package frama-c-metacsl
MetAcsl plugin of Frama-C for writing pervasives properties
Install
Dune Dependency
Authors
Maintainers
Sources
meta-0.6.tar.bz2
md5=2b453b80f85c7b358afda6a9e3c72d26
sha512=2039616a471d0d9ecc7bc0531bc7a07bc7f91e8f48e8caecbab09bf41570f2445ae0c3e4b6e19390e0e338708886acf42c891ece7cf6df6d9e98323b4fc122b1
doc/src/frama-c-metacsl.core/meta_annotate.ml.html
Source file meta_annotate.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
(**************************************************************************) (* *) (* This file is part of the Frama-C's MetACSL plug-in. *) (* *) (* Copyright (C) 2018-2024 *) (* CEA (Commissariat à l'énergie atomique et aux énergies *) (* alternatives) *) (* *) (* you can redistribute it and/or modify it under the terms of the GNU *) (* Lesser General Public License as published by the Free Software *) (* Foundation, version 2.1. *) (* *) (* It is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* See the GNU Lesser General Public License version 2.1 *) (* for more details (enclosed in the file LICENSE) *) (* *) (**************************************************************************) open Meta_utils open Meta_options open Meta_parse open Meta_dispatch open Cil_types let after_present p = let vis = object (_) inherit Visitor.frama_c_inplace val mutable found = false method get () = found method! vlogic_label = function | FormalLabel "After" -> found <- true; Cil.DoChildren | _ -> Cil.DoChildren end in ignore (Visitor.visitFramacPredicate (vis :> Visitor.frama_c_visitor) p); vis # get () let replace_after_before is_after stmt pred = let vis = object (_) inherit Visitor.frama_c_inplace method! vlogic_label = function | FormalLabel "After" when is_after -> Cil.ChangeTo (BuiltinLabel Here) | FormalLabel "Before" when is_after -> Cil.ChangeTo (StmtLabel (ref stmt)) | FormalLabel "Before" -> Cil.ChangeTo (BuiltinLabel Here) | _ -> Cil.DoChildren end in Visitor.visitFramacPredicate vis pred (* * Add an unique C label to a statement if it does not have one already *) let label_counter = ref 0 let add_label stmt = let loc = Cil.CurrentLoc.get () in let label_name = "meta_pre_" ^ (string_of_int !label_counter) in if stmt.labels = [] then ( stmt.labels <- (Label (label_name, loc, false)) :: stmt.labels ; label_counter := !label_counter + 1 ) let delayed_instances = Stmt_Hashtbl.create 256 let delayed_contracts = Fundec_Hashtbl.create 256 let cfg_recomputation = ref Fundec_Set.empty (* Common class for contexts *) class context_visitor flags all_mp table = object(self) inherit Visitor.frama_c_inplace val mutable mp_todo = [] val skip_to_add = Stmt_Hashtbl.create 50 (* Fill mp_todo with MPs to process for the given function name *) method fill_todo fn = let todo = find_hash_list Str_Hashtbl.find_opt table fn in mp_todo <- List.map (Hashtbl.find all_mp) todo (* Determine is the current function is a target for some of the properties * in the current context *) method! vfunc f = self # fill_todo f.svar.vname; if mp_todo = [] then Cil.SkipChildren else ( Stmt_Hashtbl.clear skip_to_add; Cil.DoChildren ) method private curr_func_cfg_recompute () = let f = Option.get self#current_func in cfg_recomputation := Fundec_Set.add f !cfg_recomputation (* Remember that we must add a SKIP after the statement for an annotation to * be put *) method private create_next_stmt stmt = self#curr_func_cfg_recompute (); let loc = Cil.CurrentLoc.get () in let new_stmt = Cil.mkStmtOneInstr ~valid_sid:true (Skip loc) in add_to_hash_list Stmt_Hashtbl.(find_opt, replace) skip_to_add stmt new_stmt; new_stmt (* Insert registered SKIPs in corresponding blocks *) method! vblock _ = Cil.DoChildrenPost (fun block -> let rec aux = function | [] -> [] | s :: t -> s :: (find_hash_list Stmt_Hashtbl.find_opt skip_to_add s) @ (aux t) in block.bstmts <- aux block.bstmts; block ) (* Common method used by the subclasses to instantiate an ump *) method instantiate ?