package frama-c-metacsl
MetAcsl plugin of Frama-C for writing pervasives properties
Install
Dune Dependency
Authors
Maintainers
Sources
meta-0.9-beta.tar.bz2
md5=32bd324617144e618a39e0015445effb
sha512=d96bc4fb9e4c9771efeca815aa1d6f2bae0676cce56d9ed227370bacf4fb04c0811d53470cd15981406ae11a0e95af9f16ab31f7cac04ae2a92cbf85233fb496
doc/src/frama-c-metacsl.core/meta_parse.ml.html
Source file meta_parse.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
(**************************************************************************) (* *) (* This file is part of the Frama-C's MetACSL plug-in. *) (* *) (* Copyright (C) 2018-2025 *) (* CEA (Commissariat à l'énergie atomique et aux énergies *) (* alternatives) *) (* *) (* you can redistribute it and/or modify it under the terms of the GNU *) (* Lesser General Public License as published by the Free Software *) (* Foundation, version 2.1. *) (* *) (* It is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* See the GNU Lesser General Public License version 2.1 *) (* for more details (enclosed in the file LICENSE) *) (* *) (**************************************************************************) open Logic_ptree open Logic_typing open Cil_types open Meta_options open Meta_utils (* Define builtins *) type context = | Weak_invariant | Strong_invariant | Calling | Writing | Reading | Postcond | Precond | Conditional_invariant type target = | TgAll | TgSet of StrSet.t | TgUnion of target list | TgInter of target list | TgDiff of target * target | TgCallees of target | TgCallers of target | TgFile of string (* How is the global status of the property obtained *) type mp_proof_method = | MmLocal | MmDeduction | MmAxiom (* How should a property be translated locally *) type mp_translation = | MtCheck | MtAssert | MtDefault (* translation activated, with unspecified mode *) | MtNone (* Kinds of keywords that can be replaced in a MP instantiation *) type replaced_kind = | RepVariable of term (* replace variable by term *) | RepApp of (string * term) list (* replace application with arg by associated term *) type metaproperty = { mp_name : string; mp_target : target; mp_context : context; mp_property : Kernel_function.t -> (string * replaced_kind) list -> predicate; mp_proof_method : mp_proof_method; mp_translation : mp_translation; mp_loc : Cil_types.location } let mp_commands = ["\\prop"] let mp_contexts = [ "\\weak_invariant"; "\\strong_invariant"; "\\writing"; "\\calling"; "\\reading"; "\\postcond"; "\\precond"; "\\conditional_invariant" ] let mp_metavariables = [ "\\written"; "\\lhost_written"; "\\read"; "\\lhost_read"; "\\called"; "\\called_arg"; "\\func"; ] let mp_utils = [ "\\diff"; "\\ALL" ] let mp_preds = mp_commands @ mp_contexts let mp_terms = mp_metavariables @ mp_utils (* Gathered properties *) let gathered_props = ref [] (* Generic typing for classic ACSL predicates, allowing the * presence of custom predicates inside *) let meta_type_predicate loc orig_ctxt meta_ctxt env expr = match expr.lexpr_node with | PLapp (pname, _, args) when List.mem pname mp_preds -> let terms = List.map (meta_ctxt.type_term meta_ctxt env) args in let logic_info = List.hd (Logic_env.find_all_logic_functions pname) in Logic_const.papp (logic_info, [], terms) | PLapp ("\\fguard", _, [dangerous]) -> begin try meta_ctxt.type_predicate meta_ctxt env dangerous with _ -> Logic_const.pfalse end | PLapp ("\\tguard", _, [dangerous]) -> begin try meta_ctxt.type_predicate meta_ctxt env dangerous with _ -> Logic_const.ptrue end | PLapp ("\\assert_type", _, [{lexpr_node = PLcast (ltyp, lexpr)}]) -> let typed_term = meta_ctxt.type_term meta_ctxt env lexpr in let desired_type = meta_ctxt.logic_type meta_ctxt loc env ltyp in let real_type = typed_term.term_type in if Cil_datatype.Logic_type_NoUnroll.equal real_type desired_type then Logic_const.ptrue else meta_ctxt.error loc "%a has type %a instead of %a" Printer.pp_term typed_term Printer.pp_logic_type real_type Printer.pp_logic_type desired_type | _ -> orig_ctxt.type_predicate meta_ctxt env expr (* Generic typing for classic ACSL terms, allowing the * presence of custom term placeholders (\writing, ...). These will be * replaced by an actual term as defined by the termassoc association table *) let meta_type_term termassoc quantifiers kf loc orig_ctxt meta_ctxt env expr = match expr.lexpr_node with | PLat(e, l) when List.mem l ["After";"Before"] -> let e_t = meta_ctxt.type_term meta_ctxt env e in let label = FormalLabel l in Logic_const.tat (e_t, label) | PLapp ("\\formal", _, [{lexpr_node = PLvar param}]) -> (match Globals.Syntactic_search.find_in_scope param (Formal kf) with | Some vi -> vi |> Cil.cvar_to_lvar |> Logic_const.tvar | None -> meta_ctxt.error loc "%s is not a formal in %a" param Kernel_function.pretty kf) | PLapp ("\\bound", _, [bound]) -> Meta_bindings.parse_bound meta_ctxt loc quantifiers bound | PLapp (app_name, _, [{lexpr_node = PLvar arg}]) when List.mem app_name mp_terms -> begin match List.assoc_opt app_name termassoc with | Some RepApp l -> begin match List.assoc_opt arg l with | Some term -> term | None -> meta_ctxt.error loc "%s is not a valid argument for %s here" arg app_name end | None -> meta_ctxt.error loc "Application of %s forbidden in this context" app_name | _ -> meta_ctxt.error loc "%s expects no arguments but has been provided with one" app_name end | PLvar vname when List.mem vname mp_terms -> begin match List.assoc_opt vname termassoc with | Some RepVariable a -> a | None -> meta_ctxt.error loc "Variable %s forbidden in this context" vname | _ -> meta_ctxt.error loc "%s expects one argument but has been provided with none" vname end | _ -> orig_ctxt.type_term meta_ctxt env expr (* Given an association table, combine the previous functions to type * a full custom predicate *) let process_meta_termassoc typing_context loc kf termassoc expr = let quantifiers = Str_Hashtbl.create 5 in let meta_tc = {typing_context with type_predicate = (meta_type_predicate loc typing_context); type_term = (meta_type_term termassoc quantifiers kf loc typing_context) } in let fenv = Logic_typing.append_here_label meta_tc.pre_state in let fenv2 = Logic_typing.append_pre_label fenv in let fenv3 = Logic_typing.append_old_and_post_labels fenv2 in let pred = meta_tc.type_predicate meta_tc fenv3 expr in Meta_bindings.after_parse meta_tc pred quantifiers (* Check that a given lexpr refer to a C function and return its varinfo *) let process_single_target tc expr = match expr.lexpr_node with | PLvar func -> func | _ -> tc.error expr.lexpr_loc "Target is not a variable" let process_string tc f e = match e.lexpr_node with | PLconstant (StringConstant n) -> n | PLvar n -> n | _ -> tc.error e.lexpr_loc f (* Process a set (+\diff) expression to a custom target type * (because the computation of \ALL must be delegated) *) let rec process_targets tc expr = match expr.lexpr_node with | PLempty -> TgSet StrSet.empty | PLvar "\\ALL" -> TgAll | PLset elems -> let s = elems |> List.map (process_single_target tc) |> StrSet.of_list in TgSet s | PLunion l -> TgUnion (List.map (process_targets tc) l) | PLinter l -> TgInter (List.map (process_targets tc) l) | PLapp ("\\diff", _, [s1; s2]) -> TgDiff (process_targets tc s1, process_targets tc s2) | PLapp ("\\callees", _, [t]) -> TgCallees (process_targets tc t) | PLapp ("\\callers", _, [t]) -> TgCallers (process_targets tc t) | PLapp ("\\in_file", _, [t]) -> TgFile (process_string tc "Expected filename" t) (* Try to treat non-set expr as a singleton *) | _ -> TgSet (StrSet.singleton @@ process_single_target tc expr) let pp_aslist fmt l = let pp_replaced_kind fmt = function | RepVariable v -> Printer.pp_term fmt v | RepApp l -> let pp_singular fmt (a, b) = Format.fprintf fmt "(%s, %a)" a Printer.pp_term b in Format.pp_print_list pp_singular fmt l in let pp_assoc fmt (a, b) = Format.fprintf fmt "(%s, %a)" a pp_replaced_kind b in Format.pp_print_list pp_assoc fmt l (* Display a typing error, trying to parse the uncatchable Cabs2cil exception to avoid clutter *) let typing_error hloc mp_name kf_name metavars (loc, error_msg) = let metav_msg = if metavars = [] then "there were no meta-variables." else Format.asprintf "meta-variables were: %a" pp_aslist metavars in Self.abort "Error during the typing of a HILARE!\n\ What: the HILARE named '%s' (%a)\n\ Where: in function '%s', at %a\n\ Why: %s\n\ Environment: %s" mp_name Cil_datatype.Location.pretty hloc kf_name Cil_datatype.Location.pretty loc error_msg metav_msg let delay_prop tc name lexpr kf aslist = let dfind_var ?label:_ var = (* Tweak find_var so it can find things after link *) try tc.find_var var with Not_found -> try let vi = Globals.Vars.find_from_astinfo var Global in Cil.cvar_to_lvar vi with Not_found -> let kf = Globals.Functions.find_by_name var in let vi = Kernel_function.get_vi kf in Cil.cvar_to_lvar vi in let dfet s = try tc.find_enum_tag s with _ -> Globals.Types.find_enum_tag s in let dft a b = Globals.Types.find_type a b in let delayed_tc = {tc with find_var = dfind_var; find_enum_tag = dfet; find_type = dft} in let loc = lexpr.lexpr_loc in delayed_tc.on_error (process_meta_termassoc delayed_tc loc kf aslist) (typing_error loc name (Kernel_function.get_name kf) aslist) lexpr let rec macro_replacer changer lexpr = let f = macro_replacer changer in let lexpr_node = match changer lexpr.lexpr_node with | PLapp (a, b, c) -> PLapp (a, b, List.map f c) | PLlambda (a, b) -> PLlambda (a, f b) | PLlet (a, b, c) -> PLlet (a, f b, f c) | PLunop (a, b) -> PLunop (a, f b) | PLbinop (a, b, c) -> PLbinop (f a, b, f c) | PLdot (a, b) -> PLdot (f a, b) | PLarrow (a, b) -> PLarrow (f a, b) | PLarrget (a, b) -> PLarrget (f a, f b) | PLold a -> PLold (f a) | PLat (a, b) -> PLat (f a, b) | PLcast (a, b) -> PLcast (a, f b) | PLrange (a, b) -> PLrange (Option.map f a, Option.map f b) | PLsizeofE a -> PLsizeofE (f a) | PLupdate (a, b, c) -> PLupdate (f a, b, c) | PLtypeof a -> PLtypeof (f a) | PLrel (a, b, c) -> PLrel (f a, b, f c) | PLand (a, b) -> PLand (f a, f b) | PLor (a, b) -> PLor (f a, f b) | PLxor (a, b) -> PLxor (f a, f b) | PLimplies (a, b) -> PLimplies (f a, f b) | PLiff (a, b) -> PLiff (f a, f b) | PLnot a -> PLnot (f a) | PLif (a, b, c) -> PLif (f a, f b, f c) | PLforall (a, b) -> PLforall (a, f b) | PLexists (a, b) -> PLexists (a, f b) | PLbase_addr (a, b) -> PLbase_addr (a, f b) | PLoffset (a, b) -> PLoffset (a, f b) | PLblock_length (a, b) -> PLblock_length (a, f b) | PLvalid (a, b) -> PLvalid (a, f b) | PLvalid_read (a, b) -> PLvalid_read (a, f b) | PLvalid_function a -> PLvalid_function (f a) | PLallocable (a, b) -> PLallocable (a, f b) | PLfreeable (a, b) -> PLfreeable (a, f b) | PLinitialized (a, b) -> PLinitialized (a, f b) | PLdangling (a, b) -> PLdangling (a, f b) | PLfresh (a, b, c) -> PLfresh (a, f b, f c) | PLseparated a -> PLseparated (List.map f a) | PLnamed (a, b) -> PLnamed (a, f b) | PLcomprehension (a, b, c) -> PLcomprehension (f a, b, Option.map f c) | PLset a -> PLset (List.map f a) | PLunion a -> PLunion (List.map f a) | PLinter a -> PLset (List.map f a) | PLlist a -> PLset (List.map f a) | PLrepeat (a, b) -> PLrepeat (f a, f b) | l -> l in {lexpr with lexpr_node} let macro_table = Hashtbl.create 2 let process_macro tc loc = function | [ {lexpr_node = PLapp ("\\name", _, [ename])}; {lexpr_node = PLapp ("\\arg_nb", _, [eargnb])}; etemplate ] -> let name = match ename.lexpr_node with | PLvar n -> n | _ -> tc.error ename.lexpr_loc "Name must be a single word" in let arg_nb = match eargnb.lexpr_node with | PLconstant (IntConstant i) -> int_of_string i | _ -> tc.error eargnb.lexpr_loc "arg_nb must be a positive integer" in Hashtbl.add macro_table name (arg_nb, etemplate); Ext_terms [Logic_const.tstring ~loc ("macro_" ^ name)] | _ -> tc.error loc "Invalid macro shape" let expand_macros tc loc prop = let prefix = "\\param_" in let macro_filter = function | PLapp (name, _, params) as a -> if Hashtbl.mem macro_table name then let argnb, template = Hashtbl.find macro_table name in if List.length params = argnb then let extract_param p = let open Option.Operators in let* p' = Extlib.string_del_prefix prefix p in let* n = int_of_string_opt p' in if n <= argnb && n > 0 then Some (n - 1) else None in let param_replacer = function | (PLvar v) as e -> begin match extract_param v with | Some n -> (List.nth params n).lexpr_node | None -> e end | (PLlet (s, b, r)) as e -> begin match extract_param s with | Some n -> begin match (List.nth params n).lexpr_node with | PLvar na -> PLlet (na, b, r) | _ -> tc.error loc "Param replacement in \\let should be a simple var" end | None -> e end | e -> e in (macro_replacer param_replacer template).lexpr_node else tc.error loc "%s takes %d args but %d were given" name argnb (List.length params) else a | e -> e in macro_replacer macro_filter prop let process_flags tc loc = function | {lexpr_node = PLapp ("\\flags", _, l)} -> List.map (fun x -> match x.lexpr_node with | PLnamed ("proof", {lexpr_node=PLvar v}) -> begin match v with | "axiom" -> `Axiom | "deduce" -> `Deduction | "local" -> `Local | _ -> tc.error loc "Invalid value %s for flag proof" v end | PLnamed ("translate", {lexpr_node=PLvar v}) -> begin match v with | "true" | "yes" -> `Translate | "false" | "no" -> `NoTranslate | "check" -> `ForceCheck | "assert" -> `ForceAssert | _ -> tc.error loc "Invalid value %s for flag translate" v end | PLnamed (k, {lexpr_node=PLvar _}) -> tc.error loc "Unknown flag %s" k | _ -> tc.error loc "A flag should has the shape key:value" ) l | _ -> tc.error loc "Flags should be absent or listed with \\flags" let get_status tc loc options = (* By default, translate locally with asserts *) let pm = ref MmLocal in let tr = ref MtDefault in List.iter (function | `Axiom -> pm := MmAxiom | `Local -> pm := MmLocal | `Deduction -> pm := MmDeduction | `ForceAssert -> tr := MtAssert | `ForceCheck -> tr := MtCheck | `Translate -> tr := MtDefault | `NoTranslate -> tr := MtNone ) options; if !pm = MmLocal && !tr = MtNone then tc.error loc "When proof method is local, translation must be enabled" ; (!pm, !tr) (* Take the params of \prop as lexprs, type it and fill the table. * The last parameter is not typed, as we don't know yet how the placeholders * will be replaced (thus the whole property is untypable yet. Instead its * typing is wrapped into a function taking the correct association table, to * delegate