package earley
Parsing library based on Earley Algorithm
Install
Dune Dependency
Authors
Maintainers
Sources
3.0.0.tar.gz
md5=6b666c0392dc5b153f81c27d6ef49b12
sha512=a81d2bcf05088a3aaa5c3c0fb3a38306061a624ddf6d8bbefee1b4a17d7a5961ad1b12c0af9bd8dce86aa14b6f05f1956b3f7b5731f3c552bec7f4550182c398
doc/src/earley.core/earley.ml.html
Source file earley.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
(* ====================================================================== Copyright Christophe Raffalli & Rodolphe Lepigre LAMA, UMR 5127 CNRS, Université Savoie Mont Blanc christophe.raffalli@univ-savoie.fr rodolphe.lepigre@univ-savoie.fr This software contains a parser combinator library for the OCaml lang- uage. It is intended to be used in conjunction with pa_ocaml (an OCaml parser and syntax extention mechanism) to provide a fully-integrated way of building parsers using an extention of OCaml's syntax. This software is governed by the CeCILL-B license under French law and abiding by the rules of distribution of free software. You can use, modify and/or redistribute the software under the terms of the CeCILL- B license as circulated by CEA, CNRS and INRIA at the following URL. http://www.cecill.info As a counterpart to the access to the source code and rights to copy, modify and redistribute granted by the license, users are provided only with a limited warranty and the software's author, the holder of the economic rights, and the successive licensors have only limited liability. In this respect, the user's attention is drawn to the risks associated with loading, using, modifying and/or developing or reproducing the software by the user in light of its specific status of free software, that may mean that it is complicated to manipulate, and that also therefore means that it is reserved for developers and experienced professionals having in-depth computer knowledge. Users are therefore encouraged to load and test the software's suitability as regards their requirements in conditions enabling the security of their sys- tems and/or data to be ensured and, more generally, to use and operate it in the same conditions as regards security. The fact that you are presently reading this means that you have had knowledge of the CeCILL-B license and that you accept its terms. ====================================================================== *) open Utils open Internals (** a few values imported from Internals *) type blank = Internals.blank type 'a grammar = 'a Internals.grammar type 'a fpos = 'a Internals.fpos exception Parse_error = Internals.Parse_error let warn_merge = Internals.warn_merge let debug_lvl = Internals.debug_lvl let keep_all_names = Internals.keep_all_names (** The user visible function to reject a parsing rule from its action *) let give_up () = raise Error (** Three predefined blank functions *) let no_blank : Input.buffer -> int -> Input.buffer * int = fun str pos -> (str, pos) let blank_regexp : string -> blank = fun str -> let (re, _) = Regexp.regexp_from_string str in Regexp.read_regexp re (** blank grammar take another blank function. This is usefull to define blank as list of comments separated by blanks *) let blank_grammar : unit grammar -> blank -> blank = fun grammar blank buf pos -> let save_debug = !debug_lvl in debug_lvl := !debug_lvl / 10; let (_,buf,pos) = internal_parse_buffer ~blank_after:true blank grammar buf pos in debug_lvl := save_debug; (buf,pos) (** Smart