package frama-c
Platform dedicated to the analysis of source code written in C
Install
Dune Dependency
Authors
-
MMichele Alberti
-
TThibaud Antignac
-
GGergö Barany
-
PPatrick Baudin
-
NNicolas Bellec
-
TThibaut Benjamin
-
AAllan Blanchard
-
LLionel Blatter
-
FFrançois Bobot
-
RRichard Bonichon
-
VVincent Botbol
-
QQuentin Bouillaguet
-
DDavid Bühler
-
ZZakaria Chihani
-
LLoïc Correnson
-
JJulien Crétin
-
PPascal Cuoq
-
ZZaynah Dargaye
-
BBasile Desloges
-
JJean-Christophe Filliâtre
-
PPhilippe Herrmann
-
MMaxime Jacquemin
-
FFlorent Kirchner
-
AAlexander Kogtenkov
-
RRemi Lazarini
-
TTristan Le Gall
-
KKilyan Le Gallic
-
JJean-Christophe Léchenet
-
MMatthieu Lemerre
-
DDara Ly
-
DDavid Maison
-
CClaude Marché
-
AAndré Maroneze
-
TThibault Martin
-
FFonenantsoa Maurica
-
MMelody Méaulle
-
BBenjamin Monate
-
YYannick Moy
-
PPierre Nigron
-
AAnne Pacalet
-
VValentin Perrelle
-
GGuillaume Petiot
-
DDario Pinto
-
VVirgile Prevosto
-
AArmand Puccetti
-
FFélix Ridoux
-
VVirgile Robles
-
JJan Rochel
-
MMuriel Roger
-
CCécile Ruet-Cros
-
JJulien Signoles
-
NNicolas Stouls
-
KKostyantyn Vorobyov
-
BBoris Yakobowski
Maintainers
Sources
frama-c-30.0-Zinc.tar.gz
sha256=3ac0f995261ec829a7bd042bf70fc29ac6379029eb9df30bcc044748eb4d2a56
doc/src/frama-c-region.core/memory.ml.html
Source file memory.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
(**************************************************************************) (* *) (* This file is part of Frama-C. *) (* *) (* Copyright (C) 2007-2024 *) (* CEA (Commissariat à l'énergie atomique et aux énergies *) (* alternatives) *) (* *) (* you can redistribute it and/or modify it under the terms of the GNU *) (* Lesser General Public License as published by the Free Software *) (* Foundation, version 2.1. *) (* *) (* It is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* See the GNU Lesser General Public License version 2.1 *) (* for more details (enclosed in the file licenses/LGPLv2.1). *) (* *) (**************************************************************************) open Cil_types open Cil_datatype module Ufind = UnionFind.Make(Store) module Vmap = Varinfo.Map module Vset = Varinfo.Set module Lmap = Map.Make(String) module Lset = Set.Make(String) (* -------------------------------------------------------------------------- *) (* --- Region Maps --- *) (* -------------------------------------------------------------------------- *) (* All offsets in bits *) type node = chunk Ufind.rref and layout = | Blob | Cell of int * node option | Compound of int * Fields.domain * node Ranges.t and chunk = { cparents: node list ; cpointed: node list ; croots: Vset.t ; clabels: Lset.t ; creads: Access.Set.t ; cwrites: Access.Set.t ; cshifts: Access.Set.t ; clayout: layout ; } type rg = node Ranges.range type map = { store: chunk Ufind.store ; mutable locked: bool ; mutable roots: node Vmap.t ; mutable labels: node Lmap.t ; } (* -------------------------------------------------------------------------- *) (* --- Accessors --- *) (* -------------------------------------------------------------------------- *) let sizeof = function Blob -> 0 | Cell(s,_) | Compound(s,_,_) -> s let ranges = function Blob | Cell _ -> [] | Compound(_,_,R rs) -> rs let fields = function Blob | Cell _ -> Fields.empty | Compound(_,fds,_) -> fds let pointed = function Blob | Compound _ -> None | Cell(_,p) -> p let types (m : chunk) : typ list = let pool = ref Typ.Set.empty in let add acs = pool := Typ.Set.add (Cil.unrollType @@ Access.typeof acs) !pool in Access.Set.iter add m.creads ; Access.Set.iter add m.cwrites ; Typ.Set.elements !pool let failwith_locked m fn = if m.locked then raise (Invalid_argument fn) let lock m = m.locked <- true let unlock m = m.locked <- false (* -------------------------------------------------------------------------- *) (* --- Printers --- *) (* -------------------------------------------------------------------------- *) let pp_node fmt (n : node) = Format.fprintf fmt "R%04x" @@ Store.id n let pp_field fields fmt fd = if Options.debug_atleast 1 then Ranges.pp_range fmt fd else Fields.pretty fields fmt fd let pp_layout fmt = function | Blob -> Format.pp_print_string fmt "<blob>" | Cell(s,None) -> Format.fprintf fmt "<%04d>" s | Cell(s,Some n) -> Format.fprintf fmt "<%04d>(*%a)" s pp_node n | Compound(s,fields,rg) -> Format.fprintf fmt "@[<hv 0>{%04d" s ; Ranges.iteri (fun (rg : rg) -> Format.fprintf fmt "@ | %a: %a" (pp_field fields) rg pp_node rg.data ) rg ; Format.fprintf fmt "@ }@]" let pp_chunk fmt (n: node) (m: chunk) = begin let acs r s = if Access.Set.is_empty s then '-' else r in Format.fprintf fmt "@[<hov 2>%a: %c%c%c" pp_node n (acs 'R' m.creads) (acs 'W' m.cwrites) (acs 'A' m.cshifts) ; List.iter (Format.fprintf fmt "@ (%a)" Typ.pretty) (types m) ; Lset.iter (Format.fprintf fmt "@ %s:") m.clabels ; Vset.iter (Format.fprintf fmt "@ %a" Varinfo.pretty) m.croots ; if Options.debug_atleast 1 then begin Access.Set.iter (Format.fprintf fmt "@ R:%a" Access.pretty) m.creads ; Access.Set.iter (Format.fprintf fmt "@ W:%a" Access.pretty) m.cwrites ; Access.Set.iter (Format.fprintf fmt "@ A:%a" Access.pretty) m.cshifts ; end ; Format.fprintf fmt "@ %a ;@]" pp_layout m.clayout ; end [@@ warning "-32"] (* -------------------------------------------------------------------------- *) (* --- Map Constructors --- *) (* -------------------------------------------------------------------------- *) let create () = { locked = false ; store = Ufind.new_store () ; roots = Vmap.empty ; labels = Lmap.empty ; } let copy ?locked m = { locked = (match locked with None -> m.locked | Some l -> l) ; store = Ufind.copy m.store ; roots = m.roots ; labels = m.labels ; } let empty = { cparents = [] ; cpointed = [] ; croots = Vset.empty ; clabels = Lset.empty ; creads = Access.Set.empty ; cwrites = Access.Set.empty ; cshifts = Access.Set.empty ; clayout = Blob ; } (* -------------------------------------------------------------------------- *) (* --- Map --- *) (* -------------------------------------------------------------------------- *) let id = Store.id let forge = Store.forge let equal (m: map) = Ufind.eq m.store let node map node = try Ufind.find map.store node with Not_found -> node let nodes map ns = Store.list @@ List.map (node map) ns let get map node = try Ufind.get map.store node with Not_found -> empty let update (m: map) (n: node) (f: chunk -> chunk) = let r = get m n in Ufind.set m.store n (f r) (* -------------------------------------------------------------------------- *) (* --- Chunk Constructors --- *) (* -------------------------------------------------------------------------- *) let new_chunk (m: map) ?(size=0) ?ptr ?pointed () = failwith_locked m "Region.Memory.new_chunk" ; let clayout = match ptr with | None -> if size = 0 then Blob else Cell(size,None) | Some _ -> Cell(Ranges.gcd size (Cil.bitsSizeOf Cil_const.voidPtrType), ptr) in let cpointed = match pointed with | None -> [] | Some ptr -> [ptr] in Ufind.make m.store { empty with clayout ; cpointed } let new_range (m: map) ?