package frama-c
Platform dedicated to the analysis of source code written in C
Install
Dune Dependency
Authors
-
MMichele Alberti
-
TThibaud Antignac
-
GGergö Barany
-
PPatrick Baudin
-
TThibaut Benjamin
-
AAllan Blanchard
-
LLionel Blatter
-
FFrançois Bobot
-
RRichard Bonichon
-
QQuentin Bouillaguet
-
DDavid Bühler
-
ZZakaria Chihani
-
LLoïc Correnson
-
JJulien Crétin
-
PPascal Cuoq
-
ZZaynah Dargaye
-
BBasile Desloges
-
JJean-Christophe Filliâtre
-
PPhilippe Herrmann
-
MMaxime Jacquemin
-
FFlorent Kirchner
-
AAlexander Kogtenkov
-
TTristan Le Gall
-
JJean-Christophe Léchenet
-
MMatthieu Lemerre
-
DDara Ly
-
DDavid Maison
-
CClaude Marché
-
AAndré Maroneze
-
TThibault Martin
-
FFonenantsoa Maurica
-
MMelody Méaulle
-
BBenjamin Monate
-
YYannick Moy
-
PPierre Nigron
-
AAnne Pacalet
-
VValentin Perrelle
-
GGuillaume Petiot
-
DDario Pinto
-
VVirgile Prevosto
-
AArmand Puccetti
-
FFélix Ridoux
-
VVirgile Robles
-
JJan Rochel
-
MMuriel Roger
-
JJulien Signoles
-
NNicolas Stouls
-
KKostyantyn Vorobyov
-
BBoris Yakobowski
Maintainers
Sources
frama-c-28.0-beta-Nickel.tar.gz
sha256=0c80dae8074fcb3f6a33d7a41faf9939a2a336478a8d2c79e20e2d7bab953735
doc/src/Pdg_types/pdgTypes.ml.html
Source file pdgTypes.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
(**************************************************************************) (* *) (* This file is part of Frama-C. *) (* *) (* Copyright (C) 2007-2023 *) (* CEA (Commissariat à l'énergie atomique et aux énergies *) (* alternatives) *) (* *) (* you can redistribute it and/or modify it under the terms of the GNU *) (* Lesser General Public License as published by the Free Software *) (* Foundation, version 2.1. *) (* *) (* It is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* See the GNU Lesser General Public License version 2.1 *) (* for more details (enclosed in the file licenses/LGPLv2.1). *) (* *) (**************************************************************************) (** *) open Cil_types (** Node.t is the type of the PDG vertex. *) module Node : sig include Datatype.S_with_collections val id : t -> int val elem_key : t -> PdgIndex.Key.t val stmt : t -> Cil_types.stmt option (*val equivalent : t -> PdgIndex.Key.t -> bool*) val pretty_list : Format.formatter -> t list -> unit val pretty_with_part : Format.formatter -> (t * Locations.Zone.t option) -> unit val pretty_node: Format.formatter -> t -> unit val make: PdgIndex.Key.t -> t end = struct type t = { id : int; key : PdgIndex.Key.t } module Counter = State_builder.Counter(struct let name = "PdgTypes.Node.Counter" end) let make key = {id = Counter.next (); key = key} let print_id fmt e = Format.fprintf fmt "%d" e.id let id n = n.id let elem_key n = n.key let stmt n = PdgIndex.Key.stmt n.key (* BY: not sure it is a good idea to use (=) on keys, which contain Cil structures. Disabled for now (** tells if the node represent the same thing that the given key. *) let equivalent n key = (elem_key n) = key *) let print_id fmt n = Format.fprintf fmt "n:%a" print_id n include (Datatype.Make_with_collections (struct type node = t type t = node let name = "PdgTypes.Elem" let reprs = [ { id = -1; key = PdgIndex.Key.top_input } ] let structural_descr = Structural_descr.t_record [| Structural_descr.p_int; PdgIndex.Key.packed_descr |] let compare e1 e2 = Datatype.Int.compare e1.id e2.id let hash e = e.id let equal e1 e2 = e1.id = e2.id let pretty = print_id let rehash = Datatype.identity let copy = Datatype.undefined let mem_project = Datatype.never_any_project end) : Datatype.S_with_collections with type t := t) let pretty_list fmt l = List.iter (fun n -> Format.fprintf fmt " %a" pretty n) l let pretty_with_part fmt (n, z_part) = Format.fprintf fmt "%a" pretty n; match z_part with None -> () | Some z -> Format.fprintf fmt "(restrict to @[<h 1>%a@])" Locations.Zone.pretty z let pretty_node fmt n = Format.fprintf fmt "@[<hov 2>{n%d}:@ %a@]" (id n) PdgIndex.Key.pretty (elem_key n) end module NodeSet = Hptset.Make(Node) (struct let v = [ [ ] ] end) (struct let l = [ Ast.self ] end) (* Clear the (non-project compliant) internal caches each time the ast is updated, which includes every time we switch project. *) let () = Ast.add_hook_on_update NodeSet.clear_caches let () = Ast.add_monotonic_state NodeSet.self (** set of nodes of the graph *) module NodeSetLattice = struct include Abstract_interp.Make_Lattice_Set (Node) (Node.Set) let default : t = empty end module LocInfo = Lmap_bitwise.Make_bitwise (NodeSetLattice) let () = Ast.add_hook_on_update LocInfo.clear_caches (* See comment on previous call to Ast.add_hook_on_update *) (** Edges label for the Program Dependence Graph. *) module Dpd : sig include Datatype.S (** used to speak about the different kinds of dependencies *) type td = Ctrl | Addr | Data val make : ?a:bool -> ?d:bool -> ?c:bool -> unit -> t val make_simple : td -> t val bottom : t val top : t val adc_value : t -> bool * bool * bool val is_addr : t -> bool val is_ctrl : t -> bool val is_data : t -> bool val is_dpd : td -> t -> bool val is_bottom : t -> bool val is_included : t -> t -> bool val combine : t -> t -> t val add : t -> td -> t val inter : t -> t -> t val intersect : t -> t -> bool (** remove the flags that are in m2 for m1 *) val minus : t -> t -> t val pretty_td : Format.formatter -> td -> unit val pretty : Format.formatter -> t -> unit end = struct type td = Ctrl | Addr | Data let pretty_td fmt td = Format.fprintf fmt "%s" (match td with Ctrl -> "c" | Addr -> "a" | Data -> "d") include Datatype.Int (* Encoding: %b addr; %b data; %b control *) let maddr = 0x100 let mdata = 0x010 let mctrl = 0x001 let make ?(a=false) ?(d=false) ?(c=false) _ = match a,d,c with | false, false, false -> 0x000 | true, false, false -> 0x100 | false, true, false -> 0x010 | false, false, true -> 0x001 | true, true, false -> 0x110 | true, false, true -> 0x101 | false, true, true -> 0x011 | true, true, true -> 0x111 let bottom = 0x000 let top = 0x111 let is_addr d = (d land maddr) != 0 let is_ctrl d = (d land mctrl) != 0 let is_data d = (d land mdata) != 0 let is_dpd tdpd d = match tdpd with | Addr -> is_addr d | Ctrl -> is_ctrl d | Data -> is_data d let is_bottom = (=) bottom let adc_value d = (is_addr d, is_data d, is_ctrl d) let combine d1 d2 = d1 lor d2 let inter d1 d2 = d1 land d2 let intersect d1 d2 = inter d1 d2 != 0 let is_included d1 d2 = combine d1 d2 = d2 let make_simple kind = match kind with | Ctrl -> mctrl | Addr -> maddr | Data -> mdata let add d kind = combine d (make_simple kind) let minus adc1 adc2 = adc1 land (lnot adc2) let pretty fmt d = Format.fprintf fmt "[%c%c%c]" (if is_addr d then 'a' else '-') (if is_ctrl d then 'c' else '-') (if is_data d then 'd' else '-') end module DpdZone : sig include Datatype.S val is_dpd : Dpd.td -> t -> bool val make : Dpd.td -> Locations.Zone.t option -> t val add : t -> Dpd.td -> Locations.Zone.t option -> t val kind_and_zone : t -> Dpd.t * Locations.Zone.t option val dpd_zone : t -> Locations.Zone.t option val pretty : Format.formatter -> t -> unit val pretty_debug: Format.formatter -> t -> unit end = struct include Datatype.Pair(Dpd)(Datatype.Option(Locations.Zone)) (* None == Locations.Zone.Top *) let pretty_debug = pretty let