package frama-c
Platform dedicated to the analysis of source code written in C
Install
Dune Dependency
Authors
-
MMichele Alberti
-
TThibaud Antignac
-
GGergö Barany
-
PPatrick Baudin
-
NNicolas Bellec
-
TThibaut Benjamin
-
AAllan Blanchard
-
LLionel Blatter
-
FFrançois Bobot
-
RRichard Bonichon
-
VVincent Botbol
-
QQuentin Bouillaguet
-
DDavid Bühler
-
ZZakaria Chihani
-
LLoïc Correnson
-
JJulien Crétin
-
PPascal Cuoq
-
ZZaynah Dargaye
-
BBasile Desloges
-
JJean-Christophe Filliâtre
-
PPhilippe Herrmann
-
MMaxime Jacquemin
-
FFlorent Kirchner
-
AAlexander Kogtenkov
-
RRemi Lazarini
-
TTristan Le Gall
-
KKilyan Le Gallic
-
JJean-Christophe Léchenet
-
MMatthieu Lemerre
-
DDara Ly
-
DDavid Maison
-
CClaude Marché
-
AAndré Maroneze
-
TThibault Martin
-
FFonenantsoa Maurica
-
MMelody Méaulle
-
BBenjamin Monate
-
YYannick Moy
-
PPierre Nigron
-
AAnne Pacalet
-
VValentin Perrelle
-
GGuillaume Petiot
-
DDario Pinto
-
VVirgile Prevosto
-
AArmand Puccetti
-
FFélix Ridoux
-
VVirgile Robles
-
JJan Rochel
-
MMuriel Roger
-
CCécile Ruet-Cros
-
JJulien Signoles
-
NNicolas Stouls
-
KKostyantyn Vorobyov
-
BBoris Yakobowski
Maintainers
Sources
frama-c-30.0-Zinc.tar.gz
sha256=3ac0f995261ec829a7bd042bf70fc29ac6379029eb9df30bcc044748eb4d2a56
doc/src/frama-c-alias.core/analysis.ml.html
Source file analysis.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
(**************************************************************************) (* *) (* This file is part of Frama-C. *) (* *) (* Copyright (C) 2007-2024 *) (* CEA (Commissariat à l'énergie atomique et aux énergies *) (* alternatives) *) (* *) (* you can redistribute it and/or modify it under the terms of the GNU *) (* Lesser General Public License as published by the Free Software *) (* Foundation, version 2.1. *) (* *) (* It is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* See the GNU Lesser General Public License version 2.1 *) (* for more details (enclosed in the file licenses/LGPLv2.1). *) (* *) (**************************************************************************) open Cil_types open Cil_datatype module Dataflow = Dataflow2 module type Table = sig type key type value val find: key -> value (** @raise Not_found if the key is not in the table. *) end module type InternalTable = sig include Table val add : key -> value -> unit val iter : (key -> value -> unit) -> unit end module Make_table (H: Hashtbl.S) (V: sig type t val size : int end) : InternalTable with type key = H.key and type value = V.t = struct type key = H.key type value = V.t let tbl = H.create V.size let add = H.replace tbl let find = H.find tbl let iter f = H.iter f tbl end (* In Function_table, value None means the function has no definition *) module Function_table = Make_table (Kernel_function.Hashtbl) (struct type t = Abstract_state.summary option let size = 7 end) let function_compute_ref = Extlib.mk_fun "function_compute" (* In Stmt_table, value None means abstract state = Bottom *) module Stmt_table = struct include Dataflow.StartData (struct type t = Abstract_state.t option let size = 7 end) type key = stmt type value = data end let warn_unsupported_explicit_pointer pp_obj obj loc = Options.warning ~source:(fst loc) ~wkey:Options.Warn.unsupported_address "unsupported feature: explicit pointer address: %a; analysis may be unsound" pp_obj obj let do_assignment (lv:lval) (exp:exp) (a:Abstract_state.t) : Abstract_state.t = try Abstract_state.assignment a lv exp with Simplified.Explicit_pointer_address loc -> warn_unsupported_explicit_pointer Printer.pp_exp exp loc; a let rec do_init (lv:lval) (init:init) state = match init with | SingleInit e -> Option.map (do_assignment lv e) state | CompoundInit (_, l) -> List.fold_left (fun state (o, init) -> do_init (Cil.addOffsetLval o lv) init state) state l let doFunction f = !function_compute_ref