package frama-c
Platform dedicated to the analysis of source code written in C
Install
Dune Dependency
Authors
-
MMichele Alberti
-
TThibaud Antignac
-
GGergö Barany
-
PPatrick Baudin
-
TThibaut Benjamin
-
AAllan Blanchard
-
LLionel Blatter
-
FFrançois Bobot
-
RRichard Bonichon
-
QQuentin Bouillaguet
-
DDavid Bühler
-
ZZakaria Chihani
-
LLoïc Correnson
-
JJulien Crétin
-
PPascal Cuoq
-
ZZaynah Dargaye
-
BBasile Desloges
-
JJean-Christophe Filliâtre
-
PPhilippe Herrmann
-
MMaxime Jacquemin
-
FFlorent Kirchner
-
AAlexander Kogtenkov
-
TTristan Le Gall
-
JJean-Christophe Léchenet
-
MMatthieu Lemerre
-
DDara Ly
-
DDavid Maison
-
CClaude Marché
-
AAndré Maroneze
-
TThibault Martin
-
FFonenantsoa Maurica
-
MMelody Méaulle
-
BBenjamin Monate
-
YYannick Moy
-
PPierre Nigron
-
AAnne Pacalet
-
VValentin Perrelle
-
GGuillaume Petiot
-
DDario Pinto
-
VVirgile Prevosto
-
AArmand Puccetti
-
FFélix Ridoux
-
VVirgile Robles
-
JJan Rochel
-
MMuriel Roger
-
JJulien Signoles
-
NNicolas Stouls
-
KKostyantyn Vorobyov
-
BBoris Yakobowski
Maintainers
Sources
frama-c-28.1-Nickel.tar.gz
sha256=0220bc743b7da2468ceb926f331edc7ddfaa7c603ba47962de3e33c8e1e3f593
doc/src/frama-c-alias.core/abstract_state.ml.html
Source file abstract_state.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
(**************************************************************************) (* *) (* This file is part of Frama-C. *) (* *) (* Copyright (C) 2007-2023 *) (* CEA (Commissariat à l'énergie atomique et aux énergies *) (* alternatives) *) (* *) (* you can redistribute it and/or modify it under the terms of the GNU *) (* Lesser General Public License as published by the Free Software *) (* Foundation, version 2.1. *) (* *) (* It is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* See the GNU Lesser General Public License version 2.1 *) (* for more details (enclosed in the file licenses/LGPLv2.1). *) (* *) (**************************************************************************) open Cil_types open Cil_datatype open Simplified module VSet = Datatype.Int.Set module VMap = Datatype.Int.Map module Lval = Simplified.Lval module LSet = Cil_datatype.LvalStructEq.Set module LMap = Cil_datatype.LvalStructEq.Map module G = Graph.Persistent.Digraph.ConcreteBidirectional(Datatype.Int) module V = G.V let vid (v : G.V.t) : int = v (* like LMap, but organized with offset and specialized functions *) module LLMap = struct module OMap = Offset.Map (* each t is a map (lhost,NoOffset) -> offset -> V.t *) type t = (V.t OMap.t) LMap.t let empty : t = LMap.empty let mem (lv : lval) (m:t) = let lv, off = Cil.removeOffsetLval lv in try OMap.mem off (LMap.find lv m) with Not_found -> false let find (lv : lval) (m:t) : V.t = let lv, off = Cil.removeOffsetLval lv in OMap.find off (LMap.find lv m) let add (lv : lval) (v:V.t) (m:t) :t = let lv, off = Cil.removeOffsetLval lv in let mo = try LMap.find lv m with Not_found -> OMap.empty in LMap.add lv (OMap.add off v mo) m let iter f = LMap.iter @@ fun lv -> OMap.iter @@ fun o -> f @@ Cil.addOffsetLval o lv let map f = LMap.map @@ OMap.map f let pretty fmt = let is_first = ref true in LMap.iter (fun lv -> OMap.iter (fun o v -> let lv = Cil.addOffsetLval o lv in if !is_first then is_first := false else Format.fprintf fmt "@;<3>"; Format.fprintf fmt "@ @[%a:%d@]" Lval.pretty lv v)) (* left-biased *) let union = LMap.union @@ fun _ l r -> Some (OMap.union (fun _ l _r -> Some l) l r) let intersect = let intersect_omap l r = match l, r with | Some l, Some r -> Some (l,r) | _ -> None in let intersect_lmap l r = match l, r with | Some l, Some r -> let omap = OMap.merge (fun _ -> intersect_omap) l r in if OMap.is_empty omap then None else Some omap | _ -> None in LMap.merge @@ fun _ -> intersect_lmap let to_seq