constructors for rules *) let nonterm name info rules = NonTerm{info;rules;name;memo=Container.Ref.create ()} let next_aux s r = mkrule (Next(compose_info s r, s, Arg r)) let next_pos_aux s r = mkrule (Next(compose_info s r, s, Pos r)) let next_ign_aux s r = mkrule (Next(compose_info s r, s, Ign r)) let next : type a c. a grammar -> (a -> c) rule -> c rule = fun ((i,rs) as g) r -> match rs with | [{rule = Next(_,s0, Arg {rule = Empty Idt; _}); _}] -> next_aux s0 r | _ -> next_aux (nonterm (grammar_name ~delim:true g) i rs) r let next_pos : type a c. a grammar -> (a -> c) fpos rule -> c rule = fun (i,rs as g) r -> match rs with | [{rule = Next(_,s0, Arg {rule = Empty Idt; _}); _}] -> next_pos_aux s0 r | _ -> next_pos_aux (nonterm (grammar_name ~delim:true g) i rs) r let next_ign : type a c. a grammar -> c rule -> c rule = fun (i,rs as g) r -> match rs with | [{rule = Next(_,s0, Arg {rule = Empty Idt; _}); _}] -> next_ign_aux s0 r | _ -> next_ign_aux (nonterm (grammar_name ~delim:true g) i rs) r let emp f = mkrule (Empty f) let ems f = emp (Simple f) let mkterm name info input = Term{input;info;memo=Container.Ref.create ();name} let mkter2 name info input = Ter2{input;info;memo=Container.Ref.create ();name} let mktest name info input = Test{input;info;memo=Container.Ref.create ();name} let mkgrammar s = (grammar_info s, s) (** Helper to build a terminal symbol *) let solo : string -> ?accept_empty:bool -> Charset.t -> 'a input -> 'a grammar = fun name ?(accept_empty=false) set s -> let j = Fixpoint.from_val (accept_empty,set) in (j, [mkrule (Next(j,mkterm name j s, Arg(idtEmpty ())))]) (** Function used to call a grammar as a terminal. Its input takes more arguments, in particular to record error position *) let solo2 = fun name i s -> let s = fun errpos blank b p b' p' -> s errpos blank b p b' p' in (i, [mkrule (Next(i,mkter2 name i s, Arg (idtEmpty ())))]) (** Combinator for test at current position *) let test : ?name:string -> Charset.t -> (Input.buffer -> int -> 'a * bool) -> 'a grammar = fun ?(name="") set f -> let j = Fixpoint.from_val (true,set) in (j, [mkrule (Next(j,mktest name j (fun _ _ -> f), Arg (idtEmpty ())))]) (** Combinator for test blank before the current position *) let blank_test : ?name:string -> Charset.t -> 'a test -> 'a grammar = fun ?(name="") set f -> let j = Fixpoint.from_val (true,set) in (j, [mkrule (Next(j,mktest name j f, Arg(idtEmpty ())))]) (** A test that always pass *) let success a = test ~name:"SUCCESS" Charset.full (fun _ _ -> (a, true)) (** A test that blank exists before the current position *) let with_blank_test a = blank_test ~name:"BLANK" Charset.full (fun buf' pos' buf pos -> (a, not (Input.buffer_equal buf' buf) || pos' <> pos)) (** A test that blank do not exists before the current position *) let no_blank_test a = blank_test ~name:"NOBLANK" Charset.full (fun buf' pos' buf pos -> (a, Input.buffer_equal buf' buf && pos' = pos)) (** Used for unset recursive grammars *) let unset : string -> 'a grammar = fun msg -> let fn _ _ = failwith msg in solo msg Charset.empty fn (* make sure we have the message *) (** Alternatives between many grammars *) let alternatives : 'a grammar list -> 'a grammar = fun g -> mkgrammar (List.flatten (List.map snd g)) (** Declare a recusive grammar *) let declare_grammar name = let g = snd (unset (name ^ " not set")) in let nt = nonterm name (Fixpoint.from_val (false, Charset.empty)) g