf internals let ref_get_internal = ref (fun _kf : t -> assert false) let get_internal_aux ?stmt kf = match stmt with | None -> !ref_get_internal kf | Some stmt -> try CallwiseResults.find (kf, Kstmt stmt) with Not_found -> if Eva.Analysis.use_spec_instead_of_definition kf then compute_using_prototype ~stmt kf else !ref_get_internal kf let ref_get_external = ref (fun _kf : t -> assert false) let get_external_aux ?stmt kf = match stmt with | None -> !ref_get_external kf | Some stmt -> try let internals = CallwiseResults.find (kf, Kstmt stmt) in externalize ~with_formals:false kf internals with Not_found -> if Eva.Analysis.use_spec_instead_of_definition kf then let r = compute_externals_using_prototype ~stmt kf in CallwiseResults.add (kf, Kstmt stmt) r; r else !ref_get_external kf let extract_inout_from_froms assigns = let Eva.Assigns.{ return = deps_return; memory = deps_table } = assigns in let in_return = Eva.Deps.to_zone deps_return in let in_, out_ = match deps_table with | Top -> Zone.top, Zone.top | Bottom -> Zone.bottom, Zone.bottom | Map m -> let aux_from out in_ (acc_in,acc_out as acc) = (* Skip zones fully unassigned, they are not really port of the dependencies, but just present in the offsetmap to avoid "holes" *) match (in_ : Eva.Assigns.DepsOrUnassigned.t) with | Unassigned -> acc | AssignedFrom in_ | MaybeAssignedFrom in_ -> Zone.join acc_in (Eva.Deps.to_zone in_), Zone.join acc_out out in Eva.Assigns.Memory.fold aux_from m (Zone.bottom, Zone.bottom) in (Zone.join in_return in_), out_ [@@@ warning "-60"] module Callwise = struct module Record_Inout_Callbacks = Hook.Build (struct type t = Inout_type.t end) let merge_call_in_local_table call local_table v = let prev = try CallsiteHash.find local_table call with Not_found -> Inout_type.bottom in let joined = Inout_type.join v prev in CallsiteHash.replace local_table call joined let merge_call_in_global_tables (kf, _ as call) v = (* Global callwise table *) let prev = try CallwiseResults.find call with Not_found -> Inout_type.bottom in CallwiseResults.replace call (Inout_type.join v prev); (* Global, kf-indexed, table *) let prev = try Internals.find kf with Not_found -> Inout_type.bottom in Internals.replace kf (Inout_type.join v prev); ;; let call_inout_stack = ref [] let call_for_callwise_inout _callstack kf _state = function | `Body -> let table_current_function = CallsiteHash.create 7 in call_inout_stack := (kf, table_current_function) :: !call_inout_stack | `Reuse | `Spec | `Builtin -> () let pop_local_table kf = match !call_inout_stack with | (kf', table) :: tail -> if not (Kernel_function.equal kf kf') then Inout_parameters.fatal "callwise inout: %a != %a@." Kernel_function.pretty kf Kernel_function.pretty kf'; CallsiteHash.iter merge_call_in_global_tables table; call_inout_stack := tail; | [] -> Inout_parameters.fatal "callwise: internal stack is empty" let end_record callstack kf inout = Record_Inout_Callbacks.apply inout; let callsite = Eva.Callstack.top_callsite callstack in match callsite, !call_inout_stack with | Kstmt _, (_caller, table) :: _ -> merge_call_in_local_table (kf, callsite) table inout; | Kglobal, [] -> (* the entry point *) merge_call_in_global_tables (kf, callsite) inout; CallwiseResults.mark_as_computed () | _ -> Inout_parameters.fatal "callwise: internal stack is inconsistent with Eva callstack" module MemExec = State_builder.Hashtbl (Datatype.Int.Hashtbl) (Inout_type) (struct let size = 17 let dependencies = [Internals.self] let name = "Operational_inputs.MemExec" end) let compute_call_from_value_states kf call_stack states = let module Fenv = (val Dataflows.function_env kf: Dataflows.FUNCTION_ENV) in let module Computer = Computer(Fenv)( struct let _version = "callwise" let _kf = kf (* Returns the [kf] pre-state with respect to the single [call_stack]. *) let kf_pre_state = Eva.Results.(at_start_of kf |> in_callstack call_stack |> get_cvalue_model) let stmt_state stmt = try Cil_datatype.Stmt.Hashtbl.find states stmt with Not_found -> Cvalue.Model.bottom let stmt_request stmt = Eva.Results.in_cvalue_state (stmt_state stmt) let at_call stmt kf = let _cur_kf, table = List.hd !call_inout_stack in try let with_internals = CallsiteHash.find table (kf, Kstmt stmt) in let filter = match kf.fundec with | Definition (fundec, _) -> (fun b -> not (Base.is_formal_or_local b fundec)) | _ -> let vi_kf = Kernel_function.get_vi kf in (fun b -> not (Base.is_formal_of_prototype b vi_kf)) in Inout_type.map (Zone.filter_base filter) with_internals with Not_found -> Inout_type.bottom end) in let module [@warning "-60"] Compute = Dataflows.Simple_forward (Fenv) (Computer) in Computer.end_dataflow () let record_for_callwise_inout callstack kf pre_state value_res = let inout = match value_res with | `Body (Eva.Cvalue_callbacks.