(post=None) ?(force_after=false) stmt assoc_list ump = let loc = Property.location ump.ump_ip in let kf = Option.get self # current_kf in let vf = Kernel_function.get_vi kf in let func_ptr = Cil_builder.Exp.(cil_term ~loc (addr (var vf))) in let func_assoc = "\\func", RepVariable func_ptr in let assoc_list = func_assoc :: assoc_list in (* Do not instantiate anything on ghost statements *) if not stmt.ghost then let pred = ump.ump_property kf ~stmt assoc_list in (* Apply potential post transformation *) let post_pred = match post with | None -> pred | Some f -> f pred in (* Simplify *) (* Discard if trivially true *) if not @@ Logic_utils.is_trivially_true post_pred then (* Check if the annotation should be inserted before of after the * current statement *) let after_pres = after_present post_pred in let will_be_after = force_after || after_pres in (* Only add a pre C label when there is a legitimate reason *) if after_pres then add_label stmt; (* Create a SKIP after the stmt to attach the annot to *) let annot_stmt = if will_be_after then self # create_next_stmt stmt else stmt in (* Replace After/Before by correct actual labels *) let labelled = replace_after_before will_be_after stmt post_pred in let finalize () = let named = Meta_dispatch.name_mp_pred flags labelled ump.ump_counter in let kind = if ump.ump_assert then Assert else Check in let annot = Logic_const.( new_code_annotation (AAssert ([], toplevel_predicate ~kind named))) in Annotations.add_code_annot ump.ump_emitter ~kf annot_stmt annot; let ips = Property.ip_of_code_annot kf annot_stmt annot in Meta_dispatch.add_dependency ump ips in (* Delay actual instanciation for correct numbering *) add_to_hash_list Stmt_Hashtbl.(find_opt, replace) delayed_instances stmt finalize end let get_callsites_ips kf rips = let calls = Kernel_function.find_syntactic_callsites kf in match calls with (* if the function is never called (e.g. it is the entry point), then do not set up a proxy over a vacuous set of properties. *) | [] -> [] | _ -> let segmented = List.map (fun rip -> Statuses_by_call.setup_precondition_proxy kf rip; List.map (fun (_, stmt) -> Statuses_by_call.precondition_at_call kf rip stmt) calls) rips in List.concat segmented (* Simply modifies a function contract to ensures that pred is a weak invariant *) class weak_inv_visitor flags full_table table (pre, post) = object (self) inherit context_visitor flags full_table table (* Given a kf and a UMP, add it as requires/ensures to the kf *) method add_to_contract ump = let kf = Option.get self # current_kf in let pred = ump.ump_property kf [] in let finalize () = let pred' = Meta_dispatch.name_mp_pred flags pred ump.ump_counter in let pred_name = (Emitter.get_name ump.ump_emitter) :: pred'.pred_name in let pred'' = {pred' with pred_name} in let kind = if ump.ump_assert then Assert else Check in let deps = ref [] in if pre then ( let ip_requires = Logic_const.new_predicate ~kind pred'' in Annotations.add_requires ump.ump_emitter kf [ip_requires]; let defb = Option.get (Cil.find_default_behavior (Annotations.funspec kf)) in let rips = Property.ip_of_requires kf Kglobal defb ip_requires :: !deps in let callsites_ip = get_callsites_ips kf rips in deps := rips @ callsites_ip @ !deps ); begin match post with | `None -> () | `Strict -> let ip_ensures = Logic_const.new_predicate ~kind pred'' in Annotations.add_ensures ump.ump_emitter kf [(Normal, ip_ensures)]; let defb = Option.get (Cil.find_default_behavior (Annotations.funspec kf)) in let eip = Property.ip_of_ensures kf Kglobal defb (Normal, ip_ensures) in deps := eip :: !deps | `Conditional -> let ip_assumes = Logic_const.new_predicate ~kind pred'' in let ip_ensures = Logic_const.new_predicate ~kind pred'' in let bh = {b_name = List.hd pred_name; b_requires = []; b_assumes = [ip_assumes]; b_post_cond = [(Normal, ip_ensures)]; b_assigns = WritesAny; b_allocation = FreeAllocAny; b_extended = []} in Annotations.add_behaviors ump.ump_emitter kf [bh]; end; Meta_dispatch.add_dependency ump !deps in (* Delay actual instanciation for correct numbering *) let fundec = Kernel_function.get_definition kf in add_to_hash_list Fundec_Hashtbl.