dpd_kind dpd = fst dpd let dpd_zone dpd = snd dpd let kind_and_zone dpd = dpd let make k z = (Dpd.make_simple k), z let is_dpd k dpd = Dpd.is_dpd k (dpd_kind dpd) let add ((d1,z1) as dpd) k z = let d = Dpd.add d1 k in let z = match z1, z with | None, _ -> z1 | _, None -> z | Some zz1, Some zz2 -> (* we are losing some precision here because for instance : * (zz1, addr) + (zz2, data) = (zz1 U zz2, data+addr) *) let zz = Locations.Zone.join zz1 zz2 in match zz with | Locations.Zone.Top(_p, _o) -> None | _ -> (* To share values as much as possible *) if (zz == zz1) then z1 else if (zz == zz2) then z else Some zz in if (d == d1) && (z == z1) then dpd else d, z let pretty fmt dpd = Dpd.pretty fmt (dpd_kind dpd); match (dpd_zone dpd) with None -> () | Some z -> Format.fprintf fmt "@[<h 1>(%a)@]" Locations.Zone.pretty z end (** The graph itself. *) module G = struct (* Hashtbl to maps of nodes to dpdzone. Used to encode one-directional graphs whose nodes are Node.t, and labels on edges are DpdZone. *) module E = struct type t = Node.t * DpdZone.t * Node.t type label = DpdZone.t let src (n, _, _) = n let dst (_, _, n) = n let label (_, l, _) = l end module To = Hptmap.Make(Node)(DpdZone)(Hptmap.Comp_unused) (struct let v = [[]] end)(struct let l = [Ast.self] end) let () = Ast.add_hook_on_update (fun _ -> To.clear_caches ()) (* See comment on previous call to Ast.add_hook_on_update *) let () = Ast.add_monotonic_state To.self module OneDir = Node.Hashtbl.Make(To) let add_node_one_dir g v = if not (Node.Hashtbl.mem g v) then Node.Hashtbl.add g v To.empty let add_edge_one_dir g vsrc vdst lbl = let cur = try Node.Hashtbl.find g vsrc with Not_found -> To.empty in let cur = To.add vdst lbl cur in Node.Hashtbl.replace g vsrc cur let remove_edge_one_dir g vsrc vdst = try let cur = Node.Hashtbl.find g vsrc in let cur = To.remove vdst cur in Node.Hashtbl.replace g vsrc cur with Not_found -> () let aux_iter_one_dir ?(rev=false) f v = To.iter (fun v' lbl -> if rev then f v' lbl v else f v lbl v') let iter_e_one_dir ?(rev=false) f g v = let to_ = Node.Hashtbl.find g v in aux_iter_one_dir ~rev f v to_ let fold_e_one_dir ?(rev=false) f g v = let to_ = Node.Hashtbl.find g v in To.fold (fun v' lbl acc -> if rev then f v' lbl v acc else f v lbl v' acc) to_ let fold_one_dir f g v = let to_ = Node.Hashtbl.find g v in To.fold (fun v' _ acc -> f v' acc) to_ (* Bi-directional graphs *) type g = { d_graph: OneDir.t; co_graph: OneDir.t; } include Datatype.Make (struct include Datatype.Undefined type t = g let name = "PdgTypes.G" let reprs = [ let h = Node.Hashtbl.create 0 in { d_graph = h; co_graph = h} ] let mem_project = Datatype.never_any_project let rehash = Datatype.identity open Structural_descr let structural_descr = t_record [| OneDir.packed_descr; OneDir.packed_descr |] end) let add_node g v = add_node_one_dir g.d_graph v; add_node_one_dir g.co_graph v; ;; let add_vertex = add_node let add_edge g vsrc lbl vdst = add_edge_one_dir g.d_graph vsrc vdst lbl; add_edge_one_dir g.co_graph vdst vsrc lbl; ;; let remove_edge g vsrc vdst = remove_edge_one_dir g.d_graph vsrc vdst; remove_edge_one_dir g.co_graph vdst vsrc; ;; let find_edge g v1 v2 = let dsts = Node.Hashtbl.find g.d_graph v1 in To.find v2 dsts ;; let iter_vertex f g = Node.Hashtbl.iter (fun v _ -> f v) g.d_graph let iter_edges_e f g = Node.Hashtbl.iter (fun v _to -> aux_iter_one_dir f v _to) g.d_graph let iter_succ_e f g = iter_e_one_dir f g.d_graph let fold_succ_e f g = fold_e_one_dir f g.d_graph let fold_pred_e f g = fold_e_one_dir ~rev:true f g.co_graph let iter_pred_e f g = iter_e_one_dir ~rev:true f g.co_graph