(fields=Fields.empty) ~size ~offset ~length data : node = failwith_locked m "Region.Memory.new_range" ; let last = offset + length in if not (0 <= offset && offset < last && last <= size) then raise (Invalid_argument "Region.Memory.add_range") ; let ranges = Ranges.singleton { offset ; length ; data } in let clayout = Compound(size, fields, ranges) in let n = Ufind.make m.store { empty with clayout } in update m data (fun r -> { r with cparents = nodes m @@ n :: r.cparents }) ; n let add_root (m: map) v = try Vmap.find v m.roots with Not_found -> failwith_locked m "Region.Memory.add_root" ; let n = new_chunk m () in update m n (fun d -> { d with croots = Vset.singleton v }) ; m.roots <- Vmap.add v n m.roots ; n let add_label (m: map) a = try Lmap.find a m.labels with Not_found -> failwith_locked m "Region.Memory.add_label" ; let n = new_chunk m () in update m n (fun d -> { d with clabels = Lset.singleton a }) ; m.labels <- Lmap.add a n m.labels ; n (* -------------------------------------------------------------------------- *) (* --- Iterator --- *) (* -------------------------------------------------------------------------- *) type range = { label: string ; (* pretty printed fields *) offset: int ; length: int ; cells: int ; data: node ; } type region = { node: node ; parents: node list ; roots: varinfo list ; labels: string list ; types: typ list ; fields: Fields.domain ; reads: Access.acs list ; writes: Access.acs list ; shifts: Access.acs list ; sizeof: int ; ranges: range list ; pointed: node option ; } let pp_cells fmt = function | 1 -> () | 0 -> Format.fprintf fmt "[…]" | n -> Format.fprintf fmt "[%d]" n type slice = | Padding of int | Range of range let pad p q s = let n = q - p in if n > 0 then Padding n :: s else s let rec span k s = function | [] -> pad k s [] | r::rs -> pad k r.offset @@ Range r :: span (r.offset + r.length) s rs let pp_slice fields fmt = function | Padding n -> Format.fprintf fmt "@ %a;" Fields.pp_bits n | Range r -> Format.fprintf fmt "@ %t: %a%a;" (Fields.pslice ~fields ~offset:r.offset ~length:r.length) pp_node r.data pp_cells r.cells let pp_range fmt (r: range) = Format.fprintf fmt "@ %d..%d: %a%a;" r.offset (r.offset + r.length) pp_node r.data pp_cells r.cells let pp_region fmt (m: region) = begin let acs r s = if s = [] then '-' else r in Format.fprintf fmt "@[<hov 2>%a: %c%c%c" pp_node m.node (acs 'R' m.reads) (acs 'W' m.writes) (acs 'A' m.shifts) ; List.iter (Format.fprintf fmt "@ %s:") m.labels ; List.iter (Format.fprintf fmt "@ %a" Varinfo.pretty) m.roots ; List.iter (Format.fprintf fmt "@ (%a)" Typ.pretty) m.types ; Format.fprintf fmt "@ %db" m.sizeof ; Option.iter (Format.fprintf fmt "@ (*%a)" pp_node) m.pointed ; if m.ranges <> [] then begin Format.fprintf fmt "@ @[<hv 0>@[<hv 2>{" ; if Options.debug_atleast 1 then List.iter (pp_range fmt) m.ranges else List.iter (pp_slice m.fields fmt) (span 0 m.sizeof m.ranges) ; Format.fprintf fmt "@]@ }@]" ; end ; if Options.debug_atleast 1 then begin List.iter (Format.fprintf fmt "@ R:%a" Access.pretty) m.reads ; List.iter (Format.fprintf fmt "@ W:%a" Access.pretty) m.writes ; List.iter (Format.fprintf fmt "@ A:%a" Access.pretty) m.shifts ; end ; Format.fprintf fmt " ;@]" ; end let make_range (m: map) fields Ranges.