package feat-core
Facilities for enumerating and sampling algebraic data types
Install
Dune Dependency
Authors
Maintainers
Sources
archive.tar.gz
md5=f8548ba0792a07d2b72c7894d1089d5e
sha512=6c53ad4f898c074b888018269fe2c00bf001fb5b22ceade1e7e26479fbe9ef55fe97d04a757b10232565a6af8f51d960b6f5f494552df4205aba046b075c513b
doc/src/feat-core/IFSeqSyn.ml.html
Source file IFSeqSyn.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
(******************************************************************************) (* *) (* Feat *) (* *) (* François Pottier, Inria Paris *) (* *) (* Copyright Inria. All rights reserved. This file is distributed under the *) (* terms of the MIT license, as described in the file LICENSE. *) (******************************************************************************) (* This is an implementation of implicit finite sequences as syntax, that is, algebraic data structures. This style should be more efficient than the one used in IFSeqObj, because fewer memory blocks are allocated (one block per construct instead of typically three) and because it opens the door to rebalancing schemes -- e.g., trees of binary [Sum] nodes can be balanced. *) (* In this implementation, the constructors have time complexity O(1), under the assumption that the arithmetic operations provided by [Z] cost O(1) as well. *) module Make (Z : BigIntSig.BASIC) = struct type index = Z.t (* The data constructors [Rev], [Sum], [Product], [Map] are annotated with the length of the sequence. *) (* The child of [Rev] cannot be [Empty], [Singleton], or [Rev]. *) (* The children of [Sum], [Product], [Map] cannot be [Empty]. *) (* In [Up (a, b)], we require [a < b], so the sequence is nonempty. *) type _ seq = | Empty : 'a seq | Singleton: 'a -> 'a seq | Rev : index * 'a seq -> 'a seq | Sum : index * 'a seq * 'a seq -> 'a seq | Product : index * 'a seq * 'b seq -> ('a * 'b) seq | Map : index * ('a -> 'b) * 'a seq -> 'b seq | Up : int * int -> int seq let is_empty (type a) (s : a seq) : bool = match s with | Empty -> true | Singleton _ -> false | Rev _ -> false | Sum _ -> false | Product _ -> false | Map _ -> false | Up _ -> false let length (type a) (s : a seq) : index = match s with | Empty -> Z.zero | Singleton _ -> Z.one | Rev (length, _) -> length | Sum (length, _, _) -> length | Product (length, _, _) -> length | Map (length, _, _) -> length | Up (a, b) -> Z.of_int (b - a) let out_of_bounds () = failwith "Index is out of bounds." let empty = Empty let zero = empty let singleton x = Singleton x let one = singleton let rev (type a) (s : a seq) : a seq = match s with | Empty -> s | Singleton _ -> s | Rev (_, s) -> s | Sum _ -> Rev (length s, s) | Product _ -> Rev (length s, s) | Map _ -> Rev (length s, s) | Up _ -> Rev (length s, s) let sum s1 s2 = if is_empty s1 then s2 else if is_empty s2 then s1 else let length = Z.add (length s1) (length s2) in Sum (length, s1, s2) let ( ++ ) = sum let product s1 s2 = if is_empty s1 || is_empty s2 then empty else let length = Z.mul (length s1) (length s2) in Product (length, s1, s2) let ( ** ) = product let map phi s = if is_empty s then empty else Map (length s, phi, s) let up a b = if a < b then (* We might wish to also check that [b - a] does not overflow. *) Up (a, b) else Empty let rec get : type a . a seq -> index -> a = fun s i -> match s with | Empty -> out_of_bounds() | Singleton x -> if Z.equal i Z.zero then x else out_of_bounds() | Rev (n, s) -> get s (Z.sub (Z.pred n) i) | Sum (_, s1, s2) -> let n1 = length s1 in if Z.lt i n1 then get s1 i else get s2 (Z.sub i n1) | Product (_, s1, s2) -> let q, r = Z.div_rem i (length s2) in get s1 q, get s2 r | Map (_, phi, s) -> phi (get s i) | Up (a, b) -> match Z.to_int i with | exception Z.Overflow -> out_of_bounds() | i -> let x = a + i in if x < a || b <= x then out_of_bounds() else x let rec foreach : type a . a seq -> bool -> (a -> unit) -> unit = fun s sense k -> match s with | Empty -> () | Singleton x -> k x | Rev (_, s) -> foreach s (not sense) k | Sum (_, s1, s2) -> let s1, s2 = if sense then s1, s2 else s2, s1 in foreach s1 sense k; foreach s2 sense k | Product (_, s1, s2) -> foreach s1 sense (fun x1 -> foreach s2 sense (fun x2 -> k (x1, x2) ) ) | Map (_, phi, s) -> foreach s sense (fun x -> k (phi x)) | Up (a, b) -> if sense then for x = a to b - 1 do k x done else for x = b - 1 downto a do k x done let foreach s f = foreach s true f (* In order to avoid concatenation [Seq.concat] and flattening [Seq.flat_map], a producer of a sequence of type ['a Seq.t] must be parameterized over a construction function [cons] and a continuation [k]. Thus, a producer has a type of the following form: *) type ('a, 'b) producer = ('a -> 'b Seq.t -> 'b Seq.t) -> 'b Seq.t -> 'b Seq.t (* [interval sense a b] produces the sequence of integers between [a] included and [b] excluded. If [sense] is [true], this sequence is produced in ascending order; otherwise, it is produced in descending order. *) let rec interval sense a b : (int, 'b) producer = fun cons k -> if a < b then (* Compute the first element [x] and the parameters [a] and [b] of the recursive call. *) let x, a, b = if sense then a, a+1, b else b-1, a, b-1 in (* Produce [x] and delay the recursive call. *) cons x (fun () -> interval sense a b cons k ()) else k (* [to_seq s sense] produces the sequence [s]. If [sense] is [true], then this sequence is produced in order; otherwise, it is produced in reverse order. *) (* Parameterizing this definition with [cons] and [k] allows us to avoid using [Seq.concat] and [Seq.flat_map]. Without these parameters, the treatment of sums and products would require calls to these higher-order functions. *) let rec to_seq : type a b . a seq -> bool -> (a, b) producer = fun s sense cons k -> match s with | Empty -> k | Singleton x -> cons x k | Rev (_, s) -> to_seq s (not sense) cons k | Sum (_, s1, s2) -> let s1, s2 = if sense then s1, s2 else s2, s1 in to_seq s1 sense cons (fun () -> to_seq s2 sense cons k ()) | Product (_, s1, s2) -> to_seq s1 sense (fun x1 k -> to_seq s2 sense (fun x2 k -> cons (x1, x2) k ) k ) k | Map (_, phi, s) -> to_seq s sense (fun x k -> cons (phi x) k) k | Up (a, b) -> interval sense a b cons k let cons x xs = fun () -> Seq.Cons (x, xs) let to_seq s k = to_seq s true cons k end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>