package frama-c
Platform dedicated to the analysis of source code written in C
Install
Dune Dependency
Authors
-
MMichele Alberti
-
TThibaud Antignac
-
GGergö Barany
-
PPatrick Baudin
-
TThibaut Benjamin
-
AAllan Blanchard
-
LLionel Blatter
-
FFrançois Bobot
-
RRichard Bonichon
-
QQuentin Bouillaguet
-
DDavid Bühler
-
ZZakaria Chihani
-
LLoïc Correnson
-
JJulien Crétin
-
PPascal Cuoq
-
ZZaynah Dargaye
-
BBasile Desloges
-
JJean-Christophe Filliâtre
-
PPhilippe Herrmann
-
MMaxime Jacquemin
-
FFlorent Kirchner
-
AAlexander Kogtenkov
-
TTristan Le Gall
-
JJean-Christophe Léchenet
-
MMatthieu Lemerre
-
DDara Ly
-
DDavid Maison
-
CClaude Marché
-
AAndré Maroneze
-
TThibault Martin
-
FFonenantsoa Maurica
-
MMelody Méaulle
-
BBenjamin Monate
-
YYannick Moy
-
PPierre Nigron
-
AAnne Pacalet
-
VValentin Perrelle
-
GGuillaume Petiot
-
DDario Pinto
-
VVirgile Prevosto
-
AArmand Puccetti
-
FFélix Ridoux
-
VVirgile Robles
-
JJan Rochel
-
MMuriel Roger
-
JJulien Signoles
-
NNicolas Stouls
-
KKostyantyn Vorobyov
-
BBoris Yakobowski
Maintainers
Sources
frama-c-28.1-Nickel.tar.gz
sha256=0220bc743b7da2468ceb926f331edc7ddfaa7c603ba47962de3e33c8e1e3f593
doc/src/frama-c-impact.core/compute_impact.ml.html
Source file compute_impact.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
(**************************************************************************) (* *) (* This file is part of Frama-C. *) (* *) (* Copyright (C) 2007-2023 *) (* CEA (Commissariat à l'énergie atomique et aux énergies *) (* alternatives) *) (* *) (* you can redistribute it and/or modify it under the terms of the GNU *) (* Lesser General Public License as published by the Free Software *) (* Foundation, version 2.1. *) (* *) (* It is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* See the GNU Lesser General Public License version 2.1 *) (* for more details (enclosed in the file licenses/LGPLv2.1). *) (* *) (**************************************************************************) open Cil_types open Cil_datatype open Pdg_types open PdgIndex open Reason_graph (** Computation of the PDG nodes that are impacted by the "execution" of some initial PDG nodes. This is implemented as a forward inter-procedural analysis on top of the PDG plugin. *) module NS = Pdg_aux.NS type nodes = NS.t module NM = PdgTypes.Node.Map module KFS = Kernel_function.Hptset module KFM = Kernel_function.Map let kfmns_find_default key m = try KFM.find key m with Not_found -> NS.empty (* Data associated to PDG nodes that are impacted, and that have not been treated yet. *) type todo = { kf: kernel_function (* kernel_function in which the node can be found *); pdg: PdgTypes.Pdg.t (* pdg of this kernel_function *); zone: Locations.Zone.t (* fragment of the node that is impacted *); init: bool (* is this node in the worklist only because it is part of the nodes initially selected as source? The initial nodes are not in the final result, but must be present in intermediate results for technical reasons *); } (* Nodes that are impacted, and that will have to be considered at some point.*) and todolist = todo NM.t (* All nodes that have been found to be impacted. Presented as a map from Kf, because this information cannot be recovered from the PDG nodes. (Also, this speeds up some operations *) type result = nodes KFM.t (* Modelization of a call. The first function (the caller) calls the second (the callee) at the given statement. *) module KfKfCall = Datatype.Triple_with_collections (Kernel_function)(Kernel_function)(Cil_datatype.Stmt) (struct let module_name = "Impact.Compute.KfKfCall" end) (** Worklist maintained by the plugin to build its results *) type worklist = { mutable todo: todolist (** nodes that are impacted, but that have not been propagated yet. *); mutable result: result (** impacted nodes. This field only grows. An invariant is that nodes in [todolist] are not already in [result], except with differing [init] fields. *); mutable