m = LMap.fold (fun lv omap -> OMap.fold (fun o v s -> Seq.cons (lv,o,v) s) omap) m Seq.empty (* specialized functions *) let rec is_sub_offset o1 o2 = match (o1,o2) with NoOffset, _ -> true | Index (e1,o1), Index (e2,o2) when Cil_datatype.ExpStructEq.equal e1 e2 -> is_sub_offset o1 o2 | Field (f1,o1), Field (f2,o2) when Fieldinfo.equal f1 f2 -> is_sub_offset o1 o2 | _ -> false (* finds all the lval lv1 apearing in [m] such as there exists an offset o1 and lv1 + o1 = lv *) let find_upper_offsets (lv : lval) (m:t) : V.t LMap.t = let lv, off = Cil.removeOffsetLval lv in let mo = try LMap.find lv m with Not_found -> OMap.empty in let f_filter o _v = is_sub_offset o off in let mo = OMap.filter f_filter mo in OMap.fold (fun o -> let lv = Cil.addOffsetLval o lv in LMap.add lv) mo LMap.empty end type t = { graph : G.t; lmap : LLMap.t ; (* lmap(lv) is a table [offset->v] where the vertex v corresponding to lval (lv+offset), in other words (lv+offset) is in label(v) *) vmap : LSet.t VMap.t ;(* reverse of lmap *) } let node_counter = ref 0 let fresh_node_id () = let id = !node_counter in node_counter := !node_counter + 1; id (* find functions *) let find_lset (v:V.t) (x:t) : LSet.t = try VMap.find v x.vmap with Not_found -> LSet.empty let find_aliases (lv:lval) (x:t) = let lv = Lval.simplify lv in try let v = LLMap.find lv x.lmap in find_lset v x with Not_found -> LSet.empty let rec get_points_to (v:V.t) (x:t) : LSet.t = assert (G.mem_vertex x.graph v); let set_predecessors = List.fold_left (fun acc v -> LSet.union acc (get_points_to v x)) LSet.empty (G.pred x.graph v) in LSet.union (find_lset v x) (LSet.map Lval.points_to set_predecessors) let aliases_of_vertex (v:V.t) (x:t) : LSet.t = assert (G.mem_vertex x.graph v); let list_pred = G.pred x.graph v in List.fold_left (fun acc v -> LSet.union acc (get_points_to v x)) LSet.empty list_pred let succ_of_lval (lv:lval) (x:t) : int option = let lv = Lval.simplify lv in try begin let v = LLMap.find lv x.lmap in match G.succ x.graph v with | [] -> None | [succ_v] -> Some succ_v | _ -> Options.fatal "invariant violated (more than 1 successor)" end with Not_found -> None let find_all_aliases (lv:lval) (x:t) : LSet.t = match succ_of_lval lv x with | None -> LSet.empty | Some succ_v -> aliases_of_vertex succ_v x let points_to_set (lv:lval) (x:t) : LSet.t = match succ_of_lval lv x with | None -> LSet.empty | Some succ_v -> find_lset succ_v x let get_graph (x:t) = x.graph (* renamed for the interface *) let get_lval_set = find_lset (* printing functions *) let print_debug fmt (x:t) = Format.fprintf fmt "@[<v>"; Format.fprintf fmt "@[Edges:"; G.iter_edges (fun v1 v2 -> Format.fprintf fmt "@;<3 2>@[%d → %d@]" v1 v2) x.graph; Format.fprintf fmt "@]@;<6>"; Format.fprintf fmt "@[LMap:@;<3 2>"; LLMap.pretty fmt x.lmap; Format.fprintf fmt "@]@;<6>"; Format.fprintf fmt "@[VMap:@;<2>"; VMap.iter (fun v ls -> Format.fprintf fmt "@;<2 2>@[%d:%a@]" v LSet.pretty ls) x.vmap; Format.fprintf fmt "@]"; Format.fprintf fmt "@]" let print_graph fmt (x:t) = let is_first = ref true in let print_edge v1 v2 = if !is_first then is_first := false else Format.fprintf fmt "@;<3>"; let print_node v fmt lset = Format.fprintf fmt "%d:%a" v LSet.pretty lset in Format.fprintf fmt "@[%a@] → @[%a@]" (print_node v1) (VMap.find v1 x.vmap) (print_node v2) (VMap.find v2 x.vmap) in if G.nb_edges x.graph = 0 then Format.fprintf fmt "<empty>" else G.iter_edges print_edge x.graph let print_aliases fmt (x:t) = let is_first = ref true in let print_alias_set _ set_lv = if !is_first then is_first := false else Format.fprintf fmt "@;<2>"; LSet.pretty fmt set_lv in let alias_set_of_vertex i _ = let aliases = aliases_of_vertex i x in if LSet.cardinal aliases >= 2 then Some aliases else None in let alias_sets = VMap.filter_map alias_set_of_vertex x.vmap in if VMap.is_empty alias_sets then Format.fprintf fmt "<none>" else VMap.iter print_alias_set alias_sets (** invariants of type t must be true before and after each functon call *) let assert_invariants (x:t) : unit = (* check that all vertex of the graph have entries in vmap, and are integer between 0 and node_counter, and have at most 1 successor *) assert (!node_counter >= 0); let assert_vertex (v:V.t) = assert (v >= 0); assert (v < !node_counter); assert (VMap.mem v x.vmap); assert (List.length (G.succ x.graph v) <= 1) in G.iter_vertex assert_vertex x.graph; let assert_edge v1 v2 = assert (v1 <> v2); assert (G.mem_vertex x.graph v1); assert (G.mem_vertex x.graph v2) in G.iter_edges assert_edge x.graph; let assert_lmap (lv : lval) (v:V.t) = assert (G.mem_vertex x.graph v); assert (LSet.mem lv (VMap.find v x.vmap)) in LLMap.iter assert_lmap x.lmap; let assert_vmap (v:V.t) (ls:LSet.t) = assert (G.mem_vertex x.graph v); (* TODO: we removed the invariant because of OSCS*) (* if not (LSet.is_empty ls) * then * begin * let lv = LSet.choose ls in * let is_ptr_lv = Lval.is_pointer lv in * assert (LSet.for_all (fun x -> Lval.is_pointer x = is_ptr_lv) ls) * end; *) assert (LSet.fold (fun lv acc -> acc && V.equal (LLMap.find lv x.lmap) v) ls true) in VMap.iter assert_vmap x.vmap (* Ensure that assert_invariants is not executed if the -noassert flag is supplied. *) let assert_invariants x = assert (assert_invariants x; true) let pretty ?(debug = false) fmt (x:t) = if debug then try assert_invariants x; print_graph fmt x with Assert_failure _ -> print_debug fmt x else print_aliases fmt x (** .dot printing functions*) let find_vertex_name_ref = Extlib.mk_fun "find_vertex_name" module Dot = Graph.Graphviz.Dot (struct include G let edge_attributes _ = [] let default_edge_attributes _ = [] let get_subgraph _ = None let vertex_attributes _ = [`Shape `Box] let vertex_name (v:V.t) = let lset = !find_vertex_name_ref v in let fmt = Format.str_formatter in Format.fprintf fmt "\"%a\"" LSet.pretty lset; Format.flush_str_formatter () let default_vertex_attributes _ = [] let graph_attributes _ = [] end) let print_dot filename (a:t) = let file = open_out filename in find_vertex_name_ref := (fun v -> find_lset v a ); Dot.output_graph file a.graph; close_out file (* find functions, part 2 *) let rec closure_find_lset (v:V.t) (x:t) : (V.t * LSet.t) list = match G.succ x.graph v with [] -> [v, find_lset v x] | [v_next] -> (v, find_lset v x)::(closure_find_lset v_next x) | _ -> Options.fatal ("this shall not happen (invariant broken)") let find_transitive_closure (lv:lval) (x:t) : (G.V.t * LSet.t) list = let lv = Lval.simplify lv in assert_invariants x; try closure_find_lset (LLMap.find lv x.lmap) x with Not_found -> [] (* TODO : what about offsets ? *) (* NOTE on "constant vertex": a constant vertex represents an unamed scalar value (type bottom in steensgaard's paper), or the address of a variable. It means that in [vmap], its associated LSet is empty. By definition, constant vertex cannot be associated to a lval in [lmap] *) let create_cst_vertex (x:t) : V.t * t = let new_v = fresh_node_id () in new_v, { graph = G.add_vertex x.graph new_v; lmap = x.lmap ; vmap = VMap.add new_v LSet.empty x.vmap } (* find all the aliases of lv1 in x, for create_vertex *) let find_all_aliases_of_offset (lv1 : lval) (x: t) : LSet.t = let lvals_to_be_searched = decompose_lval lv1 in (* for each lval, find the set of aliases *) let f_map (lv,o) = try VMap.find (LLMap.find lv x.lmap) x.vmap, o with Not_found -> LSet.empty, o in Options.debug ~level:9 "decompose_lval %a : [@[<hov 2>" Lval.pretty lv1; List.iter (fun (x, o) -> Options.debug ~level:9 " (%a,%a) " Lval.pretty x Offset.pretty