package frama-c
Platform dedicated to the analysis of source code written in C
Install
Dune Dependency
Authors
-
MMichele Alberti
-
TThibaud Antignac
-
GGergö Barany
-
PPatrick Baudin
-
TThibaut Benjamin
-
AAllan Blanchard
-
LLionel Blatter
-
FFrançois Bobot
-
RRichard Bonichon
-
QQuentin Bouillaguet
-
DDavid Bühler
-
ZZakaria Chihani
-
LLoïc Correnson
-
JJulien Crétin
-
PPascal Cuoq
-
ZZaynah Dargaye
-
BBasile Desloges
-
JJean-Christophe Filliâtre
-
PPhilippe Herrmann
-
MMaxime Jacquemin
-
FFlorent Kirchner
-
AAlexander Kogtenkov
-
TTristan Le Gall
-
JJean-Christophe Léchenet
-
MMatthieu Lemerre
-
DDara Ly
-
DDavid Maison
-
CClaude Marché
-
AAndré Maroneze
-
TThibault Martin
-
FFonenantsoa Maurica
-
MMelody Méaulle
-
BBenjamin Monate
-
YYannick Moy
-
PPierre Nigron
-
AAnne Pacalet
-
VValentin Perrelle
-
GGuillaume Petiot
-
DDario Pinto
-
VVirgile Prevosto
-
AArmand Puccetti
-
FFélix Ridoux
-
VVirgile Robles
-
JJan Rochel
-
MMuriel Roger
-
JJulien Signoles
-
NNicolas Stouls
-
KKostyantyn Vorobyov
-
BBoris Yakobowski
Maintainers
Sources
frama-c-28.1-Nickel.tar.gz
sha256=0220bc743b7da2468ceb926f331edc7ddfaa7c603ba47962de3e33c8e1e3f593
doc/src/qed/logic.ml.html
Source file logic.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
(**************************************************************************) (* *) (* This file is part of WP plug-in of Frama-C. *) (* *) (* Copyright (C) 2007-2023 *) (* CEA (Commissariat a l'energie atomique et aux energies *) (* alternatives) *) (* *) (* you can redistribute it and/or modify it under the terms of the GNU *) (* Lesser General Public License as published by the Free Software *) (* Foundation, version 2.1. *) (* *) (* It is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* See the GNU Lesser General Public License version 2.1 *) (* for more details (enclosed in the file licenses/LGPLv2.1). *) (* *) (**************************************************************************) (* -------------------------------------------------------------------------- *) (** {1 First Order Logic Definition} *) (* -------------------------------------------------------------------------- *) type 'a element = | E_none | E_true | E_false | E_int of int | E_fun of 'a * 'a element list (** Algebraic properties for user operators. *) type 'a operator = { invertible : bool ; (* x+y = x+z <-> y=z (on both side) *) associative : bool ; (* x+(y+z)=(x+y)+z *) commutative : bool ; (* x+y=y+x *) idempotent : bool ; (* x+x = x *) neutral : 'a element ; absorbant : 'a element ; } (** Algebraic properties for functions. *) type 'a category = | Function (** logic function *) | Constructor (** [f xs = g ys] iff [f=g && xi=yi] *) | Injection (** [f xs = f ys] iff [xi=yi] *) | Operator of 'a operator (** Quantifiers and Binders *) type binder = | Forall | Exists | Lambda type ('f,'a) datatype = | Prop | Bool | Int | Real | Tvar of int (** ranges over [1..arity] *) | Array of ('f,'a) datatype * ('f,'a) datatype | Record of ('f * ('f,'a) datatype) list | Data of 'a * ('f,'a) datatype list type sort = | Sprop | Sbool | Sint | Sreal | Sdata | Sarray of sort type maybe = Yes | No | Maybe (** Ordered, hash-able and pretty-printable symbols *) module type Symbol = sig type t val hash : t -> int val equal : t -> t -> bool val compare : t -> t -> int val pretty : Format.formatter -> t -> unit val debug : t -> string (** for printing during debug *) end (** {2 Abstract Data Types} *) module type Data = sig include Symbol val basename : t -> string (** hint for generating fresh names *) end (** {2 Field for Record Types} *) module type Field = sig include Symbol val sort : t -> sort (** of field *) end (** {2 User Defined Functions} *) module type Function = sig include Symbol val category : t -> t category val params : t -> sort list (** params ; exceeding params use Sdata *) val sort : t -> sort (** result *) end (** {2 Bound Variables} *) module type Variable = sig include Symbol val sort : t -> sort val basename : t -> string val dummy : t end (** {2 Representation of Patterns, Functions and Terms} *) type ('f,'a) funtype = { result : ('f,'a) datatype ; (** Type of returned value *) params : ('f,'a) datatype list ; (** Type of parameters *) } (** representation of terms. type arguments are the following: - 'z: representation of integral constants - 'f: representation of fields - 'a: representation of abstract data types - 'd: representation of functions - 'x: representation of free variables - 'b: representation of bound term (phantom type equal to 'e) - 'e: sub-expression *) type ('f,'a,'d,'x,'b,'e) term_repr = | True | False | Kint of Z.t | Kreal of Q.t | Times of Z.t * 'e (** mult: k1 * e2 *) | Add of 'e list (** add: e11 + ... + e1n *) | Mul of 'e list (** mult: e11 * ... * e1n *) | Div of 'e * 'e | Mod of 'e * 'e | Eq of 'e * 'e | Neq of 'e * 'e | Leq of 'e * 'e | Lt of 'e * 'e | Aget of 'e * 'e (** access: array1[idx2] *) | Aset of 'e * 'e * 'e (** update: array1[idx2 -> elem3] *) | Acst of ('f,'a) datatype * 'e (** constant array [ type -> value ] *) | Rget of 'e * 'f | Rdef of ('f * 'e) list | And of 'e list (** and: e11 && ... && e1n *) | Or of 'e list (** or: e11 || ... || e1n *) | Not of 'e | Imply of 'e list * 'e (** imply: (e11 && ... && e1n) ==> e2 *) | If of 'e * 'e * 'e (** ite: if c1 then e2 else e3 *) | Fun of 'd * 'e list (** Complete call (no partial app.) *) | Fvar of 'x | Bvar of int * ('f,'a) datatype | Apply of 'e * 'e list (** High-Order application (Cf. binder) *) | Bind of binder * ('f,'a) datatype * 'b type 'a affine = Z.t * (Z.t * 'a) list (** {2 Formulae} *) module type Term = sig module ADT : Data module Field : Field module Fun : Function module Var : Variable type term type lc_term (** Loosely closed terms. *) module Term : Symbol with type t = term (** Non-structural, machine dependent, but fast comparison and efficient merges *) module Tset : Idxset.S with type elt = term (** Non-structural, machine dependent, but fast comparison and efficient merges *) module Tmap : Idxmap.S with type key = term (** Structuraly ordered, but less efficient access and non-linear merges *) module STset : Set.S with type elt = term (** Structuraly ordered, but less efficient access and non-linear merges *) module STmap : Map.S with type key = term (** {3 Variables} *) type var = Var.t type tau = (Field.t,ADT.t) datatype module Tau : Data with type t = tau module Vars : Idxset.S with type elt = var module Vmap : Idxmap.S with type key = var type pool val pool : ?copy:pool -> unit -> pool val add_var : pool -> var -> unit val add_vars : pool -> Vars.t -> unit val add_term : pool -> term -> unit val fresh : pool -> ?basename:string -> tau -> var val alpha : pool -> var -> var val tau_of_var : var -> tau val sort_of_var : var -> sort val base_of_var : var -> string (** {3 Terms} *) type 'a expression = (Field.t,ADT.t,Fun.t,var,lc_term,'a) term_repr type repr = term expression type record = (Field.t * term) list val decide : term -> bool (** Return [true] if and only the term is [e_true]. Constant time. *) val is_true : term -> maybe (** Constant time. *) val is_false : term -> maybe (** Constant time. *) val is_prop : term -> bool (** Boolean or Property *) val is_int : term -> bool (** Integer sort *) val is_real : term -> bool (** Real sort *) val is_arith : term -> bool (** Integer or Real sort *) val are_equal : term -> term -> maybe (** Computes equality *) val eval_eq : term -> term -> bool (** Same as [are_equal] is [Yes] *) val eval_neq : term -> term -> bool (** Same as [are_equal] is [No] *) val eval_lt : term -> term -> bool (** Same as [e_lt] is [e_true] *) val