downward_calls: Pdg_aux.call_interface KfKfCall.Map.t (** calls for which an input may be impacted. If so, we must compute the impact within the called function. For each call, we associate to each PDG input of the callee the nodes that define the input in the caller. The contents of this field grow. *); mutable callers: KFS.t (** all the callers of the functions in which the initial nodes are located. Constant after initialization, used to initialize [upward_calls] below. *); mutable upward_calls: Pdg_aux.call_interface Lazy.t KfKfCall.Map.t (** calls for which an output may be impacted. If so, we must compute the impact after the call in the caller (which is part of the [callers] field by construction). For each output node at the call point in the caller, associate all the nodes of the callee that define this output. The field is lazy: if the impact "dies" before before reaching the call, we may avoid a costly computation. Constant once initialized. *); mutable fun_changed_downward: KFS.t (** Functions in which a new pdg node has been found since the last iteration. The impact on downward calls with those callers will have to be computed again. *); mutable fun_changed_upward: KFS.t (** Functions in which a new pdg node has been found. The impact on upward calls to those callees will have to be computed again. *); skip: Locations.Zone.t (** Locations for which the impact is dismissed. Nodes that involve only those zones are skipped. Constant after initialization *); mutable initial_nodes: nodes KFM.t (** Nodes that are part of the initial impact query, or directly equivalent to those (corresponding nodes in a caller). *); mutable unimpacted_initial: nodes KFM.t (** Initial nodes (as defined above) that are not "self-impacting" so far. Those nodes will not be part of the final results. *); mutable reason: reason_graph (** Reasons why nodes in [result] are marked as impacted. *); compute_reason: bool (** compute the field [reason]; may be costly *); } (** Extract the node of the kf that are only part of the initial impact *) let unimpacted_initial_by_kf wl kf = kfmns_find_default kf wl.unimpacted_initial (** Extract the current results for a given function *) let result_by_kf wl kf = kfmns_find_default kf wl.result let result_to_node_origin (r: result) : Reason_graph.nodes_origin = KFM.fold (fun kf ns acc -> NS.fold (fun (n, _) acc -> PdgTypes.Node.Map.add n kf acc) ns acc) r PdgTypes.Node.Map.empty let initial_to_node_set (init: nodes KFM.t) : NS.t = KFM.fold (fun _ -> NS.union) init NS.empty (* -------------------------------------------------------------------------- *) (* --- Adding nodes to the worklist, or to the results --- *) (* -------------------------------------------------------------------------- *) (** Mark that [n] comes from an indirect impact, ie. remove it from the set of initial nodes that are not impacted. *) let remove_from_unimpacted_initial wl kf (n, z) = let unimpacted = unimpacted_initial_by_kf wl kf in if NS.mem' (n, z) unimpacted then begin Options.debug ~level:2 "node of initial impact %a is indirectly impacted" PdgTypes.Node.pretty n; wl.unimpacted_initial <- KFM.add kf (NS.remove n unimpacted) wl.unimpacted_initial; end ;; (** Add a node to the sets of impacted nodes. Update the various fields of the worklist that need it. [init] indicates that the node is added only because it belongs to the set of initial nodes. *) let add_to_result wl n kf init = if init = false then remove_from_unimpacted_initial wl kf n; (* if useful, mark that a new node was found in [kf] *) if not (KFS.mem kf wl.fun_changed_downward) then (* wl.fun_changed_upward is not updated, because we merge wl.fun_changed_downward with wl.fun_changed_upward when needed *) wl.fun_changed_downward <- KFS.add kf wl.fun_changed_downward; let set = result_by_kf wl kf in let s' = NS.add' n set in wl.result <- KFM.add kf s' wl.result (** return [true] if the