{ length ; offset ; data } : range = let s = sizeof (get m data).clayout in let p = Fields.pslice ~fields ~offset ~length in { label = Format.asprintf "%t" p ; offset ; length ; cells = if s = 0 then 0 else length / s ; data = node m data ; } let make_region (m: map) (n: node) (r: chunk) : region = let fields = fields r.clayout in { node = n ; parents = nodes m r.cparents ; roots = Vset.elements r.croots ; labels = Lset.elements r.clabels ; reads = Access.Set.elements r.creads ; writes = Access.Set.elements r.cwrites ; shifts = Access.Set.elements r.cshifts ; types = types r ; sizeof = sizeof r.clayout ; fields ; ranges = List.map (make_range m fields) @@ ranges r.clayout ; pointed = Option.map (node m) (pointed r.clayout) ; } let region map n = make_region map n (get map n) let rec walk h m f n = let n = Ufind.find m.store n in let id = Store.id n in try Hashtbl.find h id with Not_found -> Hashtbl.add h id () ; let r = Ufind.get m.store n in f (make_region m n r) ; match r.clayout with | Blob -> () | Cell(_,p) -> Option.iter (walk h m f) p | Compound(_,_,rg) -> Ranges.iter (walk h m f) rg let iter (m:map) (f: region -> unit) = let h = Hashtbl.create 0 in Vmap.iter (fun _x n -> walk h m f n) m.roots let rec walk_node h m (f: node -> unit) n = let n = Ufind.find m.store n in let id = Store.id n in try Hashtbl.find h id with Not_found -> Hashtbl.add h id () ; f n ; let r = Ufind.get m.store n in match r.clayout with | Blob -> () | Cell(_,p) -> Option.iter (walk_node h m f) p | Compound(_,_,rg) -> Ranges.iter (walk_node h m f) rg let iter_node (m:map) (f: node -> unit) = let h = Hashtbl.create 0 in Vmap.iter (fun _x n -> walk_node h m f n) m.roots let regions map = let pool = ref [] in iter map (fun r -> pool := r :: !pool) ; List.rev !pool let parents (m: map) (r: node) = let chunk = Ufind.get m.store r in nodes m chunk.cparents let roots (m: map) (r: node) = let chunk = Ufind.get m.store r in Vset.elements chunk.croots (* -------------------------------------------------------------------------- *) (* --- Merge --- *) (* -------------------------------------------------------------------------- *) type queue = (node * node) Queue.t let singleton ~size = function | None -> Ranges.empty | Some r -> Ranges.range ~length:size r let merge_node (m: map) (q: queue) (a: node) (b: node) : node = if not @@ Ufind.eq m.store a b then Queue.push (a,b) q ; Ufind.find m.store (min a b) let merge_opt (m: map) (q: queue) (pa : node option) (pb : node option) : node option = match pa, pb with | None, p | p, None -> p | Some pa, Some pb -> Some (merge_node m q pa pb) let merge_range (m: map) (q: queue) (ra : rg) (rb : rg) : node = let na = ra.data in let nb = rb.data in let ma = ra.offset + ra.length in let mb = rb.offset + rb.length in let dp = ra.offset - rb.offset in let dq = ma - mb in let sa = sizeof (get m na).clayout in let sb = sizeof (get m nb).clayout in let size = Ranges.(sa %. sb %. dp %. dq) in let data = merge_node m q na nb in if size = sa && size = sb then data else merge_node m q (new_chunk m ~size ()) data let merge_ranges (m: map) (q: queue) (sa : int) (fa : Fields.domain) (wa : node Ranges.t) (sb : int) (fb : Fields.domain) (wb : node Ranges.t) : layout = let fields = Fields.union fa fb in if sa = sb then Compound(sa, fields, Ranges.merge (merge_range m q) wa wb) else let size = Ranges.gcd sa sb in let ra = Ranges.squash (merge_node m q) wa in let rb = Ranges.squash (merge_node m q) wb in Compound(size, fields, singleton ~size @@ merge_opt m q ra rb) let merge_layout (m: map) (q: queue) (a : layout) (b : layout) : layout = match a, b with | Blob, c | c, Blob -> c | Cell(sa,pa) , Cell(sb,pb) -> Cell(Ranges.gcd sa sb, merge_opt m q pa pb) | Compound(sa,fa,wa), Compound(sb,fb,wb) -> merge_ranges m q sa fa wa sb fb wb | Compound(sr,fr,wr), Cell(sx,None) | Cell(sx,None), Compound(sr,fr,wr) -> let size = Ranges.gcd sx sr in Compound(size, fr, singleton ~size @@ Ranges.squash (merge_node m q) wr) | Compound(sr,fr,wr), Cell(sx,Some ptr) | Cell(sx,Some ptr), Compound(sr,fr,wr) -> let rp = new_chunk m ~size:sx ~ptr () in let fx = Fields.empty in let wx = Ranges.range ~length:sx rp in merge_ranges m q sx fx wx sr fr wr let merge_region (m: map) (q: queue) (a : chunk) (b : chunk) : chunk = { cparents = nodes m @@ Store.bag a.cparents b.cparents ; cpointed = nodes m @@ Store.bag a.cpointed b.cpointed ; clabels = Lset.union a.clabels b.clabels ; croots = Vset.union a.croots b.croots ; creads = Access.Set.union a.creads b.creads ; cwrites = Access.Set.union a.cwrites b.cwrites ; cshifts = Access.Set.union a.cshifts b.cshifts ; clayout = merge_layout m q a.clayout b.clayout ; } let do_merge (m: map) (q: queue) (a: node) (b: node): unit = begin let ra = Ufind.get m.store a in let rb = Ufind.get m.store b in let rx = Ufind.union m.store a b in let rc = merge_region m q ra rb in Ufind.set m.store rx rc ; end let merge_all (m:map) = function | [] -> () | r::rs -> let q = Queue.create () in List.iter (fun r' -> ignore @@ merge_node m q r r') rs ; while not @@ Queue.is_empty q do let a,b = Queue.pop q in do_merge m q a b ; done let merge (m: map) (a: node) (b: node) : unit = failwith_locked m "Region.Memory.merge" ; merge_all m [a;b] let merge_copy (m: map) ~(l: node) ~(r: node) : unit = let { clayout } = get m r in merge_all m [ l; Ufind.make m.store { empty with clayout } ] (* -------------------------------------------------------------------------- *) (* --- Offset --- *) (* -------------------------------------------------------------------------- *) let add_field (m:map) (r:node) (fd:fieldinfo) : node = let ci = fd.fcomp in if ci.cstruct then let size = Cil.bitsSizeOf (TComp(ci,[])) in let offset, length = Cil.fieldBitsOffset fd in let rf = new_chunk m () in let fields = Fields.singleton fd in let rc = new_range m ~fields ~size ~offset ~length rf in ignore @@ merge m r rc ; rf else r let add_index (m:map) (r:node) (ty:typ) (n:int) : node = let s = Cil.bitsSizeOf ty * n in let re = new_chunk m () in let rc = new_range m ~size:s ~offset:0 ~length:s re in ignore @@ merge m r rc ; re let add_points_to (m: map) (a: node) (b : node) = begin failwith_locked m "Region.Memory.points_to" ; ignore @@ merge m a @@ new_chunk m ~ptr:b () ; ignore @@ merge m b @@ new_chunk m ~pointed:a () ; end let add_value (m:map) (rv:node) (ty:typ) : node option = if Cil.isPointerType ty then begin failwith_locked m "Region.Memory.add_value" ; let rp = new_chunk m ~pointed:rv () in ignore @@ merge m rv @@ new_chunk m ~ptr:rp () ; Some rp end else None (* -------------------------------------------------------------------------- *) (* --- Access --- *) (* -------------------------------------------------------------------------- *) let sized (m:map) (a:node) (ty: typ) = let sr = sizeof (get m a).clayout in let size = Ranges.gcd sr (Cil.bitsSizeOf ty) in if sr <> size then ignore (merge m a (new_chunk m ~size ())) let read (m: map) (a: node) from = failwith_locked m "Region.Memory.read" ; let r = get m a in Ufind.set m.store a { r with creads = Access.Set.add from