eval_leq : term -> term -> bool (** Same as [e_leq] is [e_true] *) val repr : term -> repr (** Constant time *) val sort : term -> sort (** Constant time *) val vars : term -> Vars.t (** Constant time *) (** Path-positioning access This part of the API is DEPRECATED *) type path = int list (** position of a subterm in a term. *) (** {3 Basic constructors} *) val e_true : term val e_false : term val e_bool : bool -> term val e_literal : bool -> term -> term val e_int : int -> term val e_float : float -> term val e_zint : Z.t -> term val e_real : Q.t -> term val e_var : var -> term val e_opp : term -> term val e_times : Z.t -> term -> term val e_sum : term list -> term val e_prod : term list -> term val e_add : term -> term -> term val e_sub : term -> term -> term val e_mul : term -> term -> term val e_div : term -> term -> term val e_mod : term -> term -> term val e_eq : term -> term -> term val e_neq : term -> term -> term val e_leq : term -> term -> term val e_lt : term -> term -> term val e_imply : term list -> term -> term val e_equiv : term -> term -> term val e_and : term list -> term val e_or : term list -> term val e_not : term -> term val e_if : term -> term -> term -> term val e_const : tau -> term -> term val e_get : term -> term -> term val e_set : term -> term -> term -> term val e_getfield : term -> Field.t -> term val e_record : record -> term val e_fun : ?result:tau -> Fun.t -> term list -> term val e_repr : ?result:tau -> repr -> term (** @raise Invalid_argument on [Bvar] and [Bind] *) (** {3 Quantifiers and Binding} *) val e_forall : var list -> term -> term val e_exists : var list -> term -> term val e_lambda : var list -> term -> term val e_close_forall : term -> term val e_close_exists : term -> term val e_close_lambda : term -> term val e_apply : term -> term list -> term val e_bind : binder -> var -> term -> term (** Bind the given variable if it appears free in the term, or return the term unchanged. *) val e_unbind : var -> lc_term -> term (** Opens the top-most bound variable with a (fresh) variable. Can be only applied on top-most lc-term from `Bind(_,_,_)`, thanks to typing. *) val e_open : pool:pool -> ?forall:bool -> ?exists:bool -> ?lambda:bool -> term -> (binder * var) list * term (** Open all the specified binders (flags default to `true`, so all consecutive top most binders are opened by default). The pool must contain all free variables of the term. *) val e_close : (binder * var) list -> term -> term (** Closes all specified binders *) (** {3 Generalized Substitutions} *) type sigma val sigma : ?pool:pool -> unit -> sigma module Subst : sig type t = sigma val create : ?pool:pool -> unit -> t val copy : sigma -> sigma val fresh : t -> tau -> var val find : t -> term -> term val filter : t -> term -> bool val add : t -> term -> term -> unit (** Must bind lc-closed terms, or raise Invalid_argument *) val add_fun : t -> (term -> term) -> unit (** Must bind lc-closed terms, or raise Invalid_argument *) val add_filter : t -> (term -> bool) -> unit (** Only modifies terms that {i pass} the filter. *) val add_var : t -> var -> unit (** To the pool *) val add_vars : t -> Vars.t -> unit (** To the pool *) val add_term : t -> term -> unit (** To the pool *) end val e_subst : sigma -> term -> term (** The environment sigma must be prepared with the desired substitution. Its pool of fresh variables must covers the entire domain and co-domain of the substitution, and the transformed values. *) val e_subst_var : var -> term -> term -> term (** {3 Locally Nameless Representation} These functions can be {i unsafe} because they might expose terms that contains non-bound b-vars. Never use such terms to build substitutions (sigma). *) val lc_vars : term -> Bvars.t val lc_closed : term -> bool (** All bound variables are under their