(find_opt, replace) delayed_contracts fundec finalize method! vfunc f = self # fill_todo f.svar.vname; List.iter (self # add_to_contract) mp_todo; Cil.SkipChildren end (* Given a tlval, return the term taking its address *) let addr_of_tlval tlval = let typ = Cil.typeOfTermLval tlval in Logic_utils.mk_logic_AddrOf tlval typ let addr_of_tlhost (h,_) = addr_of_tlval (h, TNoOffset) (* Instantiate properties at any call site, replacing \called by * the called function. *) class calling_visitor flags all_mp table = object (self) inherit context_visitor flags all_mp table method calling_instance stmt called called_kf args = let addr_term = addr_of_tlval called in let main_assoc = ("\\called", RepVariable addr_term) in let assoc_list = match called_kf with | None -> Self.warning ~once:true "\\called_arg cannot be used with indirect calls" ; [main_assoc] | Some kf -> let formals = Kernel_function.get_formals kf in try let param_assocs = List.map2 (fun formal given -> let given_term = Logic_utils.expr_to_term given in (formal.vorig_name, given_term) ) formals args in [main_assoc; ("\\called_arg", RepApp param_assocs)] with Invalid_argument _ -> Self.warning ~once:true "\\called_arg cannot be used with variadic \ functions. Please use the Instantiate plugin" ; [main_assoc] in List.iter (self # instantiate stmt assoc_list) mp_todo method! vinst = function | Call (_, fexpr, args, _) -> let lv = match fexpr.enode with Lval lv -> lv | _ -> assert false in let stmt = Option.get self # current_stmt in let called_kf = Kernel_function.get_called fexpr in let tlval = Logic_utils.lval_to_term_lval lv in self#calling_instance stmt tlval called_kf args ; Cil.DoChildren | _ -> Cil.SkipChildren end (* * Retrieve the specification from a kf, replace every instance of its formal * parameters by the actual arguments passed, extract "assigns" clauses and pass * them to "process" *) let inspect_contract process stmt ckf args = let vis = object (_) inherit Visitor.frama_c_inplace val fargs = let h = Hashtbl.create (List.length args) in let _, oargs, _, _ = Cil.splitFunctionType (Kernel_function.get_type ckf) in if (List.length args) != 0 then List.iter2 (fun (a, _, _) b -> Hashtbl.add h a b) (Option.get oargs) args ; h method! vterm _ = Cil.DoChildrenPost (fun term -> match term.term_node with | TLval (host, _) | TAddrOf (host, _) | TStartOf (host, _) -> begin match host with | TVar lovar -> if Hashtbl.mem fargs lovar.lv_name then Logic_utils.expr_to_term @@ Hashtbl.find fargs lovar.lv_name else term | _ -> term end | _ -> term ) end in let bhvs = Annotations.behaviors ckf in let f b = let ass = Annotations.fold_assumes (fun _ p old -> (Visitor.visitFramacPredicate vis (Logic_const.pred_of_id_pred p)) ::old) ckf b.b_name [] in match b.b_assigns with | WritesAny -> Self.warning "Cannot analyze footprint of function %a: no assigns \ clause. Assuming meta-properties with reading/writing contexts are \ valid in this function." Kernel_function.pretty ckf | Writes l -> process ckf stmt vis l ass in List.iter f bhvs (* Instantiate properties at any point where a modification can happen, that is: * - common assignments (including the result of a function) * - calls to an external function (if the flag is set) *) class writing_visitor flags all_mp table = object(self) inherit context_visitor flags all_mp table (* Instantiates the property while replacing \written terms *) method writing_instance ?post stmt = function | TVar lv, _ when flags.simpl && Meta_simplify.is_not_orig_variable lv -> () | written -> let addr_term = addr_of_tlval written in let base_addr_term = addr_of_tlhost written in let assoc_list = [ "\\written", RepVariable addr_term; "\\lhost_written", RepVariable base_addr_term ] in List.iter (self # instantiate ~post stmt assoc_list) mp_todo (* Inspect function specs to see what it assigns and instantiate the * annotation for each assigns clause (with the precond leading to it) *) method private external_assigns _ stmt vis l preconds = List.iter (fun (it, _) -> let term = it.it_content in let propag = Visitor.visitFramacTerm vis term in if not @@ Logic_utils.contains_result propag then match propag.term_node with | TLval t -> let post prop = List.fold_left (fun prop prec -> Logic_const.pimplies (prec, prop) ) prop preconds in self#writing_instance ~post stmt t ; | _ -> assert false ) l (* Instantiate an annotation for each affectation (potentially resulting * from a call) and each call to an undefined function *) method! vstmt_aux stmt = if not stmt.ghost then ( match stmt.skind with | Instr Set (lval, _, _) -> (* x = y, \written -> &x *) let tl = Logic_utils.lval_to_term_lval lval in self # writing_instance stmt tl ; Cil.SkipChildren | Instr Call (lval, fexp, args, (source,_)) -> if Option.is_some lval then ( (* x = f(y), \written -> &x *) let tl = Logic_utils.lval_to_term_lval (Option.get lval) in self#writing_instance stmt tl ) ; (match Kernel_function.get_called fexp with | Some kf -> let caller = Option.get self#current_kf in let callee_def = Kernel_function.has_definition kf in let is_check_assigns f = Kernel_function.Set.mem f flags.check_callee_assigns in if (not callee_def && flags.check_external) || is_check_assigns kf && not (is_check_assigns caller) then inspect_contract self#external_assigns stmt kf args | None -> Self.warning ~source "Indirect call '%a': assuming no 'writing' context-related \ assertions are needed" Printer.pp_exp fexp; ); Cil.SkipChildren | _ -> Cil.DoChildren ) else Cil.SkipChildren end module TLvalSet = Cil_datatype.Term_lval.Set module StmtHashtbl = Cil_datatype.Stmt.Hashtbl class reading_visitor flags all_mp table = object (self) inherit context_visitor flags all_mp table (* Instantiates the property while replacing \read terms *) method reading_instance ?post stmt read = let addr_term = addr_of_tlval read in let base_addr_term = addr_of_tlhost read in let assoc_list = ["\\read", RepVariable addr_term; "\\lhost_read", RepVariable base_addr_term ] in List.iter (self#instantiate ~post stmt assoc_list) mp_todo (* Hashtable : stmt -> set of tlvals used in it. Used to avoid duplicate * annotations *) val lvals_by_stmt = StmtHashtbl.create 20 val mutable in_exp = false (* Visitor currently in an expression *) (* Allow detecting if we are currently in an expression *) method! vexpr e = in_exp <- true ; match e.enode with | SizeOfE _ | AlignOfE _ -> (* we're not evaluating the expression itself, merely its type. *) in_exp <- false; Cil.SkipChildren | AddrOf (_,o) | StartOf(_,o) -> (* the toplevel lval is not read. However, we might read some lvals when evaluating the offset. The host is always a Var in this context, thus we don't need to visit it further. *) ignore (Visitor.visitFramacOffset (self:>Visitor.frama_c_visitor) o); in_exp <- false; Cil.SkipChildren | _ -> Cil.DoChildrenPost (fun e -> in_exp <- false ; e) (* When encoutering an lval in an expression, add it to the statement set *) method! vlval lval = let typ = Cil.typeOfLval lval in (* Exclude functions names *) if in_exp && not (Cil.isFunctionType typ) then begin if Option.is_some (self # current_stmt) then let stmt = Option.get (self # current_stmt) in begin match stmt.skind with | UnspecifiedSequence _ -> () (* ignore attributes from US node *) | _ -> let