f let do_function_call (stmt:stmt) state (res : lval option) (ef : exp) (args: exp list) loc = let is_malloc (s:string) : bool = (s = "malloc") || (s = "calloc") (* todo : add all function names *) in match ef with | {enode=Lval (Var v, _);_} when is_malloc v.vname -> (* special case for malloc *) begin match (state, res) with | (None, _) -> None | (Some a, None) -> (Options.warning "Memory allocation not stored (ignored)"; Some a) | (Some a, Some lv) -> try Some (Abstract_state.assignment_x_allocate_y a lv) with Simplified.Explicit_pointer_address loc -> warn_unsupported_explicit_pointer Printer.pp_stmt stmt loc; Some a end | _ -> (* general case *) let get_function kf = try Function_table.find kf with Not_found -> doFunction kf in let summaries = match Kernel_function.get_called ef with | Some kf when Kernel_function.is_main kf -> [] | Some kf -> [get_function kf] | None -> (* dereference function pointer using the results of the points-to analysis *) begin match ef, Stmt_table.find stmt with | {enode = Lval lv; _}, Some state -> let targets = Abstract_state.find_vars lv state in Options.feedback ~level:3 "%a is an indirect function call to one of %a" Printer.pp_stmt stmt Abstract_state.VarSet.pretty targets; let kf_of_var {vname; _} = try Some (Globals.Functions.find_def_by_name vname) with Not_found -> None in let kfs = Seq.filter_map kf_of_var @@ Abstract_state.VarSet.to_seq targets in List.of_seq @@ Seq.map get_function kfs | _ -> Options.fatal "unsupported call to function pointer: %a" Exp.pretty ef end in let apply_summary state summary = match (state, summary) with | (None, _) -> None | (Some a, Some summary) -> Some (Abstract_state.call a res args summary) | (Some a, None) -> Options.warning ~wkey:Options.Warn.undefined_function ~once:true ~source:(fst loc) "function %a has no definition" Exp.pretty ef; Some a in List.fold_left apply_summary state summaries let do_cons_init (s:stmt) (v:varinfo) f arg t loc state = Cil.treat_constructor_as_func (do_function_call s state) v f arg t loc let analyse_instr (s:stmt) (i:instr) (a:Abstract_state.t option) : Abstract_state.t option = match i with | Set (lv,exp,_) -> Option.map (do_assignment lv exp) a | Local_init (v,AssignInit i,_) -> do_init (Var v, NoOffset) i a | Local_init (v,ConsInit (f,arg,t),loc) -> do_cons_init s v f arg t loc a | Code_annot _ -> a | Skip _ -> a | Call (res,ef,es,loc) -> do_function_call s a res ef es loc | Asm (_,_,_,loc) -> Options.warning ~source:(fst loc) ~wkey:Options.Warn.unsupported_asm "unsupported feature: assembler code; skipping"; a let pp_abstract_state_opt ?(debug=false) fmt v = match v with | None -> Format.fprintf fmt "⊥" | Some a -> Abstract_state.pretty ~debug fmt a let do_instr (s:stmt) (i:instr) (a:Abstract_state.t option) : Abstract_state.t option = Options.feedback ~level:3 "@[analysing instruction:@ %a@]" Printer.pp_stmt s; let result = analyse_instr s i a in Options.feedback ~level:3 "@[May-aliases after instruction@;<2>@[%a@]@;<2>are@;<2>@[%a@]@]" Printer.pp_stmt s (pp_abstract_state_opt ~debug:false) result; Options.debug ~level:3 "@[May-alias graph after instruction@;<2>@[%a@]@;<2>is@;<4>@[%a@]@]" Printer.pp_stmt s (pp_abstract_state_opt ~debug:true) result; result module T = struct let name = "alias" let debug = true (* TODO see options *) type t = Abstract_state.t option module StmtStartData = Stmt_table let copy x = x (* we only have persistant data *) let pretty fmt a = match a with | None -> Format.fprintf fmt "<No abstract state>" | Some a -> Abstract_state.pretty fmt a let computeFirstPredecessor _ a = a let combinePredecessors _stmt ~old state = match old, state with | _, None -> assert false | None, Some _ -> Some state (* [old] already included in [state] *) | Some old, Some new_ -> if Abstract_state.is_included new_ old then None else