let create () = { d_graph = Node.Hashtbl.create 17; co_graph = Node.Hashtbl.create 17; } let find_dpd g v1 v2 = let lbl = find_edge g v1 v2 in ((v1, lbl, v2), lbl) let add_elem g key = let elem = Node.make key in add_vertex g elem; elem let simple_add_dpd g v1 dpd v2 = add_edge g v1 dpd v2 let replace_dpd g (v1, _, v2) new_dpd = remove_edge g v1 v2; simple_add_dpd g v1 new_dpd v2 let add_dpd graph v1 dpd_kind opt_zone v2 = try let edge, old_dpd = find_dpd graph v1 v2 in let new_dpd = DpdZone.add old_dpd dpd_kind opt_zone in if not (DpdZone.equal old_dpd new_dpd) then replace_dpd graph edge new_dpd with Not_found -> let new_dpd = DpdZone.make dpd_kind opt_zone in simple_add_dpd graph v1 new_dpd v2 let edge_dpd (_, lbl, _) = DpdZone.kind_and_zone lbl let pretty_edge_label = DpdZone.pretty end (** DataState is associated with a program point and provide the dependencies for the data, ie. it stores for each location the nodes of the pdg where its value was last defined. Managed in src/pdg/state.ml *) type data_state = { loc_info : LocInfo.t ; under_outputs : Locations.Zone.t } module Data_state = Datatype.Make (struct include Datatype.Serializable_undefined type t = data_state let name = "PdgTypes.Data_state" let reprs = List.fold_left (fun acc l -> List.fold_left (fun acc z -> { loc_info = l; under_outputs = z } :: acc) acc Locations.Zone.reprs) [] LocInfo.reprs let rehash = Datatype.identity let structural_descr = Structural_descr.t_record [| LocInfo.packed_descr; Locations.Zone.packed_descr |] let mem_project = Datatype.never_any_project end) (** PDG for a function *) module Pdg = struct exception Top exception Bottom type fi = (Node.t, unit) PdgIndex.FctIndex.t (** The nodes associated to each element. There is only one node for simple statements, but there are several for a call for instance. *) let fi_descr = PdgIndex.FctIndex.t_descr ~ni:(Descr.str Node.descr) ~ci:Structural_descr.t_unit type def = { graph : G.t ; states : data_state Cil_datatype.Stmt.Hashtbl.t ; index : fi ; } type body = PdgDef of def | PdgTop | PdgBottom module Body_datatype = Datatype.Make (struct include Datatype.Undefined(*Serializable_undefined*) type t = body let reprs = [ PdgTop; PdgBottom ] let rehash = Datatype.identity open Structural_descr let structural_descr = t_sum [| [| pack (t_record [| G.packed_descr; (let module H = Cil_datatype.Stmt.Hashtbl.Make(Data_state) in H.packed_descr); pack fi_descr; |]) |] |] let name = "body" let mem_project = Datatype.never_any_project end) let () = Type.set_ml_name Body_datatype.ty None include Datatype.Pair(Kernel_function)(Body_datatype) let make kf graph states index = let body = { graph = graph; states = states; index = index ; } in (kf, PdgDef body) let top kf = (kf, PdgTop) let bottom kf = (kf, PdgBottom) let is_top pdg = match snd pdg with PdgTop -> true | _ -> false let is_bottom pdg = match snd pdg with PdgBottom -> true | _ -> false let get_pdg_body pdg = match snd pdg with | PdgDef pdg -> pdg | PdgTop -> raise Top | PdgBottom -> raise Bottom let get_kf pdg = fst pdg let get_graph pdg = let pdg = get_pdg_body pdg in pdg.graph let get_states pdg = let pdg = get_pdg_body pdg in pdg.states let get_index pdg = let pdg = get_pdg_body pdg in pdg.index let iter_nodes f pdg = G.iter_vertex f (get_graph pdg) let iter_direct_dpds pdg f node = let pdg = get_pdg_body pdg in G.fold_one_dir (fun n () -> f n) pdg.graph.G.d_graph node () let iter_direct_codpds pdg f node = let pdg = get_pdg_body pdg in G.fold_one_dir (fun n () -> f n) pdg.graph.G.co_graph node () let fold_call_nodes f acc pdg call = let _, call_pdg = PdgIndex.FctIndex.find_call (get_index pdg) call in let do_it acc (_k, n) = f acc n in PdgIndex.Signature.fold do_it acc call_pdg type dpd_info = (Node.t * Locations.Zone.t option) (** gives the list of nodes that depend to the given node, with a given kind of dependency if [dpd_type] is not [None]. The dependency kind is dropped *) let get_x_direct_edges ~co ?dpd_type pdg node : dpd_info list = let pdg = get_pdg_body pdg in let is_dpd_ok dpd = match dpd_type with None -> true | Some k -> DpdZone.is_dpd k dpd in let filter n dpd n' nodes = if is_dpd_ok dpd then let n = if co then n else n' in let z = DpdZone.dpd_zone dpd in (n, z) :: nodes else nodes in let fold = if co then G.fold_pred_e else G.fold_succ_e in fold filter pdg.graph node [] let get_x_direct ~co dpd_type pdg node = get_x_direct_edges ~co ~dpd_type pdg node let get_x_direct_dpds k = get_x_direct ~co:false k let get_x_direct_codpds k = get_x_direct ~co:true k let get_all_direct ~co pdg node = get_x_direct_edges ~co pdg node let get_all_direct_dpds pdg node = get_all_direct ~co:false pdg node let get_all_direct_codpds pdg node = get_all_direct ~co:true pdg node let fold_direct ~co (pdg:t) f acc node = let do_e n1 dpd n2 acc = let n = if co then n1 else n2 in f acc (DpdZone.kind_and_zone dpd) n in let fold = if co then G.fold_pred_e else G.fold_succ_e in fold do_e (get_graph pdg) node acc let fold_direct_dpds pdg f acc node = fold_direct ~co:false pdg f acc node let fold_direct_codpds pdg f acc node = fold_direct ~co:true pdg f acc node let pretty_graph ?(bw=false) fmt graph = let all = (* Sorted print is nicer for the user *) let r = ref [] in G.iter_vertex (fun n -> r := n :: !r) graph; List.sort Node.compare !r in let print_dpd src d_kind dst = Format.fprintf fmt "@ "; if bw then Format.fprintf fmt "@[<-%a- %d@]" G.pretty_edge_label d_kind (Node.id src) else Format.fprintf fmt "@[-%a-> %d@]" G.pretty_edge_label d_kind (Node.id dst) in let iter_dpd = if bw then G.iter_pred_e else G.iter_succ_e in let print_node_and_dpds fmt n = Format.fprintf fmt "@[<v 2>@[%a@]" Node.pretty_node n; iter_dpd print_dpd graph n; Format.fprintf fmt "@]"; in Pretty_utils.pp_list ~pre:"@[<v>" ~sep:"@ " ~suf:"@]" print_node_and_dpds fmt all let pretty_bw ?(bw=false) fmt pdg = try let graph = get_graph pdg in pretty_graph ~bw fmt graph; with | Top -> Format.fprintf fmt "Top PDG@." | Bottom -> Format.fprintf fmt "Bottom PDG@." (*-----------------------------------------------------------------------*) module Printer = struct open PdgIndex type parent_t = t type t = parent_t module V = Node module E = struct (** boolean to say that the edge is dynamic *) type t = G.E.t * bool let src (e, _d) = G.E.dst e (* We reverse the direction of edges *) let dst (e, _d) = G.E.src e (* to get graphs with a correct orientation*) end (* Skip InCtrl nodes, that hinder readability *) let print_node n = match Node.elem_key n with | Key.SigKey (Signature.In Signature.InCtrl) | Key.SigCallKey (_, Signature.In Signature.InCtrl) -> false | _ -> true let iter_vertex f pdg = try let graph = get_graph pdg in let f n = if print_node n then f n in G.iter_vertex f graph with Top | Bottom -> () let iter_edges_e f pdg = try let graph = get_graph pdg in let f_static n1 lbl n2 = if print_node n1 && print_node n2 then f ((n1, lbl, n2), false) in G.iter_edges_e f_static graph; with Top | Bottom -> () let graph_attributes _ = [`Rankdir `TopToBottom ] let default_vertex_attributes _ = [`Style `Filled] let vertex_name v = string_of_int (Node.id v) let vertex_attributes v = let color_in = (`Fillcolor 0x6495ED) in let color_out = (`Fillcolor 0x90EE90) in