o) lvals_to_be_searched; Options.debug ~level:9 "@]]"; let aliases = List.map f_map lvals_to_be_searched in (* for each lval of the Lset, add the offset and add it to the resulting set *) let f_fold_left (acc : LSet.t) (ls,o) = LSet.fold (fun lv -> LSet.add @@ Cil.addOffsetLval o lv) ls acc in List.fold_left f_fold_left (LSet.singleton lv1) aliases (* returns the new vertex and the new graph *) (* only for function find_or_create vertex *) let create_vertex_simple (lv:lval) (x:t) : V.t * t = let new_v = fresh_node_id () in let new_g = G.add_vertex x.graph new_v in (* find all the alias of lv (because of offset) *) let set_of_aliases : LSet.t = find_all_aliases_of_offset lv x in (* add all these aliases *) Options.debug ~level:9 "all_aliases of %a : %a " Lval.pretty lv LSet.pretty set_of_aliases; let new_lmap = LSet.fold (fun lv acc -> assert (not (LLMap.mem lv x.lmap)); LLMap.add lv new_v acc) set_of_aliases x.lmap in let new_vmap = VMap.add new_v set_of_aliases x.vmap in let new_x = { graph = new_g ; lmap = new_lmap ; vmap = new_vmap ; } in assert_invariants new_x; match lv with | Var v, NoOffset -> begin match v.vtype with TPtr _ -> (* then add a constant vertex *) let another_v, new_x = create_cst_vertex new_x in let new_g = G.add_edge new_x.graph new_v another_v in new_v, {new_x with graph = new_g} | _ -> new_v, new_x end | _ -> new_v , new_x let diff_offset (lv1 : lval) (lv2 : lval) = let rec f_diff_offset o1 o2 = match o1, o2 with NoOffset, _ -> o2 | Field (_,o1), Field (_,o2) -> f_diff_offset o1 o2 | Index (_,o1), Index (_,o2) -> f_diff_offset o1 o2 | _ -> Options.fatal "%s: unexpected case" __LOC__ in let _, o1 = Cil.removeOffsetLval lv1 and _, o2 = Cil.removeOffsetLval lv2 in assert (LLMap.is_sub_offset o1 o2); f_diff_offset o1 o2 let rec create_vertex lv x = Options.debug ~level:9 "creating a vertex for %a" Lval.pretty lv; assert (not (LLMap.mem lv x.lmap)); begin match lv with (Mem e, NoOffset) -> (* special case, when we also add another vertex and a points-to edge *) begin (* first find the vertex corresponding to e *) match LvalOrRef.from_exp e with | None -> Options.fatal "unexpected result: Lval.from (%a) = None" Exp.pretty e | Some (LvalOrRef.Ref lv1) -> find_or_create_vertex (LvalOrRef.Lval lv1) x | Some (LvalOrRef.Lval lv1) -> (* find the vertex *) let v1, x = find_or_create_vertex (LvalOrRef.Lval lv1) x in (* then creates a vertex for bvl ONLY IF there is no successor *) begin match G.succ x.graph v1 with [] -> let v2, x = create_vertex_simple lv x in (* finally add a points-to edge between v1 and v2 *) let new_graph = G.add_edge x.graph v1 v2 in v2, {x with graph = new_graph } | [succ_v1] -> (* if there is a successor, update lmap and vmap to add blv to that successor's set *) let new_lmap = LLMap.add lv succ_v1 x.lmap in let new_vmap = VMap.add succ_v1 (LSet.add lv (VMap.find succ_v1 x.vmap)) x.vmap in succ_v1, {x with lmap = new_lmap ; vmap = new_vmap } | _ -> Options.fatal " Invariant violated : more than 1 successor" end end | _ -> create_vertex_simple lv x end and find_or_create_lval_vertex (lv:lval) (x:t) : V.t * t = try LLMap.find lv x.lmap, x with Not_found -> (* try to find if an alias already exists in x *) let map_predecessors : V.t LMap.t = LLMap.find_upper_offsets lv x.lmap in (* for any predecessor, find all its aliases and then look for potential existing vertex *) let f_fold_lmap lvx vx acc = let set_aliases = VMap.find vx x.vmap in Options.debug ~level:9 "looking for aliases of %a in set %a" Lval.pretty lv LSet.pretty set_aliases; if LSet.cardinal set_aliases <= 1 then acc else let off = diff_offset lvx lv in let f_fold_lset lvs acc = try let lvs = Cil.addOffsetLval off lvs in VSet.add (LLMap.find lvs x.lmap) acc with Not_found -> acc in