Some (Some (Abstract_state.union old new_)) let doInstr = do_instr let doGuard _ _ a = Dataflow.GUse a, Dataflow.GUse a let doStmt _ _ = Dataflow.SDefault let doEdge _ _ a = a end module F = Dataflow.Forwards (T) let do_stmt (a: Abstract_state.t) (s:stmt) : Abstract_state.t = match s.skind with | Instr i -> begin match do_instr s i (Some a) with | None -> Options.fatal "problem here" | Some a -> a end | _ -> a let analyse_function (kf:kernel_function) = if not @@ Kernel_function.has_definition kf then None else begin Options.feedback ~level:2 "analysing function: %a" Kernel_function.pretty kf; let first_stmt = try Kernel_function.find_first_stmt kf with Kernel_function.No_Statement -> assert false in T.StmtStartData.add first_stmt (Some Abstract_state.empty); F.compute [first_stmt]; let return_stmt = Kernel_function.find_return kf in try Stmt_table.find return_stmt with Not_found -> let source, _ = Kernel_function.get_location kf in Options.warning ~source ~wkey:Options.Warn.no_return_stmt "function %a does not return; analysis may be unsound" Kernel_function.pretty kf; Some Abstract_state.empty end let doFunction (kf:kernel_function) = let final_state = analyse_function kf in let level = if Kernel_function.is_main kf then 1 else 2 in final_state |> Option.iter (fun s -> Options.feedback ~level "@[May-aliases at the end of function %a:@ @[%a@]" Kernel_function.pretty kf (Abstract_state.pretty ~debug:false) s; Options.debug ~level "May-alias graph at the end of function %a:@;<4>@[%a@]" Kernel_function.pretty kf (Abstract_state.pretty ~debug:true)s; ); let result = match final_state with (* final state is None if kf has no definition *) | None -> None | Some fs -> let summary = Abstract_state.make_summary fs kf in Options.debug ~level:2 "Summary of function %a:@ @[%a@]" Kernel_function.pretty kf (Abstract_state.pretty_summary ~debug:false) summary; Some summary in if Kernel_function.is_main kf then begin match Options.Dot_output.get (), final_state with | "", _ -> () | _, None -> () | fname, Some final_state -> Abstract_state.print_dot fname final_state end; Function_table.add kf result; result let () = function_compute_ref := doFunction let make_summary (state:Abstract_state.t) (kf:kernel_function) = try begin match Function_table.find kf with | Some s -> (state, s) | None -> Options.fatal "not implemented" end with Not_found -> begin match doFunction kf with | Some s -> (state, s) | None -> Options.fatal "not implemented" end let computed_flag = ref false let is_computed () = !computed_flag let print_stmt_table_elt fmt k v :unit = let print_key = Stmt.pretty in let print_value fmt v = match v with | None -> Format.fprintf fmt "<Bot>" | Some a -> Abstract_state.pretty ~debug:(Options.DebugTable.get ()) fmt a in Format.fprintf fmt "Before statement %a :@[<hov 2> %a@]@." print_key k print_value v let print_function_table_elt fmt kf s : unit = let function_name = Kernel_function.get_name kf in match s with | None -> Options.debug "function %s -> None" function_name | Some s -> Format.fprintf fmt "Summary of function %s:@;<5 2>@[%a@]@." function_name (Abstract_state.pretty_summary ~debug:(Options.DebugTable.get ())) s let compute () = Ast.compute (); Globals.Functions.iter (fun kf -> ignore @@ doFunction kf); computed_flag := true; if Options.ShowStmtTable.get () then Stmt_table.iter (print_stmt_table_elt Format.std_formatter); if Options.ShowFunctionTable.get () then Function_table.iter (print_function_table_elt Format.std_formatter) let clear () = computed_flag := false; Stmt_table.clear () let get_state_before_stmt stmt = if is_computed () then try Stmt_table.find stmt with Not_found -> None else None let get_summary kf = if is_computed () then try Function_table.find kf with Not_found -> None else None
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>