location in [n] is contained in [skip], in which case the node should be skipped entirely *) let node_to_skip skip n = match Pdg.Api.node_key n with | Key.SigKey (Signature.In (Signature.InImpl z)) | Key.SigKey (Signature.Out (Signature.OutLoc z)) | Key.SigCallKey (_, Signature.In (Signature.InImpl z)) | Key.SigCallKey (_, Signature.Out (Signature.OutLoc z)) -> Locations.Zone.equal Locations.Zone.bottom (Locations.Zone.diff z skip) | _ -> false (** Auxiliary function, used to refuse some nodes that should not go in the results *) let filter wl (n, z) = not (Locations.Zone.is_bottom z) && match Pdg.Api.node_key n with | Key.SigKey (Signature.In Signature.InCtrl) -> false (* do not consider node [InCtrl]. YYY: find when this may happen *) | Key.VarDecl _ -> false (* do not consider variable declarations. This is probably impossible in a forward analysis anyway. *) | _ -> if node_to_skip wl.skip n then ( Options.debug ~once:true ~level:2 "skipping node %a as required" PdgTypes.Node.pretty n; false) else true (** Add a new edge in the graph explaining the results *) let add_to_reason wl ~nsrc ~ndst rt = if wl.compute_reason && filter wl ndst then let reason = Reason.Set.add (fst nsrc, fst ndst, rt) wl.reason in Options.debug ~level:2 "@[<hov 4>Adding %a@ because of@ %a/%a@]" Pdg_aux.pretty_node ndst Reason_graph.ReasonType.pretty rt Pdg_aux.pretty_node nsrc; wl.reason <- reason ;; (** Add some nodes to the [todo] field of the worklist, while enforcing some invariants. Some kind of pdg nodes must not appear in it, plus the nodes must not be in result already. *) let add_to_do_aux ~init wl kf pdg (pn, zone as n) = if filter wl n then let pp fmt = Format.fprintf fmt "node %a (in %a)" Pdg_aux.pretty_node n Kernel_function.pretty kf; in let add () = let todo = { kf; pdg; init; zone } in wl.todo <- NM.add pn todo wl.todo in try let cur = NM.find pn wl.todo in (* Node is already in the todo list. Check init field and zone *) if (cur.init = true && init = false) || (not (Locations.Zone.is_included zone cur.zone)) then begin (* overwrite the existing binding in the todo list *) Options.debug ~level:2 "todo list node %t is now init=false" pp; add (); end with Not_found -> (* Node is not in todo list. Check if it is already in results *) if NS.mem' n (result_by_kf wl kf) then begin (* Already in results. Check if [init] flag matches. *) if init = false && NS.mem' n (unimpacted_initial_by_kf wl kf) then begin (* TODO: check above *) (* Node was already there with [init=true] or with smaller . Compute impact again with [init=false] *) Options.debug ~level:2 "adding again node %t, with init=false" pp; add () end end else begin (* General case *) Options.debug ~level:2 "adding %t" pp; add () end ;; (** Build the initial value of the [todo] field, from a list of initial nodes *) let initial_to_do_list wl kf pdg nodes = List.iter (fun n -> add_to_do_aux ~init:true wl kf pdg n) nodes (** Mark a new node as impacted, and simultaneously mark that it is equivalent to nodes that are all initial nodes *) let add_to_do_part_of_initial wl kf pdg n = add_to_do_aux ~init:true wl kf pdg n; let initial_nodes = kfmns_find_default kf wl.initial_nodes in if not (NS.mem' n initial_nodes) then begin (* n has never been marked as initial. Mark it in both initial and unimpacted_initial fields (it may leave the second later) *) Options.debug ~level:2 "node %a is a part of the initial impact" Pdg_aux.pretty_node n; let unimpacted_kf = unimpacted_initial_by_kf wl kf in let new_unimpacted = NS.add' n unimpacted_kf in let new_initial = NS.add' n initial_nodes in wl.unimpacted_initial <- KFM.add kf new_unimpacted wl.unimpacted_initial; wl.initial_nodes <- KFM.add kf new_initial wl.initial_nodes; end ;; (** From now on, most functions will pass [init = false] to [add_to_do_aux]. We define an alias instead *) let add_to_do = add_to_do_aux ~init:false (* -------------------------------------------------------------------------- *) (* --- Basic