LSet.fold f_fold_lset set_aliases acc in (* set of all existing aliases *) let vset_res = LMap.fold f_fold_lmap map_predecessors VSet.empty in Options.debug ~level:9 "found aliases of %a : %a" Lval.pretty lv VSet.pretty vset_res; if VSet.is_empty vset_res then create_vertex lv x else let () = assert (VSet.cardinal vset_res = 1) in let v_res = VSet.choose vset_res in (* vertex found, update the tables *) let new_lmap = LLMap.add lv v_res x.lmap in let new_vmap = VMap.add v_res (LSet.add lv (VMap.find v_res x.vmap)) x.vmap in v_res, {x with lmap = new_lmap; vmap = new_vmap} (* find the vertex of an lval *) and find_or_create_vertex (lv : LvalOrRef.t) (x:t) : V.t * t = match lv with | LvalOrRef.Lval lv -> find_or_create_lval_vertex lv x | LvalOrRef.Ref lv -> Options.debug ~level:9 "creating a vertex for %a" LvalOrRef.pretty (LvalOrRef.Ref lv); let v1, x = find_or_create_lval_vertex lv x in let va, x = create_cst_vertex x in va, {x with graph = G.add_edge x.graph va v1} (* TODO is there a better way to do it ? *) let find_vertex lv x = let lv = Lval.simplify lv in let v,x1 = find_or_create_lval_vertex lv x in if x == x1 (* if x has not been modified, then the vertex was found, not created *) then v else raise Not_found (* merge of two vertices; the first vertex carries both sets, the second is removed from the graph and from lmap and vmap *) let merge x v1 v2 = if (V.equal v1 v2) || not (G.mem_vertex x.graph v1) || not (G.mem_vertex x.graph v2) then x else let set1 = find_lset v1 x in let set2 = find_lset v2 x in let new_set = LSet.union set1 set2 in (* update lmap : every lval in v2 must now be associated with v1*) let new_lmap = LSet.fold (fun lv2 m -> LLMap.add lv2 v1 m) set2 x.lmap in (* update vmap *) let new_vmap = VMap.add v1 new_set (VMap.remove v2 x.vmap) in (* update the graph *) let f_fold_succ v_succ (g:G.t) : G.t = G.add_edge g v1 v_succ and f_fold_pred v_pred (g:G.t) : G.t = G.add_edge g v_pred v1 in let g = x.graph in (* adds all new edges *) let g = G.fold_succ f_fold_succ g v2 g in let g = G.fold_pred f_fold_pred g v2 g in (* remove v2 *) let g = G.remove_vertex g v2 in {graph = g; lmap = new_lmap; vmap = new_vmap} (* functions join and unify-pointer of steensgaard's paper *) let rec join_without_check (x:t) (v1:V.t) (v2:V.t) : t = if (V.equal v1 v2) || not (G.mem_vertex x.graph v1 && G.mem_vertex x.graph v2) then x else let pt1 = G.succ x.graph v1 in (* TODO ask frama-c type instead of looking in the graph *) let pt2 = G.succ x.graph v2 in let x = merge x v1 v2 in assert (not (G.mem_vertex x.graph v2)); match (pt1, pt2) with | [], _ -> x | _, [] -> x | [succ_v1],[succ_v2] -> assert (succ_v1 <> v2); assert (succ_v2 <> v1); join_without_check x succ_v1 succ_v2 | _, _ -> Options.fatal "invariant broken" (* since the recursive version of join, unify, unify2 and merge may break the invariants *) let join (x:t) (v1:V.t) (v2:V.t) : t = Options.debug ~level:7 "graph before join(%d,%d):@;<2>@[%a@]" v1 v2 print_debug x; assert_invariants x; let res = join_without_check x v1 v2 in Options.debug ~level:7 "graph after join(%d,%d):@;<2>@[%a@]" v1 v2 print_debug res; begin try assert_invariants res with Assert_failure _ -> Options.debug "join(%d,%d) failed" v1 v2; Options.debug "graph before join(%d,%d):@;<2>@[%a@]" v1 v2 print_debug x; Options.debug "graph after join(%d,%d):@;<2>@[ %a@]" v1 v2 print_debug res; assert_invariants res end; res let merge_set (x:t) (vs:VSet.t) : V.t * t = let v0 = VSet.choose vs in if VSet.cardinal vs < 2 then v0, x else begin Options.debug ~level:7 "graph before merge_set %a:@;<2>@[%a@]" VSet.pretty vs print_debug x; assert (G.mem_vertex x.graph v0); let result = VSet.fold (fun v acc -> merge acc v0 v) vs x in Options.debug ~level:7 "graph after merge_set %a:@;<2>@[%a@]" VSet.pretty vs print_debug result; v0, result end let rec join_succs (x:t) v = Options.debug ~level:8 "joining successors of %d" v; if not @@ G.mem_vertex x.graph v then x else match G.succ x.graph v with | [] | [_] -> x | succs -> let v0, x = merge_set x @@ VSet.of_list succs in join_succs x v0 (* in Steensgard's paper, this is written settype(v1,ref(v2,bot)) *) let set_type (x:t) (v1:V.t) (v2:V.t) : t = assert_invariants x; (* if v1 points to another node, suppress current outgoing edge (and the node if it is a constant node) *) let g, new_vmap = match G.succ x.graph v1 with [] -> x.graph, x.vmap | [v2] -> (* if v2 is a constant node supress it directly *) if LSet.is_empty (VMap.find v2 x.vmap) then (G.remove_vertex x.graph v2, VMap.remove v2 x.vmap) else (G.remove_edge x.graph v1 v2, x.vmap) | _ -> Options.fatal "too many outgoing edges in set_type" in let new_g = G.add_edge g v1 v2 in let new_x = {x with graph = new_g ; vmap = new_vmap} in assert_invariants new_x ; new_x let assignment (a:t) (lv:lval) (e:exp) : t = assert_invariants a; if not @@ Cil.isPointerType (Cil.typeOf e) then a else let x = Lval.simplify lv in match LvalOrRef.from_exp e with | None -> a | Some y -> let (v1,a) = find_or_create_lval_vertex x a in let (v2,a) = find_or_create_vertex y a in if List.mem v2 (G.succ a.graph v1) || List.mem v1 (G.succ a.graph v2) then let () = Options.warning ~source:(fst e.eloc) "ignoring assignment of the form: %a = %a" Printer.pp_lval lv Printer.pp_exp e; in a else let a = join a v1 v2 in let () = assert_invariants a in a (* assignment x = allocate(y) *) let assignment_x_allocate_y (a:t) (lv:lval) : t = assert_invariants a; let x = Lval.simplify lv in let (v1,a) = find_or_create_lval_vertex x a in match G.succ a.graph v1 with | [] -> let (v2,a) = create_cst_vertex a in let new_a : t = set_type a v1 v2 in let () = assert_invariants new_a in new_a | [_v2] -> a | _ -> Options.fatal "this should not hapen (invariant broken)" let is_included (a1:t) (a2:t) = (* tests if a1 is included in a2, at least as the nodes with lval *) assert_invariants a1; assert_invariants a2; Options.debug ~level:8 "testing equal %a AND à.%a" (pretty ~debug:true) a1 (pretty ~debug:true) a2; let exception Not_included in try let iter_lmap (lv : lval) (v1:V.t): unit = let v2 : V.t = try LLMap.find lv a2.lmap with Not_found -> raise Not_included in match G.succ a1.graph v1, G.succ a2.graph v2 with [], _ -> () | [_], [] -> raise Not_included | [v1p], [v2p] -> if LSet.subset (VMap.find v1p a1.vmap) (VMap.find v2p a2.vmap) then () else raise Not_included | _ -> Options.fatal "this should not hapen (invariant broken)" in LLMap.iter iter_lmap a1.lmap; true with Not_included -> false let empty :t = {graph = G.empty; lmap = LLMap.empty; vmap = VMap.empty} let is_empty s = compare s empty = 0 (* add an int to all vertex values *) let shift (a : t) : t = assert_invariants a; if is_empty a then a else let () = Options.debug ~level:8 "before shift: node_counter=%d@.%a" !node_counter print_debug a in let max_idx = G.fold_vertex max a.graph 0 in let min_idx = G.fold_vertex min a.graph max_idx in let offset = !node_counter - min_idx in let shift x = x + offset in let shift_vmap shift_elem vmap = VMap.of_seq @@ Stdlib.Seq.map shift_elem @@ VMap.to_seq vmap in let {graph; lmap; vmap} = a in node_counter := max_idx + offset + 1; let result = {graph = G.map_vertex shift graph; lmap = LLMap.map shift lmap; vmap = shift_vmap (fun (key, l) -> (shift key, l)) vmap} in let () = Options.debug ~level:8 "after shift: node_counter=%d@.