in let j = Fixpoint.from_ref nt ( function | NonTerm{rules; _} -> grammar_info rules | _ -> assert false) in begin match nt with | NonTerm r -> r.info <- j | _ -> assert false end; mkgrammar [mkrule (Next(j,nt, Arg(idtEmpty ())))] (** Set the value of a recursive grammar *) let set_grammar : type a.a grammar -> a grammar -> unit = fun p1 (_,rules2) -> match snd p1 with | [{rule=Next(_,NonTerm({info; _} as r),Arg {rule=Empty Idt; _}); _}] -> r.rules <- rules2; Fixpoint.update info; (*Printf.eprintf "setting %s %b %a\n%!" name ae Charset.print set;*) | _ -> invalid_arg "set_grammar" let grammar_family ?(param_to_string=(fun _ -> "<...>")) name = let tbl = EqHashtbl.create 8 in let is_set = ref None in (fun p -> try EqHashtbl.find tbl p with Not_found -> let g = declare_grammar (name^"_"^param_to_string p) in EqHashtbl.add tbl p g; (match !is_set with None -> () | Some f -> set_grammar g (f p); ); g), (fun f -> is_set := Some f; EqHashtbl.iter (fun p r -> set_grammar r (f p); ) tbl) let grammar_prio ?(param_to_string=(fun _ -> "<...>")) name = let tbl = EqHashtbl.create 8 in let is_set = ref None in (fun p -> try EqHashtbl.find tbl p with Not_found -> let g = declare_grammar (name^"_"^param_to_string p) in EqHashtbl.add tbl p g; (match !is_set with None -> () | Some f -> set_grammar g (f p); ); g), (fun (gs,gp) -> let f = fun p -> alternatives (List.map snd (List.filter (fun (f,_) -> f p) gs) @ (gp p)) in is_set := Some f; EqHashtbl.iter (fun p r -> set_grammar r (f p); ) tbl) let grammar_prio_family ?(param_to_string=(fun _ -> "<...>")) name = let tbl = EqHashtbl.create 8 in let tbl2 = EqHashtbl.create 8 in let is_set = ref None in (fun args p -> try EqHashtbl.find tbl (args,p) with Not_found -> let g = declare_grammar (name^"_"^param_to_string (args,p)) in EqHashtbl.add tbl (args, p) g; (match !is_set with None -> () | Some f -> set_grammar g (f args p); ); g), (fun f -> let f = fun args -> (* NOTE: to make sure the tbl2 is filled soon enough *) let (gs, gp) = f args in try EqHashtbl.find tbl2 args with Not_found -> let g = fun p -> alternatives (List.map snd (List.filter (fun (f,_) -> f p) gs) @ gp p) in EqHashtbl.add tbl2 args g; g in is_set := Some f; EqHashtbl.iter (fun (args,p) r -> set_grammar r (f args p); ) tbl) (** Parse the end of file *) let eof : 'a -> 'a grammar = fun a -> let fn buf pos = if Input.is_empty buf pos then (a,buf,pos) else raise Error in solo "EOF" (Charset.singleton '\255') fn (** Give a name to a grammar *) let give_name name (i,_ as g) = (i, [grammar_to_rule ~name g]) (** Change the action of the grammar by applying a function *) let apply : type a b. (a -> b) -> a grammar -> b grammar = fun f g -> mkgrammar [next g (emp (Simple f))] (** Idem, with positions *) let apply_position : type a b. (a -> b) fpos -> a grammar -> b grammar = fun f g -> mkgrammar [next g (emp (WithPos f))] (** Build a tuple with positions *) let position g = apply_position (fun buf pos buf' pos' a -> (Input.filename buf, Input.line_num buf, pos, Input.line_num buf', pos', a)) g (** An always failing grammar *) let fail : unit -> 'a grammar = fun () -> let fn _ _= raise Error in solo "FAIL" Charset.empty fn (** Accept only one char *) let char : ?name:string -> char -> 'a -> 'a grammar = fun ?name c a -> let msg = Printf.sprintf "%C" c in let name = match name with None -> msg | Some n -> n in let fn buf pos = let c', buf', pos' = Input.read buf pos in if c = c' then (a,buf',pos') else give_up () in solo name (Charset.singleton c) fn (** Accept any char in a given char set *) let in_charset : ?name:string -> Charset.t -> char grammar = fun ?name cs -> let msg = Printf.sprintf "[%s]" (Charset.show cs) in let name = match name with None -> msg | Some n -> n in let fn buf pos = let c, buf', pos' = Input.read buf pos in if Charset.mem cs c then (c,buf',pos') else give_up () in solo name cs fn (** Test that the current char is not in a given char set (do not parse it) *) let not_in_charset : ?name:string -> Charset.t -> unit grammar = fun ?name cs -> let msg = Printf.sprintf "^[%s]" (Charset.show cs) in let name = match name with None -> msg | Some n -> n in let fn buf pos = let c = Input.get buf pos in if Charset.mem cs c then ((), false) else ((), true) in test ~name (Charset.complement cs) fn (** Test the charactere at the beginning of the blank. TODO: should not it test all blank char ? *) let blank_not_in_charset : ?name:string -> Charset.t -> unit grammar = fun ?name cs -> let msg = Printf.sprintf "^[%s]" (Charset.show cs) in let name = match name with None -> msg | Some n -> n in let fn buf pos _ _ = let c = Input.get buf pos in if Charset.mem cs c then ((), false) else ((), true) in blank_test ~name (Charset.complement cs) fn (** Accept exactly one char *) let any : char grammar = let fn buf pos = let c, buf', pos' = Input.read buf pos in if c = '\255' then give_up (); (c,buf',pos') in solo "ANY" Charset.(del full '\255') fn (** Print a debugging message, with the position *) let debug msg : unit grammar = let fn buf pos = log "%s file:%s line:%d col:%d\n%!" msg (Input.filename buf) (Input.line_num buf) pos; ((), true) in test ~name:msg Charset.empty fn (** Accept a string *) let string : ?name:string -> string -> 'a -> 'a grammar = fun ?name s a -> let name = match name with None -> s | Some n -> n in let fn buf pos = let buf = ref buf in let pos = ref pos in let len_s = String.length s in for i = 0 to len_s - 1 do let c, buf', pos' = Input.read !buf !pos in if c <> s.[i] then give_up (); buf := buf'; pos := pos' done; (a,!buf,!pos) in solo name ~accept_empty:(s="") (Charset.singleton s.[0]) fn (** Accept a keyword: the charter after the parsed string should return false for the given function *) let keyword : ?name:string -> string -> (char -> bool) -> 'a -> 'a grammar = fun ?name s test a -> let name = match name with None -> s | Some n -> n in let fn buf pos = let buf = ref buf in let pos = ref pos in let len_s = String.length s in for i = 0 to len_s - 1 do let c, buf', pos' = Input.read !buf !pos in if c <> s.[i] then give_up (); buf := buf'; pos := pos' done; let c, _, _ = Input.read !buf !pos in if test c then give_up (); (a,!buf,!pos) in solo name ~accept_empty:(s="") (Charset.singleton s.[0]) fn (** option combinator *) let option : 'a -> 'a grammar -> 'a grammar = fun a (_,l) -> mkgrammar (mkrule (Empty (Simple a))::l) (** Regexp (use our own regexp, look at [Earley_str] for Str regexp support *) let regexp : ?name:string -> string -> string array grammar = fun ?name str -> let name = match name with None -> String.escaped str | Some n -> n in let (re, grps) = Regexp.regexp_from_string str in let fn buf pos = let (buf, pos) = try Regexp.read_regexp re buf pos with Regexp.Regexp_error(_,_) -> give_up () in (Array.map (!) grps, buf, pos) in let accept_empty = Regexp.accept_empty re in let charset = Regexp.accepted_first_chars re in