the task until instanciation *) let process_property tc loc = function | {lexpr_node = PLapp ("\\name", _, [ename])} :: {lexpr_node = PLapp ("\\targets", _, [etargets])} :: {lexpr_node = PLapp ("\\context", _, [econtext])} :: tail -> let mp_name = process_string tc "Prop name must be a string" ename in let mp_target = process_targets tc etargets in let mp_context = match econtext.lexpr_node with | PLvar "\\weak_invariant" -> Weak_invariant | PLvar "\\strong_invariant" -> Strong_invariant | PLvar "\\conditional_invariant" -> Conditional_invariant | PLvar "\\writing" -> Writing | PLvar "\\reading" -> Reading | PLvar "\\calling" -> Calling | PLvar "\\precond" -> Precond | PLvar "\\postcond" -> Postcond | _ -> tc.error econtext.lexpr_loc "Invalid context %a" Logic_print.print_lexpr econtext in let eproperty, options = match tail with | [] -> tc.error loc "Missing actual property" | [x] -> x, [] | [o; x] -> x, process_flags tc loc o | _ -> tc.error loc "Too many trailing arguments in MP" in let mp_proof_method, mp_translation = get_status tc loc options in (* Execute macros in property *) let expanded = expand_macros tc loc eproperty in (* Delegate typing of property *) let mp_property = delay_prop tc mp_name expanded in gathered_props := {mp_name; mp_target; mp_context; mp_proof_method; mp_translation; mp_property; mp_loc = loc} :: !gathered_props; Ext_terms [Logic_const.tstring ~loc mp_name] | _ -> tc.error loc "Invalid property shape" (* Process each command and fill the table *) let process_meta tc loc l = begin match l with | command :: t -> begin match command.lexpr_node with | PLvar "\\prop" -> process_property tc loc t | PLvar "\\macro" -> process_macro tc loc t (* Already processed file *) | PLconstant StringConstant str -> Ext_terms [Logic_const.tstring ~loc str] | _ -> tc.error loc "Invalid command" end | _ -> tc.error loc "Missing command" end let process_inline tc loc = function | [{lexpr_node = PLvar "lenient"}] -> Ext_terms [Logic_const.tstring "lenient"] | [{lexpr_node = PLapp("\\bind", _, [{lexpr_node = PLvar cvar_name}; {lexpr_node = PLvar gvar_name}])}] -> Meta_bindings.parse_bind tc loc cvar_name gvar_name | _ -> Self.warning "%a: invalid inline annotation" Printer.pp_location loc; Ext_id (-1) let register_parsing () = (* Add builtins, as predicates and terms *) let bl_from_name predicate bl_name = { bl_name; bl_labels = []; bl_params = []; bl_profile = []; bl_type = if predicate then None else Some (Lvar "dummy") } in mp_preds |> List.map (bl_from_name true) |> List.iter Logic_builtin.register; mp_terms |> List.map (bl_from_name false) |> List.iter Logic_builtin.register; (* Register parser for meta global statements *) Acsl_extension.register_global ~plugin:"meta" "meta" process_meta true; Acsl_extension.register_code_annot_next_stmt ~plugin:"meta" "imeta" process_inline ~visitor:Meta_bindings.process_imeta false (* !! Expects a list of props sorted by name !! *) let rec check_for_duplicates = function | [] -> None | [_] -> None | h1 :: h2 :: _ when h1.mp_name = h2.mp_name -> Some (h1, h2) | _ :: t -> check_for_duplicates t let metaproperties () = (* Check that there are no duplicate MPs *) let sorted_props = List.sort (fun a b -> compare a.mp_name b.mp_name) !gathered_props in begin match check_for_duplicates sorted_props with | None -> () | Some (m1, m2) -> Self.abort "The meta-property named %s is defined at \ least twice :@,Here: %a@,and here: %a" m1.mp_name Printer.pp_location m1.mp_loc Printer.pp_location m2.mp_loc end ; List.rev !gathered_props
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>