{before_stmts}, memexec_counter) -> let inout = if Eva.Analysis.save_results kf then let cvalue_states = Lazy.force before_stmts in compute_call_from_value_states kf callstack cvalue_states else top in MemExec.replace memexec_counter inout; pop_local_table kf; inout | `Reuse counter -> MemExec.find counter | `Spec _states | `Builtin (_states, None) -> compute_using_spec pre_state kf | `Builtin (_states, Some (froms,sure_out)) -> let in_, out_ = extract_inout_from_froms froms in { over_inputs_if_termination = in_; over_inputs = in_; over_logic_inputs = Zone.bottom; over_outputs_if_termination = out_ ; over_outputs = out_; under_outputs_if_termination = sure_out; } in end_record callstack kf inout (* Register our callbacks inside the value analysis *) let () = Eva.Cvalue_callbacks.register_call_results_hook record_for_callwise_inout; Eva.Cvalue_callbacks.register_call_hook call_for_callwise_inout let _register_call_hook = Dynamic.register ~comment:"Registers a function to be applied on the inputs/outputs \ computed for each function call." ~plugin:Inout_parameters.name "register_call_hook" Datatype.(func (func Inout_type.ty unit) unit) Record_Inout_Callbacks.extend_once end (* Functionwise version of the computations. *) module FunctionWise = struct (* Stack of function being processed *) let call_stack : kernel_function Stack.t = Stack.create () let compute_internal_using_cfg kf = try let module Fenv = (val Dataflows.function_env kf: Dataflows.FUNCTION_ENV) in let module Computer = Computer(Fenv)(struct let _version = "functionwise" let _kf = kf let kf_pre_state = Eva.Results.(at_start_of kf |> get_cvalue_model) let stmt_state s = Eva.Results.(before s |> get_cvalue_model) let stmt_request s = Eva.Results.before s let at_call stmt kf = get_external_aux ~stmt kf end) in Stack.iter (fun g -> if kf == g then raise Exit) call_stack; Stack.push kf call_stack; let module [@warning "-60"] Compute = Dataflows.Simple_forward (Fenv) (Computer) in let result = Computer.end_dataflow () in ignore (Stack.pop call_stack); result with Exit -> Inout_type.bottom (*TODO*) (*{ Inout_type.over_inputs_if_termination = empty.over_inputs_d ; under_outputs_if_termination = empty.under_outputs_d; over_inputs = empty.over_inputs_d; over_outputs = empty.over_outputs_d; over_outputs_if_termination = empty.over_outputs_d; }*) let compute_internal_using_cfg kf = if not (Eva.Analysis.save_results kf) then top else begin Inout_parameters.feedback ~level:2 "computing for function %a%s" Kernel_function.pretty kf (let s = ref "" in Stack.iter (fun kf -> s := !s^" <-"^ (Format.asprintf "%a" Kernel_function.pretty kf)) call_stack; !s); let r = compute_internal_using_cfg kf in Inout_parameters.feedback ~level:2 "done for function %a" Kernel_function.pretty kf; r end end let get_internal = Internals.memo (fun kf -> Eva.Analysis.compute (); try Internals.find kf (* The results may have been computed by the call to Eva.Analysis.compute *) with | Not_found -> if Eva.Analysis.use_spec_instead_of_definition kf then compute_using_prototype kf else FunctionWise.compute_internal_using_cfg kf ) let raw_externals ~with_formals kf = let filter = externalize ~with_formals kf in filter (get_internal kf) module Externals = Kernel_function.Make_Table(Inout_type) (struct let name = "External inouts full" let dependencies = [ Internals.self ] let size = 17 end) let get_external = Externals.memo (raw_externals ~with_formals:false) let compute kf = ignore (get_external kf) module Externals_With_Formals = Kernel_function.Make_Table(Inout_type) (struct let name = "Inout.Operational_inputs.Externals_With_Formals" let dependencies = [ Internals.self ] let size = 17 end) let get_external_with_formals = Externals_With_Formals.memo (raw_externals ~with_formals:true) let pretty_operational_inputs_internal fmt kf = Format.fprintf fmt "@[InOut (internal) for function %a:@\n%a@]@\n" Kernel_function.pretty kf Inout_type.pretty_operational_inputs (get_internal kf) let pretty_operational_inputs_external fmt kf = Format.fprintf fmt "@[InOut for function %a:@\n%a@]@\n" Kernel_function.pretty kf Inout_type.pretty_operational_inputs (get_external kf) let pretty_operational_inputs_external_with_formals fmt kf = Format.fprintf fmt "@[InOut (with formals) for function %a:@\n%a@]@\n" Kernel_function.pretty kf Inout_type.pretty_operational_inputs (get_external_with_formals kf) let pretty fmt x = Format.fprintf fmt "@[<v>"; Format.fprintf fmt "@[<v 2>Operational inputs:@ @[<hov>%a@]@]@ " Locations.Zone.pretty (x.Inout_type.over_inputs); Format.fprintf fmt "@[<v 2>Operational inputs on termination:@ @[<hov>%a@]@]@ " Locations.Zone.pretty (x.Inout_type.over_inputs_if_termination); Format.fprintf fmt "@[<v 2>Sure outputs:@ @[<hov>%a@]@]" Locations.Zone.pretty (x.Inout_type.under_outputs_if_termination); Format.fprintf fmt "@]" let get_internal_precise = get_internal_aux let () = ref_get_internal := get_internal; ref_get_external := get_external
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>