solo name ~accept_empty charset fn (** Allow to write any terminal, by supplying a function *) let black_box : (Input.buffer -> int -> 'a * Input.buffer * int) -> Charset.t -> bool -> string -> 'a grammar = fun fn set accept_empty name -> solo name ~accept_empty set fn (** Parse the empty string *) let empty : 'a -> 'a grammar = fun a -> (iempty,[ems a]) let empty_pos : 'a fpos -> 'a grammar = fun f -> (iempty,[emp (WithPos f)]) (** Various wy to make sequence of parsing *) let sequence : 'a grammar -> 'b grammar -> ('a -> 'b -> 'c) -> 'c grammar = fun l1 l2 f -> mkgrammar [next l1 (next l2 (ems (fun b a -> f a b)))] let sequence_position : 'a grammar -> 'b grammar -> ('a -> 'b -> 'c) fpos -> 'c grammar = fun l1 l2 f -> mkgrammar [next l1 (next l2 (emp (WithPos (fun b p b' p' a a' -> f b p b' p' a' a))))] let sequence3 : 'a grammar -> 'b grammar -> 'c grammar -> ('a -> 'b -> 'c -> 'd) -> 'd grammar = fun l1 l2 l3 f -> sequence l1 (sequence l2 l3 (fun x y z -> f z x y)) (fun z f -> f z) let fsequence : 'a grammar -> ('a -> 'b) grammar -> 'b grammar = fun l1 l2 -> mkgrammar [next l1 (grammar_to_rule l2)] let fsequence_position : 'a grammar -> ('a -> 'b) fpos grammar -> 'b grammar = fun l1 l2 -> mkgrammar [next_pos l1 (grammar_to_rule l2)] let fsequence_ignore : 'a grammar -> 'b grammar -> 'b grammar = fun l1 l2 -> mkgrammar [next_ign l1 (grammar_to_rule l2)] let simple_dependent_sequence : 'a grammar -> ('a -> 'b grammar) -> 'b grammar = fun l1 f2 -> mkgrammar [next l1 (mkrule (Dep (fun a -> grammar_to_rule (f2 a))))] let dependent_sequence : ('a * 'b) grammar -> ('a -> ('b -> 'c) grammar) -> 'c grammar = fun f1 f2 -> simple_dependent_sequence f1 (fun (a,b) -> apply (fun g -> g b) (f2 a)) (** A nice one !*) let iter : 'a grammar grammar -> 'a grammar = fun g -> simple_dependent_sequence g (fun f -> f) (** Various fixpoints *) let fixpoint : 'a -> ('a -> 'a) grammar -> 'a grammar = fun a f1 -> let name = grammar_delim_name f1 ^ "*" in let res = declare_grammar name in let _ = set_grammar res (mkgrammar [ems a; next res (next f1 (idtEmpty ()))]) in res let fixpoint' : type a b.a -> b grammar -> (b -> a -> a) -> a grammar = fun a f1 f -> let name = grammar_delim_name f1 ^ "*" in let res = declare_grammar name in let _ = set_grammar res (mkgrammar [ems a; next res (next f1 (ems f))]) in res let fixpoint1 : 'a -> ('a -> 'a) grammar -> 'a grammar = fun a f1 -> let name = grammar_delim_name f1 ^ "+" in let res = declare_grammar name in let _ = set_grammar res (mkgrammar [next f1 (ems (fun f -> f a)); next res (next f1 (idtEmpty ()))]) in res let fixpoint1' : 'a -> 'b grammar -> ('b -> 'a -> 'a) -> 'a grammar = fun a f1 f -> let name = grammar_delim_name f1 ^ "+" in let res = declare_grammar name in let _ = set_grammar res (mkgrammar [next f1 (ems (fun b -> f b a)); next res (next f1 (ems f))]) in res (** General lists with seprator *) let list1 g sep = fsequence g (apply (fun xs x -> x :: xs []) (fixpoint' (fun l -> l) (fsequence_ignore sep g) (fun x f l -> f (x::l)))) let list0 g sep = option [] (list1 g sep) let list2 g sep = fsequence g (apply (fun xs x -> x :: xs []) (fixpoint1' (fun l -> l) (fsequence_ignore sep g) (fun x f l -> f (x::l)))) (** A combinator to change the notion of blank *) let change_layout : ?old_blank_before:bool -> ?new_blank_after:bool -> 'a grammar -> blank -> 'a grammar = fun ?(old_blank_before=true) ?