binder *) val lc_repr : lc_term -> term (** Calling this function is {i unsafe} unless the term is lc_closed *) val lc_iter : (term -> unit) -> term -> unit (** Similar to [f_iter] but exposes non-closed sub-terms of `Bind` as regular [term] values instead of [lc_term] ones. *) (** {3 Iteration Scheme} *) val f_map : ?pool:pool -> ?forall:bool -> ?exists:bool -> ?lambda:bool -> (term -> term) -> term -> term (** Pass and open binders, maps its direct sub-terms and then close then opened binders Raises Invalid_argument in case of a bind-term without pool. The optional pool must contain all free variables of the term. *) val f_iter : ?pool:pool -> ?forall:bool -> ?exists:bool -> ?lambda:bool -> (term -> unit) -> term -> unit (** Iterates over its direct sub-terms (pass and open binders) Raises Invalid_argument in case of a bind-term without pool. The optional pool must contain all free variables of the term. *) (** {3 Partial Typing} *) (** Try to extract a type of term. Parameterized by optional extractors for field and functions. Extractors may raise [Not_found] ; however, they are only used when the provided kinds for fields and functions are not precise enough. @param field type of a field value @param record type of the record containing a field @param call type of the values returned by the function @raise Not_found if no type is found. *) val typeof : ?field:(Field.t -> tau) -> ?record:(Field.t -> tau) -> ?call:(Fun.t -> tau option list -> tau) -> term -> tau (** {3 Support for Builtins} *) val set_builtin : ?force: bool -> Fun.t -> (term list -> term) -> unit (** Register a simplifier for function [f]. The computation code may raise [Not_found], in which case the symbol is not interpreted. If [f] is an operator with algebraic rules (see type [operator]), the children are normalized {i before} builtin call. Highest priority is [0]. Recursive calls must be performed on strictly smaller terms. The [force] parameters defaults to [false], when it is [true], if there exist another builtin, it is replaced with the new one. Use with care. @before 22.0-Titanium the optional [force] parameter does not exist *) val set_builtin' : ?force: bool -> Fun.t -> (term list -> tau option -> term) -> unit val set_builtin_map : ?force: bool -> Fun.t -> (term list -> term list) -> unit (** Register a builtin for rewriting [f a1..an] into [f b1..bm]. This is short cut for [set_builtin], where the head application of [f] avoids to run into an infinite loop. The [force] parameters defaults to [false], when it is [true], if there exist another builtin, it is replaced with the new one. Use with care. @before 22.0-Titanium the optional [force] parameter does not exist *) val set_builtin_get : ?force: bool -> Fun.t -> (term list -> term list -> term) -> unit (** [set_builtin_get f rewrite] register a builtin for rewriting [(f a1..an)[k1]..[km]] into [rewrite (a1..an) (k1..km)]. The [force] parameters defaults to [false], when it is [true], if there exist another builtin, it is replaced with the new one. Use with care. @before 22.0-Titanium the optional [force] parameter does not exist @before 28.0-Nickel one-dimensional access only *) val set_builtin_field : ?force: bool -> Fun.t -> Field.t -> (term list -> term) -> unit (** Register a builtin for simplifying [(f e…).fd] expressions. {b Must} only use recursive comparison for strictly smaller terms. The [force] parameters defaults to [false], when it is [true], if there exist another builtin, it is replaced with the new one. Use with care. @since 28.0-Nickel *) val set_builtin_eq : ?force: bool -> Fun.t -> (term -> term -> term) -> unit (** Register a builtin equality for comparing any term with head-symbol. {b Must} only use recursive comparison for strictly smaller terms. The recognized term with head function symbol