let color_decl = (`Fillcolor 0xFFEFD5) in let color_stmt = (`Fillcolor 0xCCCCCC) in (* let color_annot = (`Fillcolor 0x999999) in *) let color_call = (`Fillcolor 0xFF8A0F) in let color_elem_call = (`Fillcolor 0xFFCA6E) in let sh_box = (`Shape `Box) in let key = Node.elem_key v in let sh, col, txt = match key with | Key.VarDecl v -> let txt = Format.asprintf "@[Decl %s@]" v.vname in `Shape `Box, color_decl, txt | Key.SigKey k -> let txt = Format.asprintf "%a" Signature.pretty_key k in let color = match k with | Signature.Out _ -> color_out | _ -> color_in in `Shape `Box, color, txt | Key.Stmt s -> let sh, txt = match s.skind with | Switch (exp,_,_,_) | If (exp,_,_,_) -> let txt = Pretty_utils.to_string Printer.pp_exp exp in `Shape `Diamond, txt | Loop _ -> `Shape `Doublecircle, "while" | Block _ | UnspecifiedSequence _ -> `Shape `Doublecircle, "{}" | Goto _ | Break _ | Continue _ -> let txt = Pretty_utils.to_string (Printer.without_annot Printer.pp_stmt) s in (`Shape `Doublecircle), txt | Return _ | Instr _ -> let txt = Pretty_utils.to_string (Printer.without_annot Printer.pp_stmt) s in sh_box, txt | _ -> sh_box, "???" in sh, color_stmt, txt | Key.CallStmt call -> let call_stmt = Key.call_from_id call in let txt = Pretty_utils.to_string (Printer.without_annot Printer.pp_stmt) call_stmt in sh_box, color_call, txt | Key.SigCallKey (_call, sgn) -> let txt = Pretty_utils.to_string Signature.pretty_key sgn in sh_box, color_elem_call, txt | Key.Label _ -> let txt = Pretty_utils.to_string Key.pretty key in sh_box, color_stmt, txt in sh :: col :: [`Label ( String.escaped txt)] let default_edge_attributes _ = [`Dir `Back] let edge_attributes (e, dynamic) = let d, z = G.edge_dpd e in let attrib = [] in let attrib = match z with | None -> attrib | Some z -> let txt = Format.asprintf "@[<h 1>%a@]" Locations.Zone.pretty z in (`Label (String.escaped txt)) :: attrib in let attrib = let color = if Dpd.is_data d then (if dynamic then 0xFF00FF else 0x0000FF) else (if dynamic then 0xFF0000 else 0x000000) in (`Color color) :: attrib in let attrib = if Dpd.is_ctrl d then (`Arrowtail `Odot)::attrib else attrib in let attrib = if Dpd.is_addr d then (`Style `Dotted)::attrib else attrib in attrib let get_subgraph v = let mk_subgraph name attrib = let attrib = (`Style `Filled) :: attrib in Some { Graph.Graphviz.DotAttributes.sg_name= name; sg_parent = None; sg_attributes = attrib } in match Node.elem_key v with | Key.CallStmt call | Key.SigCallKey (call, _) -> let call_stmt = Key.call_from_id call in let name = "Call"^(string_of_int call_stmt.sid) in let call_txt = Format.asprintf "%a" Printer.pp_stmt call_stmt in let call_txt = String.escaped call_txt in let attrib = [(`Label (name^" : "^call_txt))] in let attrib = (`Fillcolor 0xB38B4D) :: attrib in mk_subgraph name attrib | Key.SigKey k -> let pack_inputs_outputs = false in if pack_inputs_outputs then begin let is_in = match k with Signature.In _ -> true | _ -> false in let name = if is_in then "Inputs" else "Outputs" in let color = if is_in then 0x90EE90 else 0x6495ED in let attrib = [] in let attrib = (`Fillcolor color) :: attrib in mk_subgraph name attrib end else None | _ -> None end (** @see <http://www.lri.fr/~filliatr/ocamlgraph/doc/Graphviz.html> * Graph.Graphviz *) module PrintG = Graph.Graphviz.Dot(Printer) (*-----------------------------------------------------------------------*) let build_dot filename pdg = let file = open_out filename in PrintG.output_graph file pdg; close_out file end (* Local Variables: compile-command: "make -C ../../.." End: *)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>