(new_blank_after=true) l1 blank1 -> let i = Fixpoint.from_val (false, Charset.full) in (* compose with a test with a full charset to pass the final charset test in internal_parse_buffer *) let l1 = mkgrammar [next l1 (next (success ()) (ems (fun _ a -> a)))] in let fn errpos _ buf pos buf' pos' = let buf,pos = if old_blank_before then buf', pos' else buf, pos in let (a,buf,pos) = internal_parse_buffer ~errpos ~blank_after:new_blank_after blank1 l1 buf pos in (a,buf,pos) in let name = grammar_name l1 in solo2 name i fn (** A combinator to parse with no blank at all *) let no_blank_layout : 'a grammar -> 'a grammar = fun l1 -> (* compose with a test with a full charset to pass the final charset test in internal_parse_buffer *) let l1 = mkgrammar [next l1 (next (success ()) (ems (fun _ a -> a)))] in let fn errpos _ _ _ buf pos = let (a,buf,pos) = internal_parse_buffer ~errpos ~blank_after:false no_blank l1 buf pos in (a,buf,pos) in let name = grammar_name l1 in solo2 name (fst l1) fn (** Calls a grammar "greedy": retains only the longuest match *) let greedy : 'a grammar -> 'a grammar = fun l1 -> (* compose with a test with a full charset to pass the final charset test in internal_parse_buffer *) let l1 = mkgrammar [next l1 (next (success ()) (ems (fun _ a -> a)))] in (* FIXME: blank are parsed twice. internal_parse_buffer should have one more argument *) let fn errpos blank buf pos _ _ = let (a,buf,pos) = internal_parse_buffer ~errpos blank l1 buf pos in (a,buf,pos) in let name = grammar_delim_name l1 ^ "$" in solo2 name (fst l1) fn (** How to call the parser *) let partial_parse_buffer : type a.a grammar -> blank -> ?blank_after:bool -> Input.buffer -> int -> a * Input.buffer * int = fun g bl ?(blank_after=false) buf pos -> parse_buffer_aux blank_after bl g buf pos let parse_buffer : 'a grammar -> blank -> Input.buffer -> 'a = fun g blank buf -> let g = sequence g (eof ()) (fun x _ -> x) in let (a, _, _) = partial_parse_buffer g blank buf 0 in a let parse_string ?(filename="") grammar blank str = let str = Input.from_string ~filename str in parse_buffer grammar blank str let parse_channel ?(filename="") grammar blank ic = let str = Input.from_channel ~filename ic in parse_buffer grammar blank str let parse_file grammar blank filename = let str = Input.from_file filename in parse_buffer grammar blank str (** A helper to hangle exceptions *) let fail_no_parse () = exit 1 let handle_exception ?(error=fail_no_parse) f a = try f a with Parse_error(buf, pos) -> let red fmt = "\027[31m" ^^ fmt ^^ "\027[0m%!" in Printf.eprintf (red "Parse error: file %S, line %d, character %d.\n") (Input.filename buf) (Input.line_num buf) (Input.utf8_col_num buf pos); error () (** A module to call a parser with a preprocessor (see Input) *) module WithPP(PP : Input.Preprocessor) = struct module InPP = Input.WithPP(PP) let parse_string ?(filename="") grammar blank str = let str = InPP.from_string ~filename str in parse_buffer grammar blank str let parse_channel ?(filename="") grammar blank ic = let str = InPP.from_channel ~filename ic in parse_buffer grammar blank str let parse_file grammar blank filename = let str = InPP.from_file filename in parse_buffer grammar blank str end (** Collect info a bout grammars *) let grammar_info : type a. a grammar -> bool * Charset.t = fun g -> (force (fst g)) (** A test on grammar *) let accept_empty : 'a grammar -> bool = fun grammar -> fst (grammar_info grammar)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>