tl = Logic_utils.lval_to_term_lval lval in let old_set = match StmtHashtbl.find_opt lvals_by_stmt stmt with | Some s -> s | None -> TLvalSet.empty in StmtHashtbl.add lvals_by_stmt stmt @@ TLvalSet.add tl old_set end end ; Cil.DoChildren (* Inspect function specs to see what it reads and instantiate the * annotation for each \from clause (with the precond leading to it) *) method passthrough_from kf stmt vis l preconds = List.iter (fun (_, deps) -> match deps with | FromAny -> Self.warning ~once:true "Cannot fully analyze read footprint of function %a: no \\from \ part in some assigns clauses." Kernel_function.pretty kf | From itl -> List.iter (fun it -> let term = it.it_content in let propag = Visitor.visitFramacTerm vis term in match propag.term_node with | TCastE (_, {term_node = TLval t}) | TLval t -> let post property = List.fold_left (fun prop prec -> Logic_const.pimplies (prec, prop) ) property preconds in self#reading_instance ~post stmt t | _ -> () ) itl ) l method passthrough_process stmt kf args = let cond = (not (Kernel_function.has_definition kf) && flags.check_external) || Kernel_function.Set.( mem kf flags.check_callee_assigns && not (mem (Option.get self#current_kf) flags.check_callee_assigns)) in if cond then inspect_contract self # passthrough_from stmt kf args method! vstmt_aux stmt = if not stmt.ghost then ( (* If the statement is a call to an undefined function, use its spec to * generate \read *) begin match stmt.skind with | Instr Local_init (_, ConsInit (f, args, Plain_func), _) -> let kf = Globals.Functions.get f in self#passthrough_process stmt kf args | Instr Call (_, fexp, args, (source,_)) -> begin match Kernel_function.get_called fexp with | Some ckf -> self#passthrough_process stmt ckf args | None -> Self.warning ~source "Indirect call '%a': assuming no 'reading' context related \ assertion are needed" Printer.pp_exp fexp end | _ -> () end ; let after s = let set = StmtHashtbl.find_opt lvals_by_stmt s in if Option.is_some set then TLvalSet.iter (self#reading_instance s) @@ Option.get set ; s in (* Visit every sub-expression to populate the tlval set then for each * lval, instantiate the property. *) Cil.DoChildrenPost after ) else Cil.DoChildren end (* Return the set of used lvals in a given predicate *) let lvals_of_predicate pred = let s = ref (Some TLvalSet.empty) in let vis = object(self) inherit Visitor.frama_c_inplace method! vterm_lval tlval = s := Option.map (TLvalSet.add tlval) !s ; Cil.DoChildren method! vpredicate_node = function | Papp (li, _, _) -> begin match li.l_body with | LBnone -> () | LBinductive _ | LBreads _ -> s := None | LBpred p -> ignore (Visitor.visitFramacPredicate (self :> Visitor.frama_c_visitor) p) | LBterm t -> ignore (Visitor.visitFramacTerm (self :> Visitor.frama_c_visitor) t) end ; Cil.DoChildren | _ -> Cil.DoChildren end in ignore (Visitor.visitFramacPredicate vis pred) ; !s (* * Modifies the function contract and add asserts to ensures that pred is a weak invariant * AND that each assignment maintains the invariant * A block of instructions can be left unchecked using `//@meta lenient` but this block must * maintain the invariant at the end *) class strong_inv_visitor flags all_mp table = object (self) inherit weak_inv_visitor flags all_mp table (true, `Strict) val mutable lenient = false (* Given a lval which is to be modified, check if its modification * can interfere with the truth of the invariant (only rejects obvious non-interferences) *) method possible_interference lval ump = let tlval = Logic_utils.lval_to_term_lval lval in let kf = Option.get (self # current_kf) in let pred = ump.ump_property kf [] in let pvars = lvals_of_predicate pred in match pvars with | Some set -> not ( TLvalSet.fold (fun pvar -> (&&) (Meta_simplify.neq_lval pvar tlval) ) set true ) (* Could not determine what variables