propagation --- *) (* -------------------------------------------------------------------------- *) (** Purely intra-procedural propagation from one impacted node. Just follow the PDG once, for all kind of dependencies. *) let intraprocedural_one_node wl (node, z as nsrc) kf pdg = Options.debug ~level:3 "intraprocedural part"; PdgTypes.Pdg.fold_direct_codpds pdg (fun () (dpd, zopt) n -> (* Filter edge according to the subzone of the node that is impacted *) let follow = match zopt with | None -> true | Some z' -> Locations.Zone.intersects z z' in if follow then begin (* YYY: is it possible to compute a refinement on this zone? *) let ndst = (n, Locations.Zone.top) in add_to_reason wl ~nsrc ~ndst (Intraprocedural dpd); add_to_do wl kf pdg ndst; end ) () node; Options.debug ~level:3 "intraprocedural part done" (* -------------------------------------------------------------------------- *) (* --- Downward call propagation --- *) (* -------------------------------------------------------------------------- *) (** Add a downward call to the worklist the first time it is encountered. This functions implicitly caches the mapping from the PDG nodes of the caller to the ones of the callee, as this information is expensive to compute *) let add_downward_call wl (caller_kf, pdg) (called_kf, called_pdg) stmt = Options.debug ~level:3 "downward part"; if not (KfKfCall.Map.mem (caller_kf, called_kf, stmt) wl.downward_calls) then let callee = (called_kf, called_pdg) in let deps = Pdg_aux.all_call_input_nodes ~caller:pdg ~callee stmt in wl.downward_calls <- KfKfCall.Map.add (caller_kf, called_kf, stmt) deps wl.downward_calls; Options.debug ~level:3 "downard part done" else Options.debug ~level:3 "empty downward part" ;; (** Propagate impact from node [node] if it corresponds to a call statement. This is a partially inter-procedural propagation: some nodes of the callee are directly in the worklist, and the call is registered in the field [downward_calls]. *) let downward_one_call_node wl (pnode, _ as node) caller_kf pdg = match Pdg.Api.node_key pnode with | Key.SigKey (Signature.In Signature.InCtrl) (* never in the worklist *) | Key.VarDecl _ (* never in the worklist *) | Key.CallStmt _ (* pdg returns a SigCallKey instead *) -> assert false | Key.SigKey _ | Key.Stmt _ | Key.Label _ -> (* Only intraprocedural part needed, done by [intraprocedural_one_node] *) () | Key.SigCallKey(id, key) -> let stmt = Key.call_from_id id in let called_kfs = Eva.Results.callee stmt in List.iter (fun called_kf -> let called_pdg = Pdg.Api.get called_kf in let nodes_callee, pdg_ok = Options.debug ~level:3 "%a: considering call to %a" Pdg_aux.pretty_node node Kernel_function.pretty called_kf; try (match key with | Signature.In (Signature.InNum n) -> (try [Pdg.Api.find_input_node called_pdg n, Locations.Zone.top] with Not_found -> []) | Signature.In Signature.InCtrl -> (try [Pdg.Api.find_entry_point_node called_pdg, Locations.Zone.top] with Not_found -> []) | Signature.In (Signature.InImpl _) -> assert false | Signature.Out _ -> [] ), true with | Pdg.Api.Top -> Options.warning "no precise pdg for function %s. \n\ Ignoring this function in the analysis (potentially incorrect results)." (Kernel_function.get_name called_kf); [], false | Pdg.Api.Bottom -> (*Function that fails or never returns immediately *) [], false | Not_found -> assert false in Options.debug ~level:4 "Direct call nodes %a" (Pretty_utils.pp_list ~sep:" " Pdg_aux.pretty_node) nodes_callee; List.iter (fun n -> add_to_reason wl ~nsrc:node ~ndst:n InterproceduralDownward; add_to_do wl called_kf called_pdg n ) nodes_callee; if pdg_ok then add_downward_call wl (caller_kf, pdg) (called_kf, called_pdg) stmt ) called_kfs; Options.debug ~level:3 "propagation of call %a done" Pdg_aux.pretty_node node (* TODO: document *) let zone_restrict set_src_impact = let aux (_, z) acc = Locations.Zone.join z acc