r.creads } ; sized m a (Access.typeof from) let write (m: map) (a: node) from = failwith_locked m "Region.Memory.write" ; let r = get m a in Ufind.set m.store a { r with cwrites = Access.Set.add from r.cwrites } ; sized m a (Access.typeof from) let shift (m: map) (a: node) from = failwith_locked m "Region.Memory.shift" ; let r = get m a in Ufind.set m.store a { r with cshifts = Access.Set.add from r.cshifts } ; sized m a (Access.typeof from) (* -------------------------------------------------------------------------- *) (* --- Lookup ---- *) (* -------------------------------------------------------------------------- *) let points_to m (r : node) : node option = let rg = Ufind.get m.store r in match rg.clayout with | Blob | Compound _ | Cell(_,None) -> None | Cell(_,Some r) -> Some (Ufind.find m.store r) let pointed_by m (r : node) = let rg = Ufind.get m.store r in rg.cpointed let cvar (m: map) (v: varinfo) : node = Ufind.find m.store @@ Vmap.find v m.roots let rec move (m: map) (r: node) (p: int) (s: int) = let c = Ufind.get m.store r in match c.clayout with | Blob | Cell _ -> r | Compound(s0,_,rgs) -> if s0 <= s then r else let rg = Ranges.find p rgs in move m rg.data (p - rg.offset) s let field (m: map) (r: node) (fd: fieldinfo) : node = let s = Cil.bitsSizeOf fd.ftype in let (p,_) = Cil.fieldBitsOffset fd in move m r p s let index (m : map) (r: node) (ty:typ) : node = move m r 0 (Cil.bitsSizeOf ty) let rec lval (m: map) (h,ofs) : node = offset m (lhost m h) (Cil.typeOfLhost h) ofs and lhost (m: map) (h: lhost) : node = match h with | Var x -> cvar m x | Mem e -> match exp m e with | Some r -> r | None -> raise Not_found and offset (m: map) (r: node) (ty: typ) (ofs: offset) : node = match ofs with | NoOffset -> Ufind.find m.store r | Field (fd, ofs) -> offset m (field m r fd) fd.ftype ofs | Index (_, ofs) -> let te = Cil.typeOf_array_elem ty in offset m (index m r te) te ofs and exp (m: map) (e: exp) : node option = match e.enode with | Const _ | SizeOf _ | SizeOfE _ | SizeOfStr _ | AlignOf _ | AlignOfE _ -> None | Lval lv -> points_to m @@ lval m lv | AddrOf lv | StartOf lv -> Some (lval m lv) | CastE(_, e) -> exp m e | BinOp((PlusPI|MinusPI),p,_,_) -> exp m p | UnOp (_, _, _) | BinOp (_, _, _, _) -> None (* -------------------------------------------------------------------------- *) let included map source target : bool = let exception Reached in try let q = Queue.create () in (* only marked nodes *) let push r = let r = node map r in if equal map target r then raise Reached else Queue.push r q in push source ; let visited = Hashtbl.create 0 in while true do let node = Queue.pop q in if equal map target node then raise Exit else let id = id node in if not @@ Hashtbl.mem visited id then begin Hashtbl.add visited id () ; List.iter push (parents map node) ; end done ; assert false with | Queue.Empty -> false | Reached -> true let separated map r1 r2 = not (included map r1 r2) && not (included map r2 r1) (* -------------------------------------------------------------------------- *) let reads (m : map) (r:node) = let node = Ufind.get m.store r in List.map Access.typeof @@ Access.Set.elements node.creads let writes (m : map) (r:node) = let node = Ufind.get m.store r in List.map Access.typeof @@ Access.Set.elements node.cwrites let shifts (m : map) (r:node) = let node = Ufind.get m.store r in List.map Access.typeof @@ Access.Set.elements node.cshifts
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>