are used in the predicate *) | None -> true (* Check the statement contract of a statement to check if a lenient is present *) method check_annots stmt = let aux _ a = match a.annot_content with | AExtended (_, _, e) -> begin match e with | {ext_name = "imeta"; ext_kind = Ext_terms [{term_node = TConst (LStr "lenient")}]} -> lenient <- true | _ -> () end | _ -> () in Annotations.iter_code_annot aux stmt method! vstmt_aux stmt = self#check_annots stmt ; let non_loop modif ump = (* If a lenient was found, automatically instantiate the predicate * since we are not sure the invariant will be maintained inside the * statement. Else do it only if interference with the invariant is * possible (ie the statement may modify a variable used in the * invariant *) let can_interfere = not flags.simpl || match modif with | None -> false | Some m -> self # possible_interference m ump in if lenient || can_interfere then self#instantiate ~force_after:true stmt [] ump in begin match stmt.skind with | Loop _ -> let kf = Option.get (self # current_kf) in List.iter (fun ump -> let prop = ump.ump_property kf ~stmt [] in let kind = if ump.ump_assert then Assert else Check in let annot = Logic_const.( new_code_annotation (AInvariant ([], true, toplevel_predicate ~kind prop))) in Annotations.add_code_annot ump.ump_emitter ~kf stmt annot ) mp_todo | Instr Set (lval, _, _) -> List.iter (non_loop (Some lval)) mp_todo | Instr Call _ -> List.iter (self#instantiate ~force_after:true stmt []) mp_todo | _ -> List.iter (non_loop None) mp_todo end ; if lenient then ( lenient <- false ; Cil.SkipChildren ) else Cil.DoChildren method! vfunc f = self # fill_todo f.svar.vname; List.iter (self # add_to_contract) mp_todo; if mp_todo = [] then Cil.SkipChildren else Cil.DoChildren end (* Make one copy-pass for each context, typing and instanciating MPs on the fly *) let annotate flags all_mp by_context = let get_vis table = function | Weak_invariant -> (new weak_inv_visitor flags all_mp table (true, `Strict) :> Visitor.frama_c_visitor) | Calling -> (new calling_visitor flags all_mp table :> Visitor.frama_c_visitor) | Writing -> (new writing_visitor flags all_mp table :> Visitor.frama_c_visitor) | Reading -> (new reading_visitor flags all_mp table :> Visitor.frama_c_visitor) | Strong_invariant -> (new strong_inv_visitor flags all_mp table :> Visitor.frama_c_visitor) | Precond -> (new weak_inv_visitor flags all_mp table (true, `None) :> Visitor.frama_c_visitor) | Postcond -> (new weak_inv_visitor flags all_mp table (false, `Strict) :> Visitor.frama_c_visitor) | Conditional_invariant -> (new weak_inv_visitor flags all_mp table (false, `Conditional) :> Visitor.frama_c_visitor) in List.iter (fun (ctx, table) -> let vis = get_vis table ctx in Visitor.visitFramacFileSameGlobals vis (Ast.get ()) ) by_context; (* Finally, actually instanciate all annotations in the correct order *) let final_vis = object (_) inherit Visitor.frama_c_inplace method! vfunc f = (* Reset assertion numbers *) Hashtbl.iter (fun _ ump -> ump.ump_counter := 0) all_mp; (* Instantiate delayed contracts *) let todo = find_hash_list Fundec_Hashtbl.find_opt delayed_contracts f in List.iter (fun f -> f ()) (List.rev todo); Cil.DoChildren method! vstmt_aux stmt = (* Instantiate delayed annotations *) let todo = find_hash_list Stmt_Hashtbl.find_opt delayed_instances stmt in List.iter (fun f -> f ()) (List.rev todo); Cil.DoChildren end in Visitor.visitFramacFileSameGlobals final_vis (Ast.get ()); let update_cfg f = Cfg.clearCFGinfo ~clear_id:false f; Cfg.cfgFun f in Fundec_Set.iter update_cfg !cfg_recomputation; if Fundec_Set.is_empty !cfg_recomputation then (* slight overapproximation: if we don't generate any annotation, then the AST is unchanged. *) Ast.mark_as_grown () else Ast.mark_as_changed ()
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>