in NS.fold aux set_src_impact Locations.Zone.bottom (** Propagate impact for one call registered in [downward_calls]. If the set of impacted nodes in the caller intersect the nodes [deps] that define the input [node] of the call, add [node] to the impacted nodes. *) let downward_one_call_inputs wl kf_caller kf_callee (node, deps) = let results_for_kf_caller = result_by_kf wl kf_caller in if NS.intersects deps results_for_kf_caller then let inter = NS.inter deps results_for_kf_caller in let z = zone_restrict inter in let node' = (node, z) in NS.iter' (fun nsrc -> add_to_reason wl ~nsrc ~ndst:node' InterproceduralDownward) inter; add_to_do wl kf_callee (Pdg.Api.get kf_callee) node'; ;; (** Propagate impact for all calls registered in [downward_calls]. For each caller, if new impacted nodes have been found, try to propagate the call. Then, zero out the list of functions that must be considered again. *) let downward_calls_inputs wl = let aux (kf_caller, kf_callee, _stmt) ldeps = if KFS.mem kf_caller wl.fun_changed_downward then begin Options.debug ~level:3 "Inputs from call %a -> %a" Kernel_function.pretty kf_caller Kernel_function.pretty kf_callee; List.iter (downward_one_call_inputs wl kf_caller kf_callee) ldeps; Options.debug ~level:3 "call done" end in KfKfCall.Map.iter aux wl.downward_calls; wl.fun_changed_downward <- KFS.empty (* -------------------------------------------------------------------------- *) (* --- Upward call propagation --- *) (* -------------------------------------------------------------------------- *) (** Fill out the field [upward_calls] of the worklist. This is done by visiting (transitively) all the callers of functions in [kfs], and registering all the calls found this way. The callers found are added to the field [callers]. For each find, we find the nodes of the callee that define a given output in the caller using [Pdg_aux.all_call_out_nodes]. [kfs] must be all the functions containing the initial nodes of the analysis. *) let all_upward_callers wl kfs = let aux_call (caller, pdg_caller) (callee, pdg_callee) callsite = Options.debug ~level:2 ~source:(fst (Cil_datatype.Stmt.loc callsite)) "Found call %a -> %a" Kernel_function.pretty caller Kernel_function.pretty callee; let nodes = lazy (Pdg_aux.all_call_out_nodes ~callee:pdg_callee ~caller:pdg_caller callsite) in wl.upward_calls <- KfKfCall.Map.add (caller, callee, callsite) nodes wl.upward_calls in let rec fixpoint todo = try let kf = KFS.choose todo in let todo = KFS.remove kf todo in let todo = if not (KFS.mem kf wl.callers) then ( Options.debug "Found caller %a" Kernel_function.pretty kf; let pdg_kf = Pdg.Api.get kf in List.fold_left (fun todo (caller, callsites) -> let pdg_caller = Pdg.Api.get caller in List.iter (aux_call (caller, pdg_caller) (kf, pdg_kf)) callsites; KFS.add caller todo ) todo (Eva.Results.callsites kf); ) else todo in wl.callers <- KFS.add kf wl.callers; fixpoint todo with Not_found -> () in fixpoint kfs (** Upward propagation in all the callers. For all upward-registered calls, find if new impacted nodes have been found in the callee. If so, check if they intersect with the nodes of the callee defining the output. Then, mark the (caller) output node as impacted. At the end, zero out the list of function that must be examined again. *) let upward_in_callers wl = let aux (caller, callee, _callsite) l = if KFS.mem callee wl.fun_changed_upward then List.iter (fun (n, nodes) -> let results_for_callee = result_by_kf wl callee in if NS.intersects nodes results_for_callee then let inter = NS.inter nodes results_for_callee in let unimpacted_callee = unimpacted_initial_by_kf wl callee in let init = NS.for_all' (fun n -> NS.mem' n unimpacted_callee) inter in let z = zone_restrict inter in let n = (n, z) in NS.iter' (fun nsrc -> add_to_reason wl ~nsrc ~ndst:n InterproceduralUpward ) inter; if init then add_to_do_part_of_initial wl caller (Pdg.Api.get caller) n else add_to_do wl caller (Pdg.Api.get caller) n ) (Lazy.force l) in KfKfCall.Map.iter aux wl.upward_calls; wl.fun_changed_upward <- KFS.empty (* -------------------------------------------------------------------------- *) (* --- Initialization --- *) (* -------------------------------------------------------------------------- *) (** Compute the initial state of the worklist. *) let initial_worklist ?