%a" !node_counter print_debug result in assert_invariants result; result let union_find vmap intersections = let module Store : UnionFind.STORE = UnionFind.StoreMap.Make (VMap) in let module UF = UnionFind.Make (Store) in let uf = UF.new_store () in let refs = VMap.mapi (fun i _ -> UF.make uf i) vmap in let put_into_uf (v1,v2) = let r1 = VMap.find v1 refs in let r2 = VMap.find v2 refs in ignore @@ UF.union uf r1 r2 in let _vs = Seq.iter put_into_uf intersections in let sets_to_be_joined = let add_to_map i r sets = let repr = UF.find uf r in let add_to_set = function | None -> Some (VSet.singleton i) | Some set -> Some (VSet.add i set) in VMap.update (UF.get uf repr) add_to_set sets in VMap.fold add_to_map refs VMap.empty in sets_to_be_joined let union (a1:t) (a2:t) :t = (* naive algorithm : 1 merge the graph and the vmap (by doing union of sets) 2 for any node present in both a1.graph and a2.graph, merge/join them 3 for any lval [lv] that are has an entry in both a1.lmap and a2.lmap, merge the two vertex a1.lmap[lv] and a2.lmap[lv] I am not confident about this function, there are too many potential bugs and inefficiencies *) assert_invariants a1; assert_invariants a2; Options.debug ~level:4 "Union: First graph:%a" print_graph a1; Options.debug ~level:5 "Union: First graph:%a" print_debug a1; Options.debug ~level:4 "Union: Second graph:%a" print_graph a2; Options.debug ~level:5 "Union: Second graph:%a" print_debug a2; let new_graph = G.fold_vertex (fun v2 g -> G.add_vertex g v2) a2.graph a1.graph in let new_graph = G.fold_edges (fun v2a v2b g -> G.add_edge g v2a v2b) a2.graph new_graph in let new_vmap = VMap.union (fun _ lset1 lset2 -> Option.some @@ LSet.union lset1 lset2) a2.vmap a1.vmap in let sets_to_be_joined = let intersections = LLMap.to_seq @@ LLMap.intersect a1.lmap a2.lmap in union_find new_vmap @@ Seq.map (fun (_,_,x) -> x) intersections in let new_lmap = LLMap.union a1.lmap a2.lmap in Options.debug ~level:7 "Union: sets to be joined:@["; VMap.iter (fun _ set -> Options.debug ~level:7 "%a" VSet.pretty set) sets_to_be_joined; Options.debug ~level:7 "@]"; let new_a = {graph = new_graph; lmap = new_lmap; vmap = new_vmap} in let merged_nodes, new_a = VMap.fold (fun _ set (merged_nodes, x) -> let v0, x = merge_set x set in (v0 :: merged_nodes), x) sets_to_be_joined ([], new_a) in let new_a = List.fold_left join_succs new_a merged_nodes in Options.debug ~level:4 "Union: Result graph:%a" print_graph new_a; Options.debug ~level:5 "Union: Result graph:%a" print_debug new_a; begin try assert_invariants new_a with Assert_failure _ -> Options.debug "union failed"; Options.debug "Union: First graph:%a" print_graph a1; Options.debug "Union: First graph:%a" print_debug a1; Options.debug "Union: Second graph:%a" print_graph a2; Options.debug "Union: Second graph:%a" print_debug a2; Options.debug "Union: Result graph:%a" print_graph new_a; Options.debug "Union: Result graph:%a" print_debug new_a; assert_invariants new_a end; new_a (** a type for summaries of functions *) type summary = { state : t option; formals: lval list; locals: lval list; return : exp option } let make_summary (s : t) (kf : kernel_function) = let exp_return : exp option = if Kernel_function.has_definition kf then let return_stmt = Kernel_function.find_return kf in match return_stmt.skind with Return (e, _) -> e | _ -> Options.fatal "this should not happen" else None in let s = match exp_return with None -> s | Some e -> begin match s, LvalOrRef.from_exp e with _, None -> s | s, Some lv -> let _, new_s = find_or_create_vertex lv s in new_s end in { state = Some s; formals = List.map (fun v -> (Var v,NoOffset)) (Kernel_function.get_formals kf); locals = List.map (fun v -> (Var v,NoOffset)) (Kernel_function.get_locals kf); return = exp_return } let pretty_summary ?