package fmlib
Functional monadic library
Install
Dune Dependency
Authors
Maintainers
Sources
0.1.0.tar.gz
sha256=0558665285e4d7691e5a80c90ab05a7acb86c09f03ceef6589f150f6d3574573
md5=fb61f4d6e7233cf8d1d71758e6110c1e
doc/src/fmlib.fmlib_parse/buffer.ml.html
Source file buffer.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
open Fmlib_std open Interfaces module Make (State: ANY) (Token: ANY) (Expect: ANY) (Semantic: ANY) = struct module Error = Error.Make (Expect) (Semantic) type _end = | No_end | End_received | End_consumed type t = { state: State.t; has_consumed: (* Are there consumed token? *) bool; error: Error.t; la_ptr: (* Pointer to the first lookahead token in the buffer. *) int; is_buffering: (* Are we in buffering mode? I.e. are we within a backtrackable parser? *) bool; toks: (* Buffered token. The token from [la_ptr] to the end are lookahead token. *) Token.t array; _end: (* Buffered end of token stream. The end of token stream can only be consumed once. Once in the state [End_consumed] there is no way back. *) _end; } let init (st: State.t): t = {state = st; has_consumed = false; error = Error.init; la_ptr = 0; is_buffering = false; toks = [||]; _end = No_end} let state (b: t): State.t = b.state let error (b: t): Error.t = b.error let count_toks (b: t): int = (* Number of token in the buffer. *) Array.length b.toks let has_end (b: t): bool = match b._end with | No_end -> false | _ -> true let has_lookahead (b: t): bool = (* Are there lookahead token in the buffer? *) b.la_ptr < count_toks b || b._end = End_received let lookaheads (b: t): Token.t array = (* An array consisting only of the lookahead token in the buffer. *) let len = count_toks b - b.la_ptr in Array.sub b.toks b.la_ptr len let first_lookahead (b: t): Token.t option = (* The first lookahead token. *) assert (has_lookahead b); if b.la_ptr < count_toks b then Some b.toks.(b.la_ptr) else None let push_token (t: Token.t) (b: t): t = (* Push a new lookahead token to the buffer. *) if b.is_buffering || has_lookahead b then (* In buffering mode or if they are lookahead token, the new token is pushed to the buffer. *) {b with toks = Array.push t b.toks} else (* Not in buffering mode an no lookaheads. We can forget all token in the buffer. *) {b with la_ptr = 0; toks = [|t|]} let push_end (b: t): t = assert (not (has_end b)); {b with _end = End_received} let update (f: State.t -> State.t) (b: t): t = (* Update the state. *) {b with state = f b.state} let add_expected (e: Expect.t) (b: t): t = {b with error = Error.add_expected e b.error} let put_error (e: Semantic.t) (b: t): t = {b with error = Error.make_semantic e} let clear_errors (b: t): t = {b with error = Error.init} let clear_last_error (b: t): t = {b with error = Error.clear_last b.error} let consume (state: State.t) (b: t): t = (* Consume the first lookahead token. *) assert (has_lookahead b); if b.la_ptr < count_toks b then {b with state; has_consumed = true; error = Error.init; la_ptr = 1 + b.la_ptr} else if b._end = End_received then {b with state; has_consumed = true; error = Error.init; _end = End_consumed} else assert false (* Cannot happen. *) let reject (e: Expect.t) (b: t): t = (* Reject the first lookahead token. The token are unchanged. The failed expectation [e{ is added to the syntax errors. *) add_expected e b let start_new_consumer (b: t): t = {b with has_consumed = false} let has_consumed (b: t): bool = b.has_consumed let end_new_consumer (b0: t) (b: t): t = {b with has_consumed = b0.has_consumed || b.has_consumed; state = if b.has_consumed then b.state else b0.state } let start_alternatives (b: t): t = {b with has_consumed = false} let end_failed_alternatives (e: Expect.t) (b0: t) (b: t): t = if b.has_consumed then b else {b with has_consumed = b0.has_consumed; error = Error.add_expected e b0.error} let end_succeeded_alternatives (b0: t) (b: t): t = if b.has_consumed then b else {b with has_consumed = b0.has_consumed; error = b0.error} let start_backtrack (b: t): t = (* Start backtracking i.e. set the buffer into buffering mode. Token have to be buffered from now on. In case of failure we treat the consumed token as lookahead token. *) {b with is_buffering = true} let end_backtrack_success (b0: t) (b: t): t = (* The current backtrackable parser has succeeded. *) if b0.is_buffering then (* The current backtrackable parser is nested within another backtrackable parser. Therefore no change to the buffer. *) b else (* The current backtrackable parser is not nested within another backtrackable parser. We end buffering and forget all consumed token. The lookahead token remain in the buffer. *) {b with is_buffering = false; toks = lookaheads b; (* only lookahead token *) la_ptr = 0} let end_backtrack_fail (e: Expect.t option) (b0: t) (b: t): t = (* The current backtrackable parser has failed. Reestablish the buffer at the start of the backtrackable parser and treat the consumed token as lookahead token (i.e. unconsume them). *) assert (count_toks b0 <= count_toks b); {b0 with toks = b.toks; error = match e with | None -> b0.error | Some e -> Error.add_expected e b0.error} end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>