(skip=Locations.Zone.bottom) ?(reason=false) nodes kf = let initial = KFM.add kf (List.fold_left (fun s n -> NS.add' n s) NS.empty nodes) KFM.empty; in let wl = { todo = NM.empty; result = KFM.empty; downward_calls = KfKfCall.Map.empty; callers = KFS.empty; upward_calls = KfKfCall.Map.empty; initial_nodes = initial; unimpacted_initial = initial; fun_changed_downward = KFS.empty; fun_changed_upward = KFS.empty; skip = skip; reason = Reason.Set.empty; compute_reason = reason; } in (* Fill the [todo] field *) initial_to_do_list wl kf (Pdg.Api.get kf) nodes; let initial_callers = if Options.Upward.get () then KFS.singleton kf else KFS.empty in (* Fill the [callers] and [upward_calls] fields *) all_upward_callers wl initial_callers; wl (** To compute the impact of a statement, find the initial PDG nodes that must be put in the worklist. The only subtlety consists in skipping input nodes on statements that are calls; otherwise, we would get an impact in the callees of the call. *) let initial_nodes ~skip kf stmt = Options.debug ~level:3 "computing initial nodes for %d" stmt.sid; let pdg = Pdg.Api.get kf in if Eva.Results.is_reachable stmt then try let all = Pdg.Api.find_simple_stmt_nodes pdg stmt in let filter n = match PdgTypes.Node.elem_key n with | Key.SigCallKey (_, Signature.In _) -> false | _ -> not (node_to_skip skip n) in List.filter filter all with | PdgTypes.Pdg.Top -> Options.warning "analysis of %a is too imprecise, impact cannot be computed@." Kernel_function.pretty kf; [] | Not_found -> assert false else begin Options.debug ~level:3 "stmt %d is dead. skipping." stmt.sid; [] end (* -------------------------------------------------------------------------- *) (* --- Fixpoint --- *) (* -------------------------------------------------------------------------- *) (** Choose one node to process in the todo list, if one remains *) let pick wl = try let (n, _ as r) = NM.choose wl.todo in wl.todo <- NM.remove n wl.todo; Some r with Not_found -> None (** Empty the [todo] field of the worklist by applying as many basic steps as possible: intra-procedural steps, plus basic inter-procedural steps on downward calls. *) let rec intraprocedural wl = match pick wl with | None -> () | Some (pnode, { kf; pdg; init; zone }) -> let node = pnode, zone in add_to_result wl node kf init; Db.yield (); Options.debug ~level:2 "considering new node %a in %a:@ <%a>%t" PdgTypes.Node.pretty pnode Kernel_function.pretty kf Pdg_aux.pretty_node node (fun fmt -> if init then Format.pp_print_string fmt " (init)"); intraprocedural_one_node wl node kf pdg; downward_one_call_node wl node kf pdg; intraprocedural wl let something_to_do wl = not (NM.is_empty wl.todo) (** Make the worklist reach a fixpoint, by propagating all possible source of impact as much as possible. Due to the way calls are treated (by intersecting new impacted nodes with constant sets of nodes), it is more efficient to saturate the field [result] before calling [downward_calls_inputs] and [upward_in_callers]. We also make sure all downward propagation is done before starting upward propagation. *) let rec fixpoint wl = if something_to_do wl then begin intraprocedural wl; (* Save functions on which the results have changed, as [downward_calls_inputs] clears the field [fun_changed_downward] *) wl.fun_changed_upward <- KFS.union wl.fun_changed_downward wl.fun_changed_upward; downward_calls_inputs wl; if something_to_do wl then fixpoint wl else ( upward_in_callers wl; fixpoint wl ) end let remove_unimpacted _kf impact initial = match impact, initial with | None, None | Some _, None | None, Some _ (* impossible *) -> impact | Some impact, Some initial -> Some (NS.diff impact initial) (** Impact of a set of nodes. Once the worklist has reached its fixpoint, remove the initial nodes that are not self-impacting from the result, and return this result. *) let impact ?skip ?reason nodes kf = let wl = initial_worklist ?skip ?reason nodes kf in fixpoint wl; let without_init = KFM.merge remove_unimpacted wl.result wl.unimpacted_initial in without_init, wl.unimpacted_initial, wl.initial_nodes, wl.reason (* -------------------------------------------------------------------------- *) (* --- High-level API --- *) (* -------------------------------------------------------------------------- *) (** Impact of a list of PDG nodes coming from the same function *) let nodes_impacted_by_nodes ?(skip=Locations.Zone.bottom) ?(restrict=Locations.Zone.top) ?(reason=false) kf nodes = let nodes = List.map (fun n -> n, restrict) nodes in let r, unimpacted, initial, reason_graph = impact ~skip ~reason nodes kf in let pp_kf fmt (kf, ns) = Format.fprintf fmt "@[%a: %a@]@ " Kernel_function.pretty kf (Pretty_utils.pp_iter ~sep:",@ " ~pre:"" ~suf:"" NS.iter' Pdg_aux.pretty_node) ns in let iter f = KFM.iter (fun kf ns -> f (kf, ns)) in Options.debug ~level:1 "@[<v>Results:@ %a@]" (Pretty_utils.pp_iter ~sep:"@ " ~pre:"" ~suf:"" iter pp_kf) r; let reason_full = { Reason_graph.reason_graph; nodes_origin = result_to_node_origin r; initial_nodes = initial_to_node_set initial; } in if reason then Reason_graph.print_dot_graph reason_full; r, unimpacted, reason_full (** Impact of a list stmts coming from the same function *) let nodes_impacted_by_stmts ?(skip=Locations.Zone.bottom) ?(restrict=Locations.Zone.top) ?(reason=false) kf stmts = let nodes = List.map (initial_nodes ~skip kf) stmts in let nodes = List.concat nodes in Options.debug "about to compute impact for stmt(s) %a, %d initial nodes" (Pretty_utils.pp_list ~sep:",@ " Stmt.pretty_sid) stmts (List.length nodes); nodes_impacted_by_nodes ~skip ~restrict ~reason kf nodes (** Transform the result of an analysis into a set of PDG nodes *) let result_to_nodes (res: result) : nodes = KFM.fold (fun _ s acc -> NS.union s acc) res NS.empty (** Transform a set of PDG nodes into a set of statements *) let nodes_to_stmts ns = let get_stmt node = Key.stmt (Pdg.Api.node_key node) in let set = (* Do not generate a list immediately, some nodes would be duplicated *) NS.fold (fun (n, _z) acc -> Option.fold ~none:acc ~some:(fun s -> Stmt.Set.add s acc) (get_stmt n) ) ns Stmt.Set.empty in Stmt.Set.elements set (** Impact of a list of statements as a set of statements *) let stmts_impacted ?(skip=Locations.Zone.bottom) ~reason kf stmts = let r, _, _ = nodes_impacted_by_stmts ~skip ~reason kf stmts in nodes_to_stmts (result_to_nodes r) (** Impact of a list of PDG nodes as a set of nodes *) let nodes_impacted ?(skip=Locations.Zone.bottom) ~reason kf nodes = let r, _, _ = nodes_impacted_by_nodes ~skip ~reason kf nodes in result_to_nodes r (** Nodes impacted in a given function *) let impact_in_kf (res: result) kf = kfmns_find_default kf res (** Computation of the [skip] field from a list of variables *) let skip_bases vars = let aux acc v = let z = Locations.Zone.inject v Int_Intervals.top in Locations.Zone.join z acc in List.fold_left aux Locations.Zone.bottom vars (** Computation of the [skip] field from the [-impact-skip] option *) let skip () = let bases = Options.Skip.fold (fun name l -> let vi = try Base.of_varinfo (Globals.Vars.find_from_astinfo name Global) with Not_found -> if name = "NULL" then Base.null else Options.abort "cannot skip unknown variable %s" name in vi :: l) [] in skip_bases bases (* TODO: dynamically register more high-level functions *) (* Local Variables: compile-command: "make -C ../../.." End: *)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>