(debug=false) fmt s = let print_list_lval ~state fmt (l: lval list) = let is_first = ref true in let print_elem x = if !is_first then is_first := false else Format.fprintf fmt "@ "; Format.fprintf fmt "@[%a" Cil_datatype.Lval.pretty x; let pointees = points_to_set x state in if not @@ LSet.is_empty pointees then Format.fprintf fmt "→%a" LSet.pretty pointees; Format.fprintf fmt "@]"; in List.iter print_elem l in let print_option pp fmt x = match x with | Some x -> pp fmt x | None -> Format.fprintf fmt "<none>" in match s.state with | None -> if debug then Format.fprintf fmt "not found" | Some s when is_empty s -> if debug then Format.fprintf fmt "empty" | Some state -> begin Format.fprintf fmt "@[formals: @[%a@]@;<4>locals: @[%a@]@;<4>returns: @[%a@]@;<4>state: @[%a@] " (print_list_lval ~state) s.formals (print_list_lval ~state) s.locals (print_option Exp.pretty) s.return (print_option @@ pretty ~debug) s.state; end (* the algorithm: - unify the two graphs dropping all the variables from the summary - pair arguments with formals assigning the formal's successor as the argument's successor *) let call (state:t) (res:lval option) (args:exp list) (summary:summary) :t = assert_invariants state; let formals = summary.formals in assert (List.length args = List.length formals); let sum_state = shift @@ Option.get summary.state in (* pair up formals and their corresponding arguments, as well as the bound result with the returned value *) let arg_formal_pairs = let res_ret = match res, summary.return with | None, None -> [] | Some res, Some ret -> let simplify_ret x = match LvalOrRef.from_exp x with | Some (LvalOrRef.Lval lval) -> lval | _ -> Options.fatal "unexpected form of return statement" in [LvalOrRef.Lval (Lval.simplify res), simplify_ret ret] | None, Some _ -> [] | Some _, None -> (* Shouldn't happen: Frama-C adds missing returns *) Options.fatal "unexpected case: result without return" in let simplify_both (arg, formal) = try match LvalOrRef.from_exp arg with | None -> None | Some lv -> Some (lv, Lval.simplify formal) with Explicit_pointer_address loc -> Options.warning ~source:(fst loc) ~wkey:Options.Warn.unsupported_address "unsupported feature: explicit pointer address: %a; analysis may be unsound" Printer.pp_exp arg; None in res_ret @ List.filter_map simplify_both @@ List.combine args formals in (* for each pair (lv1,lv2) find (or create) the corresponding vertices *) let state, vertex_pairs = let state = ref state in let find_vertex (lv1, lv2) = try let v2 = LLMap.find lv2 sum_state.lmap in let v1, new_state = find_or_create_vertex lv1 !state in state := new_state; Some (v1, v2) with Not_found -> None in !state, List.filter_map find_vertex arg_formal_pairs in (* merge the function graph; for every arg/formal vertex pair (v1,v2) and every edge v2→v create edge v1→v. *) let g = let transfer_succs (g : G.t) (v1,v2) = let v2_succs = G.succ sum_state.graph v2 in assert (List.length v2_succs < 2); List.fold_left (fun g succ -> G.add_edge g v1 succ) g v2_succs in let g = state.graph in let g = G.fold_vertex (fun i g -> G.add_vertex g i) sum_state.graph g in let g = G.fold_edges (fun i j g -> G.add_edge g i j) sum_state.graph g in List.fold_left transfer_succs g vertex_pairs in (* garbage collect: remove leaf vertices from g that originate from sum_state *) let vertices_to_add_to_g, g = let g = ref g in let remove_if_leaf v _ = if G.in_degree sum_state.graph v = 0 then let () = g := G.remove_vertex !g v in None else Some LSet.empty in let remaining_vertices = VMap.filter_map remove_if_leaf sum_state.vmap in remaining_vertices, !g in let state = { graph = g; lmap = state.lmap; vmap = let left_bias _ l _ = Some l in VMap.union left_bias state.vmap vertices_to_add_to_g} in let state = List.fold_left join_succs state (List.map fst vertex_pairs) in assert_invariants state; state
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>