is passed first. Highest priority is [0]. Recursive calls must be performed on strictly smaller terms. The [force] parameters defaults to [false], when it is [true], if there exist another builtin, it is replaced with the new one. Use with care. @before 22.0-Titanium the optional [force] parameter does not exist *) val set_builtin_leq : ?force: bool -> Fun.t -> (term -> term -> term) -> unit (** Register a builtin for comparing any term with head-symbol. {b Must} only use recursive comparison for strictly smaller terms. The recognized term with head function symbol can be on both sides. Strict comparison is automatically derived from the non-strict one. Highest priority is [0]. Recursive calls must be performed on strictly smaller terms. The [force] parameters defaults to [false], when it is [true], if there exist another builtin, it is replaced with the new one. Use with care. @before 22.0-Titanium the optional [force] parameter does not exist *) (** {3 Specific Patterns} *) val consequence : term -> term -> term (** Knowing [h], [consequence h a] returns [b] such that [h -> (a<->b)] *) val literal : term -> bool * term val affine : term -> term affine val record_with : record -> (term * record) option (** {3 Symbol} *) type t = term val id : t -> int (** unique identifier (stored in t) *) val hash : t -> int (** constant access (stored in t) *) val equal : t -> t -> bool (** physical equality *) val compare : t -> t -> int (** atoms are lower than complex terms ; otherwise, sorted by id. *) val pretty : Format.formatter -> t -> unit val weigth : t -> int (** Informal size *) (** {3 Utilities} *) val is_closed : t -> bool (** No bound variables *) val is_simple : t -> bool (** Constants, variables, functions of arity 0 *) val is_atomic : t -> bool (** Constants and variables *) val is_primitive : t -> bool (** Constants only *) val is_neutral : Fun.t -> t -> bool val is_absorbant : Fun.t -> t -> bool val size : t -> int val basename : t -> string val debug : Format.formatter -> t -> unit val pp_id : Format.formatter -> t -> unit (** internal id *) val pp_rid : Format.formatter -> t -> unit (** head symbol with children id's *) val pp_repr : Format.formatter -> repr -> unit (** head symbol with children id's *) (** {2 Shared sub-terms} *) val is_subterm : term -> term -> bool (** Occurrence check. [is_subterm a b] returns [true] iff [a] is a subterm of [b]. Optimized {i wrt} shared subterms, term size, and term variables. *) (** Computes the sub-terms that appear several times. [shared marked linked e] returns the shared subterms of [e]. The list of shared subterms is consistent with order of definition: each trailing terms only depend on heading ones. The traversal is controlled by two optional arguments: - [shared] those terms are not traversed (considered as atomic, default to none) - [shareable] those terms ([is_simple] excepted) that can be shared (default to all) - [subterms] those sub-terms a term to be considered during traversal ([lc_iter] by default) *) (** Low-level shared primitives: [shared] is actually a combination of building marks, marking terms, and extracting definitions: {[ let share ?... e = let m = marks ?... () in List.iter (mark m) es ; defs m ]} *) type marks (** Create a marking accumulator. Same defaults than [shared]. *) val marks : ?shared:(term -> bool) -> ?shareable:(term -> bool) -> ?subterms:((term -> unit) -> term -> unit) -> unit -> marks (** Mark a term to be printed *) val mark : marks -> term -> unit (** Mark a term to be explicitly shared *) (** Returns a list of terms to be shared among all {i shared} or {i marked} subterms. The order of terms is consistent with definition order: head terms might be used in tail ones. *) val defs : marks -> term list end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>